JPH0518717A - External diameter measuring apparatus - Google Patents

External diameter measuring apparatus

Info

Publication number
JPH0518717A
JPH0518717A JP19497491A JP19497491A JPH0518717A JP H0518717 A JPH0518717 A JP H0518717A JP 19497491 A JP19497491 A JP 19497491A JP 19497491 A JP19497491 A JP 19497491A JP H0518717 A JPH0518717 A JP H0518717A
Authority
JP
Japan
Prior art keywords
noise
light source
laser light
light
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19497491A
Other languages
Japanese (ja)
Other versions
JP2568328B2 (en
Inventor
Toshiji Kojima
利治 小島
Hideto Kondo
秀人 近藤
Yuji Takeuchi
雄二 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3194974A priority Critical patent/JP2568328B2/en
Publication of JPH0518717A publication Critical patent/JPH0518717A/en
Application granted granted Critical
Publication of JP2568328B2 publication Critical patent/JP2568328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To output laser light with low interfering ability to a measurement object and measure the external diameter with little error at constant and high slability by limiting the intensity amplitude alteration of a diffraction image of an edge of the measurement object at laser light source to a noise level. CONSTITUTION:A laser light source 3 oscillates with the intensity amplitude alteration DELTA of an edge diffraction image of a measurement object W formed by the laser light from the light source being below noise contained in the laser light. The light source 3 mixes not stabilized light with various wavelength and carrys out multi-mode oscillation and emits laser light to the measurement object W through a light deflector 5 to carry out scanning. Here, in the case of using a He-Ne laser for the light source 3, there are spontaneously emitting light noise, beat noise, discharging current noise, mechanical vibration noise, noise by dust, which become a noise source, as the noise and the noise level is several % or less as light intensity. By making the interfering ability of the light source low, the alteration of the measured value becomes little and constantly stable external diameter measurement becomes possible while being scarcely affected even if the environmental temperature changes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば金属線、ガラス
管、光ファイバ等の外径をインラインのプロセス上で測
定する外径測定機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outer diameter measuring machine for measuring the outer diameter of, for example, a metal wire, a glass tube, an optical fiber or the like in an in-line process.

【0002】[0002]

【従来の技術】例えば金属線や光ファイバ等のように連
続的に生産される線材は、迅速な品質管理を行うため
に、製造や検査等のインラインのプロセス上で外径の測
定を実行しており、この際の測定器としては、非接触で
高速かつ高精度な測定が可能なレーザ光走査式の外径測
定機が一般に用いられている。
2. Description of the Related Art For continuously produced wires such as metal wires and optical fibers, the outer diameter is measured in an in-line process such as manufacturing and inspection for quick quality control. As a measuring instrument in this case, a laser beam scanning type outer diameter measuring instrument capable of non-contact, high-speed and highly accurate measurement is generally used.

【0003】図6はこうしたレーザ光走査式による外径
測定機の原理構造を示している。以下、外径測定機の構
成及び測定原理について説明する。外径測定機はレーザ
光で被測定物Wを走査する光学系1と、光学系1からの
信号を復調して被測定物Wの外径に比例した信号に変換
する信号処理系2とを備えて概略構成されている。光学
系1は所定波長のレーザ光を出力するレーザ光源3、レ
ーザ光を反射ミラー4により偏向する光偏向器5、偏向
されたレーザ光を平行光にするレンズ6、偏向されたレ
ーザ光の一部を取り出すモニタ回路7、被測定物Wを走
査して通過したレーザ光を受光する受光回路8を備えて
構成されている。そして、この光学系1では、レーザ光
が光偏向器5の反射ミラー4に入射して偏向され、レン
ズ6により平行光にされて通過すると、被測定物Wの置
かれた空間をY軸方向に正弦的に走査する。被測定物W
を走査したレーザ光は、受光回路8の受光器上に集光さ
れ、光電変換によって電気信号Q1となる。また、光偏
向器5により偏向されたレーザ光の一部はモニタ回路7
によって取り出され、走査ビームの位相と振幅を検出す
るためのモニタ信号Q2,Q3に変換される。
FIG. 6 shows a principle structure of such a laser beam scanning type outer diameter measuring machine. The configuration and measuring principle of the outer diameter measuring machine will be described below. The outer diameter measuring machine includes an optical system 1 that scans the object to be measured W with a laser beam, and a signal processing system 2 that demodulates a signal from the optical system 1 and converts the signal into a signal proportional to the outer diameter of the object to be measured W. It has a general structure. The optical system 1 includes a laser light source 3 that outputs laser light of a predetermined wavelength, an optical deflector 5 that deflects the laser light by a reflection mirror 4, a lens 6 that makes the deflected laser light parallel light, and one of the deflected laser light. A monitor circuit 7 for taking out a portion, and a light receiving circuit 8 for scanning the object to be measured W and receiving the laser light that has passed therethrough are configured. Then, in this optical system 1, when the laser light is incident on the reflection mirror 4 of the optical deflector 5 and is deflected and is made into parallel light by the lens 6 and passes through, the space in which the object to be measured W is placed is moved in the Y-axis direction. Scan sinusoidally. DUT W
The laser light scanned by is condensed on the light receiver of the light receiving circuit 8 and becomes an electric signal Q1 by photoelectric conversion. Further, a part of the laser light deflected by the optical deflector 5 is part of the monitor circuit 7.
Is taken out by the scanner and converted into monitor signals Q2 and Q3 for detecting the phase and amplitude of the scanning beam.

【0004】ここで、図7は横軸を時間軸として被測定
物W上を走査するレーザ光の位置と受光信号Q1との関
係を示す。図において、走査ビームの位置をS=S0
inω0 tとし、Ra,Rbを走査空間で静止している
被測定物Wの両縁の位置とすると、受光信号Q1は走査
ビームが縁Raを通過する時刻ta1にて立下がり、縁
Rbを通過する時刻tb1では立上がる。この結果、下
記の関係が成立する。 Ra=S0 sinω0 ta1 Rb=S0 sinω0 tb1 …(1)
Here, FIG. 7 shows the relationship between the position of the laser beam scanning over the object to be measured W and the received light signal Q1 with the horizontal axis as the time axis. In the figure, the position of the scanning beam is S = S 0 s
Let inω 0 t and Ra and Rb be the positions of both edges of the object to be measured W that is stationary in the scanning space, the received light signal Q1 falls at time ta1 when the scanning beam passes the edge Ra, and the edge Rb is It rises at time tb1 when passing. As a result, the following relationships are established. Ra = S 0 sinω 0 ta 1 Rb = S 0 sinω 0 tb 1 (1)

【0005】一方、信号処理系2は受光信号Q1に基づ
いて一定のパルス信号を出力するパルス発生器9、モニ
タ信号Q2,Q3に基づいて走査ビームの位置をシミュ
レートする参照信号V=V0 sinω0 tを発生する参
照信号発生器10、パルス信号に基づいて参照信号の電
圧を各々サンプルホールドするサンプルホールド回路1
1,12、サンプルホールドされた各々の信号を差動増
幅する差動増幅器13、増幅された信号をディジタル信
号に変換するA/D変換器14を備えて構成されてい
る。
On the other hand, the signal processing system 2 outputs a constant pulse signal based on the received light signal Q1, and a reference signal V = V 0 for simulating the position of the scanning beam based on the monitor signals Q2 and Q3. Reference signal generator 10 for generating sin ω 0 t, and sample and hold circuit 1 for sampling and holding each voltage of the reference signal based on the pulse signal
1 and 12, a differential amplifier 13 that differentially amplifies each sampled and held signal, and an A / D converter 14 that converts the amplified signal into a digital signal.

【0006】そして、この信号処理系2では、2つのサ
ンプルホールド回路11,12が図7(a),(b)に
示すように時刻ta1及びtb1において、参照信号の
電圧Vをサンプルホールドし、図7(c)に示すように
被測定物Wの縁の位置Ra,Rbに相当する電圧Va
1,Vb1を発生する。この電圧Va1,Vb1は
(1)式から下記の式に変換され、 Va1=V0 sinω0 ta1=(V0 /S0 )Ra …(2) Vb1=V0 sinω0 tb1=(V0 /S0 )Rb …(3) これらの差電圧V D1は、V D1=Va1−Vb1=
(V0 /S0 )dとなり、被測定物Wの外径に比例す
る。この外径電圧V Dnは図7(d)に示すように1回
の走査によって検出される値が次の反対方向の走査が終
わるまでの間(π/ω0 )だけホールドされ、A/D変
換された後にCPU(図示せず)に取り込まれる。CP
Uに取り込まれたデータは、外部機器であるキーボード
から設定された平均回数、目標値、上下限値等の各種パ
ラメータに従って処理され、この処理によって得られた
測定データはディスプレイコントローラを介して例えば
LED表示される。
In this signal processing system 2, the two sample hold circuits 11 and 12 sample and hold the voltage V of the reference signal at times ta1 and tb1 as shown in FIGS. 7 (a) and 7 (b). As shown in FIG. 7C, a voltage Va corresponding to the positions Ra and Rb of the edge of the object W to be measured.
1 and Vb1 are generated. The voltages Va1 and Vb1 are converted from the equation (1) into the following equation: Va1 = V 0 sinω 0 ta1 = (V 0 / S 0 ) Ra (2) Vb1 = V 0 sinω 0 tb1 = (V 0 / S 0 ) Rb (3) These difference voltages V D1 are V D1 = Va1-Vb1 =
(V 0 / S 0 ) d, which is proportional to the outer diameter of the object W to be measured. As shown in FIG. 7D, this outer diameter voltage V Dn is held only for a value detected by one scan until the end of the next scan in the opposite direction (π / ω 0 ), and A / D After the conversion, it is taken in by the CPU (not shown). CP
The data taken in U is processed according to various parameters such as the average number of times, target value, and upper and lower limit values set from a keyboard which is an external device, and the measurement data obtained by this processing is processed by a display controller, for example, LED. Is displayed.

【0007】[0007]

【発明が解決しようとする課題】以上の原理から明らか
なように、この種の外径測定機は、被測定物によってレ
ーザ光の微小スポットが遮られることを利用した遮光形
の測定機であり、遮光によって生ずる受光回路へ入射す
る光エネルギーの変化を光電変換して検出している。こ
のときに用いる光源として、光電信号のS/Nを上げる
ためには、エネルギー密度が高く、集光性が良い、いわ
ゆる輝度の高い光源であることが望ましい。また、微小
スポットのビーム形状は、レーザ光の走査方向に沿って
対称性の良いガウス形状であると、受光回路から得られ
る方形波信号Q1の立下り、立上りの波形に高調波が重
畳せず、高精度なエッジ検出が可能となる。以上の条件
を満たすものとして、光源としてはレーザ光が広く使用
されている。
As is clear from the above principle, this type of outer diameter measuring machine is a light-shielding type measuring machine that utilizes the fact that a minute spot of laser light is blocked by the object to be measured. The change in the light energy incident on the light receiving circuit caused by the light shielding is photoelectrically converted and detected. In order to increase the S / N ratio of the photoelectric signal, the light source used at this time is preferably a so-called high-luminance light source having high energy density and good light converging property. Further, if the beam shape of the minute spot is a Gaussian shape with good symmetry along the scanning direction of the laser light, harmonics are not superimposed on the falling and rising waveforms of the square wave signal Q1 obtained from the light receiving circuit. It is possible to detect edges with high accuracy. Laser light is widely used as a light source for satisfying the above conditions.

【0008】しかしながら、被測定物によってはレーザ
光のもつ高い可干渉性により、有限な受光開口で測定系
を構成していると、受光する光エネルギーが干渉縞の影
響を受けて外径変動だけを抽出することが困難になる場
合がある。例えば、光透過率の高い光ファイバでは、ビ
ーム径が有限なため、エッジによる回折光やエッジ付近
の反射光、さらにファイバ内へ屈折した光が内部反射を
繰り返し、外部へ漏れた光の一部分が前記回折光や反射
光と干渉する結果、温度変化に伴う光源の波長変化やフ
ァイバの真円度や屈折率の均一性などの影響を受け、そ
れらの変動が外径測定出力に表われるという現象が見ら
れる。図3は単一波長半導体レーザ光を光源とし、12
5μmの光ファイバを保持したとき、外気温度が0度か
ら40度の間で変化させたとき、レーザ光の発振周波数
が急にシフトする(縦モードホップ)にしたがってその
影響が外径測定出力に表われていることを示すものであ
る。この現象を取除くために、従来は周波数安定化レー
ザなどを用いる方法が提案されていたが、これによって
も前記ファイバの構造パラメータが変化したことによる
影響を取除くことができない。
However, due to the high coherence of the laser light depending on the object to be measured, if the measurement system is configured with a finite light receiving aperture, the received light energy is affected by the interference fringes and only the outer diameter variation occurs. Can be difficult to extract. For example, in an optical fiber with high light transmittance, since the beam diameter is finite, the light diffracted by the edge, the reflected light near the edge, and the light refracted into the fiber repeats internal reflection, and a part of the light leaked to the outside is As a result of interfering with the diffracted light or the reflected light, it is influenced by the wavelength change of the light source due to the temperature change, the circularity of the fiber, the uniformity of the refractive index, etc., and the fluctuation thereof appears in the outer diameter measurement output. Can be seen. In FIG. 3, a single-wavelength semiconductor laser light is used as a light source.
When a 5 μm optical fiber is held and the outside air temperature is changed between 0 and 40 degrees, the oscillation frequency of the laser light shifts abruptly (longitudinal mode hop) and its effect on the outer diameter measurement output. It is what is shown. In order to remove this phenomenon, a method using a frequency-stabilized laser or the like has been conventionally proposed, but this cannot remove the effect of the change in the structural parameter of the fiber.

【0009】同じように、反射率の高い金属のまわり
に、スポット径の大きさに比べ数分の一以下の厚さで透
明体がコーティングされた金属線を被測定物としたとき
も、エッジ回折光とエッジ付近の反射光及びコーティン
グ内に屈折した光が金属線で反射して、それらの干渉に
より実際の外径変動が測定できないという問題があっ
た。
Similarly, even when a metal wire coated with a transparent body with a thickness of a fraction or less of the size of the spot diameter around a metal having a high reflectance is used as an object to be measured, There is a problem that the diffracted light, the reflected light near the edge, and the light refracted in the coating are reflected by the metal wire, and the interference of these rays makes it impossible to measure the actual outer diameter variation.

【0010】そこで、本発明は上記問題点に鑑みてなさ
れたものであって、その目的は、常に安定度が高く誤差
の少ない外径測定をインラインのプロセス上で行うこと
ができる外径測定機を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an outer diameter measuring machine which can always perform outer diameter measurement with high stability and little error in an in-line process. To provide.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明による外径測定機は、レーザ光により被測定
物を走査し、該走査によるレーザ光の遮蔽されるタイミ
ングの検出に基づいて前記被測定物の外径を測定する外
径測定機において、前記被測定物のエッジの回折像の強
度振幅変化がノイズレベル以下でなる可干渉性の低いレ
ーザ光源を備えたことを特徴としている。
In order to achieve the above-mentioned object, an outer diameter measuring machine according to the present invention scans an object to be measured with a laser beam, and based on the detection of the timing at which the laser beam is blocked by the scanning. An outer diameter measuring machine for measuring an outer diameter of the object to be measured is characterized by comprising a low coherence laser light source in which a change in intensity amplitude of a diffraction image of an edge of the object to be measured is below a noise level. ..

【0012】[0012]

【作用】レーザ光源における被測定物のエッジの回折像
の強度振幅変化をノイズレベル以下とすることで、可干
渉性の低いレーザ光が光偏向器を介して被測定物に出力
され、常に安定度が高く誤差の少ない外径測定が実施さ
れる。
[Function] By setting the intensity amplitude change of the diffraction image of the edge of the object to be measured in the laser light source to be equal to or less than the noise level, laser light with low coherence is output to the object to be measured via the optical deflector and always stable. Outer diameter measurement with high accuracy and little error is performed.

【0013】[0013]

【実施例】この実施例による外径測定機は、被測定物W
として例えば金属線、ガラス管、光ファイバ等の外径を
インラインのプロセス上で測定するにあたって、常に安
定度の高い測定を実現するために可干渉性の低いレーザ
光源を備えている。
EXAMPLE An outer diameter measuring machine according to this example is used for measuring an object W to be measured.
For example, when measuring the outer diameter of a metal wire, a glass tube, an optical fiber, or the like in an in-line process, a laser light source with low coherence is provided in order to always realize a highly stable measurement.

【0014】さらに説明すると、このレーザ光源は図1
に示す光源からのレーザ光によって形成される被測定物
のエッジ回折像の強度振幅変化Δがレーザ光に含まれる
ノイズレベル以下で発振している。そして、このレーザ
光源は安定化していない様々な波長の光を混合してマル
チモード発振し、光偏向器を介して被測定物にレーザ光
を出射して走査を行っている。
To explain further, this laser light source is shown in FIG.
The intensity amplitude change Δ of the edge diffraction image of the DUT formed by the laser light from the light source shown in (1) oscillates at the noise level included in the laser light or less. Then, this laser light source mixes lights of various wavelengths which are not stabilized and oscillates in a multimode, and emits laser light to an object to be measured through an optical deflector to perform scanning.

【0015】ここで、ノイズとしては、光源にHe−N
eレーザを用いた場合、誘導放出によらない光で、レー
ザ発振しきい値付近で大きな雑音源となる自然放出光ノ
イズ、モード間のビートにより発生するビートノイズ、
放電電流によるレーザ管の放電路内でのプラズマ振動に
基づく放電電流ノイズ、共振器の機械的振動によるノイ
ズ、共振器内の塵埃によるノイズ等が挙げられ、ノイズ
レベルは光強度で数%以下である。
Here, the noise is He-N in the light source.
When an e-laser is used, it is light that does not depend on stimulated emission and is a spontaneous emission light noise that becomes a large noise source near the laser oscillation threshold, beat noise generated by beats between modes,
There are discharge current noise due to plasma vibration in the discharge path of the laser tube due to discharge current, noise due to mechanical vibration of the resonator, noise due to dust inside the resonator, etc. is there.

【0016】次に、図2は被測定物を固定保持した状態
で、外気温度が例えば0度から40度の間で任意に変化
している状態で外径測定を行った場合の温度特性を示し
ている。この図から、光源の可干渉性を低くすること
で、外気温度が変化しても測定値の変動は僅かしか見ら
れず、測定値に与える影響は極めて小さく、常に安定し
た外径測定が可能となることが判る。
Next, FIG. 2 shows the temperature characteristics when the outer diameter is measured with the object to be measured fixedly held and the outside air temperature arbitrarily changing, for example, between 0 and 40 degrees. Shows. From this figure, by reducing the coherence of the light source, there is little change in the measured value even when the outside air temperature changes, the influence on the measured value is extremely small, and stable outer diameter measurement is always possible. It turns out that

【0017】次に、図4は本発明による可干渉性の低い
レーザ光源を用い、光ファイバが固定された状態での光
ファイバの各位置に対する測長器のデータと測定データ
との関係を示している。単一偏光レーザ光源を用いた図
5と比較すると、単一偏光レーザ光源を用いた場合に
は、光ファイバの全長に渡って外径測定機による測定デ
ータと測長器によるデータとの間の絶対値誤差が一定し
ていないのに対し、本発明による可干渉性の低いレーザ
光源を用いた場合では、外径測定機による測定データと
測長器のデータとの間の絶対値誤差が光ファイバの全長
に渡って一定である。
Next, FIG. 4 shows the relationship between the data of the length measuring device and the measured data for each position of the optical fiber when the laser light source with low coherence according to the present invention is used and the optical fiber is fixed. ing. Compared to FIG. 5 using the single-polarization laser light source, in the case of using the single-polarization laser light source, the distance between the data measured by the outer diameter measuring device and the data measured by the length measuring device is measured over the entire length of the optical fiber. While the absolute value error is not constant, in the case of using the laser light source with low coherence according to the present invention, the absolute value error between the data measured by the outer diameter measuring device and the data of the length measuring device is an optical error. It is constant over the entire length of the fiber.

【0018】そして、上述した外径測定機による測定デ
ータと測長器によるデータとの間の絶対値誤差は、光フ
ァイバの全長に渡って同一の値分だけ全体的にシフトし
て校正することができることから、図4の外径測定機に
よる測定データは測長器によるデータとほぼ同一の値を
示し、本発明のレーザ光源を用いれば、極めて誤差の小
さい状態で常に安定した外径測定を行うことができるこ
とは明らかである。
Then, the absolute value error between the data measured by the outer diameter measuring device and the data measured by the length measuring device should be calibrated by shifting by the same value over the entire length of the optical fiber. Therefore, the measured data by the outer diameter measuring device of FIG. 4 shows almost the same value as the data by the length measuring device, and by using the laser light source of the present invention, the outer diameter measurement is always stable with an extremely small error. Obviously, it can be done.

【0019】ところで、上述した実施例では、光偏向器
として音叉振動子を使用した場合を図示して説明した
が、従来より用いられている回転ミラーを使用したもの
でも上述した実施例と同様の効果を得ることができる。
In the above-mentioned embodiment, the case where the tuning fork vibrator is used as the optical deflector has been illustrated and described, but the one using the rotating mirror which has been conventionally used is also the same as the above-mentioned embodiment. The effect can be obtained.

【0020】[0020]

【発明の効果】以上説明したように、本発明の外径測定
機によれば、被測定物のエッジの回折像の強度振幅変化
がノイズレベル以下でなる可干渉性の低いレーザ光源を
備えているので、常に安定度が高く誤差の少ない外径測
定をインラインのプロセス上で行うことができるという
効果がある。
As described above, according to the outer diameter measuring machine of the present invention, a laser light source having a low coherence in which the intensity amplitude change of the diffraction image of the edge of the object to be measured is below the noise level is provided. Therefore, there is an effect that the outer diameter can always be measured in an in-line process with high stability and little error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による外径測定機のレーザ光源が出力す
るレーザ光によって形成される被測定物の回折像の強度
振幅変化を示す図
FIG. 1 is a diagram showing a change in intensity amplitude of a diffraction image of an object to be measured which is formed by laser light output from a laser light source of an outer diameter measuring instrument according to the present invention.

【図2】本発明による外径測定機において、可干渉性の
低いレーザ光源を用い、被測定物を固定保持した状態
で、外気温度を例えば0度から40度の間で変化させな
がら外径測定を行った場合の波長特性を示す図
FIG. 2 shows an outer diameter measuring device according to the present invention, which uses a laser light source having low coherence and holds an object to be measured fixedly, while changing the outer air temperature from 0 to 40 degrees. Diagram showing wavelength characteristics when measurement is performed

【図3】光源として安定化していない単一偏光レーザを
用い、被測定物を固定保持した状態で、外気温度を例え
ば0度から40度の間で変化させながら外径測定を行っ
た場合の波長特性を示す図
FIG. 3 shows a case where an unstabilized single-polarized laser is used as a light source, and an outer diameter is measured while the temperature of an object to be measured is fixed and changed while changing the outside air temperature between 0 degrees and 40 degrees. Diagram showing wavelength characteristics

【図4】本発明による外径測定機において、可干渉性の
低いレーザ光源を用い、光ファイバが固定された状態で
の光ファイバの各位置に対する測長器のデータと測定デ
ータとの関係を示す図
FIG. 4 shows the relationship between the data of the length measuring machine and the measured data for each position of the optical fiber in a state where the laser light source with low coherence is used in the outer diameter measuring device according to the present invention and the optical fiber is fixed. Figure

【図5】光源として安定化していない単一偏光レーザを
用い、光ファイバが固定された状態での光ファイバの各
位置に対する測長器のデータと測定データとの関係を示
す図
FIG. 5 is a diagram showing a relationship between length measuring instrument data and measurement data for each position of an optical fiber in a state where the single polarization laser which is not stabilized is used as a light source and the optical fiber is fixed.

【図6】外径測定機の測定原理を説明するための構成図FIG. 6 is a configuration diagram for explaining the measurement principle of the outer diameter measuring machine.

【図7】横軸を時間軸として被測定物上を走査するレー
ザ光の位置と受光信号Q1との関係を示す図
FIG. 7 is a diagram showing the relationship between the position of the laser beam scanning the object to be measured and the received light signal Q1 with the horizontal axis as the time axis.

【図8】従来の外径測定機の一構成例を示す図FIG. 8 is a diagram showing a configuration example of a conventional outer diameter measuring machine.

【符号の説明】[Explanation of symbols]

1 光学系 2 信号処理系 3 レーザ光源 W 被測定物 1 Optical System 2 Signal Processing System 3 Laser Light Source W DUT

Claims (1)

【特許請求の範囲】 【請求項1】 レーザ光により被測定物を走査し、該走
査によるレーザ光の遮蔽されるタイミングの検出に基づ
いて前記被測定物の外径を測定する外径測定機におい
て、前記被測定物のエッジの回折像の強度振幅変化がノ
イズレベル以下でなる可干渉性の低いレーザ光源を備え
たことを特徴とする外径測定機。
1. An outer diameter measuring machine for scanning an object to be measured with a laser beam and measuring an outer diameter of the object to be measured based on detection of a timing at which the laser beam is shielded by the scanning. 2. An outer diameter measuring machine, comprising: a laser light source having a low coherence in which a change in intensity amplitude of a diffraction image of an edge of the object to be measured is equal to or lower than a noise level.
JP3194974A 1991-07-10 1991-07-10 Outer diameter measuring machine Expired - Fee Related JP2568328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194974A JP2568328B2 (en) 1991-07-10 1991-07-10 Outer diameter measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194974A JP2568328B2 (en) 1991-07-10 1991-07-10 Outer diameter measuring machine

Publications (2)

Publication Number Publication Date
JPH0518717A true JPH0518717A (en) 1993-01-26
JP2568328B2 JP2568328B2 (en) 1997-01-08

Family

ID=16333443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194974A Expired - Fee Related JP2568328B2 (en) 1991-07-10 1991-07-10 Outer diameter measuring machine

Country Status (1)

Country Link
JP (1) JP2568328B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203711A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Scanning-type endoscope system
WO2017203707A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Scanning-type endoscope system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203711A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Scanning-type endoscope system
WO2017203707A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Scanning-type endoscope system

Also Published As

Publication number Publication date
JP2568328B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
Anderson et al. Spot size measurements for single-mode fibers-a comparison of four techniques
JPH0650842A (en) Calibrating method for optical reflectometer and reflectometer for coherence region
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
JPH06186336A (en) Electro-optical distance measuring equipment and light source means
JPH01235889A (en) Light wave distance measuring instrument having linearity error correction function
CN108731841A (en) CW with frequency modulation laser interference optical fiber temperature sensor
US8289525B2 (en) Optical surface measuring apparatus and method
CN208595984U (en) A kind of high sensitivity optical fiber temperature sensor
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
US4747688A (en) Fiber optic coherence meter
JP2568328B2 (en) Outer diameter measuring machine
US20030046024A1 (en) Apparatus and method for volumetric dilatometry
CN114578095A (en) Calibration device and calibration method for Doppler velocity measurement system
JPS6488516A (en) Detector for quantity of fluctuation of optical beam of optical scanner
Pelayo et al. Chromatic dispersion characterization in short single-mode fibers by spectral scanning of phase difference in a Michelson interferometer
CN115000787B (en) Method and system for measuring coherence of laser pulse
JPH1137807A (en) Equipment for calibrating vibration sensor
JP3106443B2 (en) Temperature distribution measuring method and device therefor
SU761847A1 (en) Apparatus for contactless measuring linear displacements and resonance frequencies of articles
SU1059420A1 (en) Method of measuring radius of curvature of spherical laser mirrors
JPH03238309A (en) Surface-shape measuring apparatus
JPH068773B2 (en) Single mode optical fiber structure measurement method
SU1157363A1 (en) Device for determining structure of light beam
Leung et al. Laser scanner for thickness measurements on the production line
SU890827A1 (en) Interferometric method for measuring parameters of objects

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees