JPH05186875A - Photo-assisted cvd device - Google Patents

Photo-assisted cvd device

Info

Publication number
JPH05186875A
JPH05186875A JP363392A JP363392A JPH05186875A JP H05186875 A JPH05186875 A JP H05186875A JP 363392 A JP363392 A JP 363392A JP 363392 A JP363392 A JP 363392A JP H05186875 A JPH05186875 A JP H05186875A
Authority
JP
Japan
Prior art keywords
film forming
optical system
forming surface
substrate
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP363392A
Other languages
Japanese (ja)
Other versions
JP3065760B2 (en
Inventor
Naoki Inoue
直樹 井上
Haruyuki Nakaoka
春雪 中岡
Hideki Azuma
秀樹 東
Shigeru Morikawa
茂 森川
Hisashi Sakai
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4003633A priority Critical patent/JP3065760B2/en
Publication of JPH05186875A publication Critical patent/JPH05186875A/en
Application granted granted Critical
Publication of JP3065760B2 publication Critical patent/JP3065760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photo-assisted CVD device with an optical system which ensures relatively small disorder of the intensity distribution of a pencil of excited rays on a substrate to be subjected to film formation and can maintain a satisfactory state of intensity distribution on the light source side. CONSTITUTION:In this photo-CVD device, a substrate 4 to be subjected to film formation is held in a thin film formation chamber 1a, the film formation surface 4a of the substrate 4 is irradiated with a pencil R3 of excited rays emitted from an optical system P with excimer laser as a light source 11 and a gaseous material (g) led near to the surface 4a is excited with the pencil R3 of excited rays to form a thin film 6 on the surface 4a. The focal position of the optical system P is set above the film formation surface 4a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜形成室内に成膜対
象の基板を保持し、基板の膜形成面に対して、エキシマ
レーザー光源を備えた光学系により得られる励起光源束
を、膜形成面に沿って照射して、膜形成面近傍に導かれ
る材料ガスを励起光線束により励起し、膜形成面上に薄
膜を形成する光CVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention holds a substrate to be film-formed in a thin-film forming chamber and forms an excitation light source bundle obtained by an optical system equipped with an excimer laser light source on the film forming surface of the substrate. The present invention relates to an optical CVD apparatus that irradiates along a formation surface and excites a material gas guided near the film formation surface by an excitation light beam to form a thin film on the film formation surface.

【0002】[0002]

【従来の技術】上記の光CVD装置は、励起光線束によ
り薄膜の形成にレーザー光を使用するため、比較的低温
で薄膜を形成することが可能な利点を備えたものであ
り、例えばレーザ光線としては、膜形成面に沿った幅方
向の辺が200mm程度で、その厚みが2mm程度の矩
形光線束を、光学系に備えられたレンズ群によって形成
して成膜をおこなっていた。従来、レンズ群の設計は、
基板上に於ける光線束の形状あるいは位置(光軸に沿っ
た厚み、幅、上下方向の離間距離等)を、どのようにす
るかを主眼としておこなわれていた。
2. Description of the Related Art The above-mentioned photo CVD apparatus has an advantage that a thin film can be formed at a relatively low temperature because a laser beam is used for forming a thin film by an excitation light beam flux. As for the film formation, a rectangular ray bundle having a side in the width direction along the film formation surface of about 200 mm and a thickness of about 2 mm was formed by a lens group provided in the optical system for film formation. Conventionally, the design of the lens group is
The main focus has been on the shape or position of the bundle of rays on the substrate (thickness along the optical axis, width, vertical separation distance, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら成膜状態
(条件)を乱す一つの大きな要因としては、膜形成面上
におけるレーザー光の強度分布がある。一方、エキシマ
レーザーは、それ自体固有のゆらぎを有するとともに、
広がり角をも有している(数mラジアンのオーダー)。
そこで、前述のような設計思想に基づくレンズ群による
整形を経た後の光線束は、基板直上部において強度分布
がかなり乱れたものとなっており、この要因から均一な
膜形成に影響が生じていた。従って、本発明の目的は成
膜対象の基板上において、励起光線束の強度分布の乱れ
が比較的少なく、光源側の強度分布の良好な状態を基板
上部の励起部において維持できる光学系を備えた光CV
D装置を得ることである。
However, one major factor that disturbs the film formation state (condition) is the intensity distribution of laser light on the film formation surface. On the other hand, the excimer laser has its own fluctuation and
It also has a divergence angle (on the order of a few m radians).
Therefore, the light flux after being shaped by the lens group based on the design concept as described above has a considerably disturbed intensity distribution immediately above the substrate, and this factor has an effect on uniform film formation. It was Therefore, an object of the present invention is to provide an optical system on the substrate to be film-formed, in which the intensity distribution of the excitation light flux is relatively less disturbed, and a good state of the intensity distribution on the light source side can be maintained in the excitation unit above the substrate Light CV
To get the D device.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による光CVD装置の特徴構成は、光学系の焦
点位置が膜形成面の上方に設定されていることにあり、
その作用・効果は次の通りである。
To achieve this object, the photo-CVD apparatus according to the present invention is characterized in that the focal position of the optical system is set above the film formation surface.
The action and effect are as follows.

【0005】[0005]

【作用】この光CVD装置においては、装置に存する光
学系の焦点位置が、基板の上方で、その光軸上に設定さ
れているため、光学系に備えられた光源であるエキシマ
レーザーの発振位置における比較的良好な強度分布がこ
の焦点位置において再現される。従って、基板上で比較
的均一に材料ガスが励起され均一な薄膜の形成が可能と
なった。
In this photo CVD apparatus, since the focal position of the optical system existing in the apparatus is set above the substrate and on the optical axis thereof, the oscillation position of the excimer laser which is the light source provided in the optical system. A relatively good intensity distribution at is reproduced at this focus position. Therefore, it is possible to form a uniform thin film by exciting the material gas relatively uniformly on the substrate.

【0006】[0006]

【発明の効果】結果、成膜対象の基板上において、励起
光線束の強度分布の乱れが比較的少なく、均一な薄膜形
成が可能な光CVD装置を得ることができた。
As a result, it is possible to obtain an optical CVD apparatus capable of forming a uniform thin film on the substrate to be film-formed, in which the intensity distribution of the excitation light flux is relatively small.

【0007】[0007]

【実施例】本願の実施例を図面に基づいて説明する。図
1に本願のCVD装置1の概略構成が、さらに図2にこ
の装置の光学系により整形処理される矩形光線束の整形
状態の説明図が示されている。
Embodiments of the present application will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a CVD apparatus 1 of the present application, and FIG. 2 shows an explanatory view of a shaped state of a rectangular ray bundle to be shaped by an optical system of this apparatus.

【0008】このCVD装置1は、所謂光CVD装置で
あり、加熱体により供給される熱エネルギーと、レーザ
ー光によって供給される光エネルギーにより材料ガスの
励起・膜形成がおこなわれる。この光CVD装置は、従
来の単純な熱CVD装置より低温で膜形成をおこなうこ
とが可能であるため、基板等に熱的ダメージを与えるこ
と少なく、良好な膜形成が行える利点を備えている。以
下に、半導体(IC、LSI等)基板4上の膜形成面4
aに、薄膜6を形成する場合を例に採って説明する。こ
こで、基板4はシリコン基板を例にとるものとし、この
基板4上に絶縁膜あるいは保護膜である酸化シリコンS
iO2の薄膜6を形成するものとする。
The CVD apparatus 1 is a so-called photo CVD apparatus, and the material gas is excited and the film is formed by the thermal energy supplied by the heating body and the optical energy supplied by the laser light. Since this photo CVD apparatus can form a film at a lower temperature than a conventional simple thermal CVD apparatus, it has an advantage that a good film can be formed without causing thermal damage to a substrate or the like. The film forming surface 4 on the semiconductor (IC, LSI, etc.) substrate 4 is described below.
The case where the thin film 6 is formed on a will be described as an example. Here, the substrate 4 is a silicon substrate as an example, and the silicon oxide S which is an insulating film or a protective film is formed on the substrate 4.
A thin film 6 of iO 2 is formed.

【0009】先ずこの装置1の構成について説明する。
この装置1は、装置内に、その内圧調節可能な薄膜形成
室1aを備えたものであり、この薄膜形成室1a内に材
料ガス供給路2から材料ガスgを供給するとともに、こ
れを薄膜形成室1aから排出する材料ガス排出路3を備
えている。さらに、薄膜形成室1aの中央部1cに、薄
膜形成の対象となる基板4が載置される基板保持台7が
備えられている。この基板4及び基板保持台7の加熱
は、基板保持台7に収納されたヒータ7aによっておこ
なわれる。また、基板上の材料ガスgを励起するレーザ
ー光9を薄膜形成室1a内に導入するレーザー光照射用
窓10が設けられるとともに、このレーザー光9を発振
するレーザー光源であるエキシマレーザー(ArFレー
ザー)11が装置1の側部に備えられている。さらに、
レーザー光9が、薄膜形成室1a外へ導出されるレーザ
ー光出口窓12が設けられている。
First, the structure of the apparatus 1 will be described.
This apparatus 1 is provided with a thin film forming chamber 1a whose internal pressure can be adjusted, and supplies a material gas g from a material gas supply passage 2 into this thin film forming chamber 1a and forms a thin film on the same. A material gas discharge path 3 for discharging from the chamber 1a is provided. Further, a substrate holding table 7 on which the substrate 4 to be a thin film is placed is provided in the central portion 1c of the thin film forming chamber 1a. The heating of the substrate 4 and the substrate holding table 7 is performed by the heater 7 a housed in the substrate holding table 7. Further, a laser light irradiation window 10 for introducing a laser light 9 for exciting the material gas g on the substrate into the thin film forming chamber 1a is provided, and an excimer laser (ArF laser) which is a laser light source for oscillating the laser light 9 is provided. ) 11 is provided on the side of the device 1. further,
A laser light exit window 12 through which the laser light 9 is guided out of the thin film forming chamber 1a is provided.

【0010】図2に示すように、前述のエキシマレーザ
ー11(波長が193nmのArFレーザー)より発生
された光線束R1は、第一光学系LS1により幅25、
厚み6mmの矩形の平行光線束R2に整形される。この
整形を経た後、この下手側において第二光学系LS2に
より更なる整形を受けることとなるのである。第二光学
系LS2は4枚のレンズから構成されており、第一及び
第四レンズLH1、LH4が光線束の幅方向の整形を、
第二、第三レンズLV2、LV3により厚み方向の整形
がおこなわれる。さらに、前記エキシマレーザー11、
第一光学系LS1及び第二光学系LS2を備えた光学系
Pにおいては、その光学系Pの焦点位置が、膜形成面4
aの上方で、光路に沿った方向において前記膜形成面の
中央位置C上方に設定されている。このような構成を採
用することにより、この部位の於ける光線束の強度分布
は、光源のそれに近いものとなっており、その乱れの少
ない良好なものとなっている。図3に基板と焦点の位置
関係を示す。実線で本願の実施例の基板の位置が、二点
鎖線で従来の例の位置が示されている。一例として図示
するように、光軸上にある点からある程度の広がり角
(図で模式的に大きく描いている。)を備えて照射され
た光は、基板中央上方位置で焦点を結ぶ。
As shown in FIG. 2, a ray bundle R1 generated by the above-mentioned excimer laser 11 (ArF laser having a wavelength of 193 nm) has a width of 25 by the first optical system LS1.
It is shaped into a rectangular bundle of parallel rays R2 having a thickness of 6 mm. After this shaping, the lower side is further shaped by the second optical system LS2. The second optical system LS2 is composed of four lenses, and the first and fourth lenses LH1 and LH4 shape the width direction of the light flux,
The shaping in the thickness direction is performed by the second and third lenses LV2 and LV3. Further, the excimer laser 11,
In the optical system P including the first optical system LS1 and the second optical system LS2, the focal position of the optical system P is the film formation surface 4
It is set above a and above the central position C of the film formation surface in the direction along the optical path. By adopting such a configuration, the intensity distribution of the light flux at this portion is close to that of the light source, and the disturbance is good with little disturbance. FIG. 3 shows the positional relationship between the substrate and the focal point. The position of the substrate of the embodiment of the present application is shown by the solid line, and the position of the conventional example is shown by the chain double-dashed line. As shown as an example, the light emitted with a certain divergence angle (schematically enlarged in the figure) from a point on the optical axis forms a focus at a position above the center of the substrate.

【0011】以下に、整形後の光線束R3の基板4上の
形状について説明する。この光線束R3は光路方向Aの
基板中央部に於ける幅及び厚みが200mm,3mmで
あり、夫々光の進む方向に向かって一定(幅方向に70
/391、厚み方向に1/100)の比で収束されてい
る。即ちこのように収束されることによって、光路方向
Aの下手側において、光線束R3は上流側より密度の高
いものとされており、結果的に材料ガスgの励起に伴う
エネルギーの低下を補完することが可能とされている。
The shape of the shaped light beam R3 on the substrate 4 will be described below. The bundle of rays R3 has widths and thicknesses of 200 mm and 3 mm at the central portion of the substrate in the optical path direction A, and is constant in the light traveling direction (70 mm in the width direction).
/ 391, 1/100) in the thickness direction. That is, by being converged in this way, the light flux R3 has a higher density on the lower side of the optical path direction A than on the upstream side, and as a result, the energy drop accompanying the excitation of the material gas g is complemented. It is possible.

【0012】以下に本願の装置1を使用して、基板4上
に薄膜6を形成する状態について説明する。この薄膜形
成室1a内はヒーター7aにより約350℃程度の温度
域に保持され、材料ガス供給路2より材料ガスgとして
のSiH4及びN2Oが供給される。この材料ガスgは、
基板上部域である中央部1cに拡散供給される。そし
て、この材料ガスgはこの部位1cにおいて、ヒーター
7aにより熱エネルギーの供給を受ける。一方、レーザ
ー光照射用窓10より入射するレーザー光9からも光エ
ネルギーの供給を受ける。その結果、N2Oがこの基板
上部位1cで励起されるとともに、解離し、そのラジカ
ルがSiH4と反応することによって基板4上でSiO2
膜となって成長する。このようにして基板4上における
薄膜6生成を完了することができる。この成長段階にお
いて、本願の光CVD装置においては、適切にレーザー
エネルギーの調整がおこなわれているため、従来よりも
簡単、且つ確実に光路方向に沿って均一な厚みを持った
薄膜を形成することができる。
The state of forming the thin film 6 on the substrate 4 using the apparatus 1 of the present application will be described below. The inside of the thin film forming chamber 1a is maintained in a temperature range of about 350 ° C. by the heater 7a, and SiH 4 and N 2 O as material gas g are supplied from the material gas supply passage 2. This material gas g is
It is supplied by diffusion to the central portion 1c which is the upper region of the substrate. The material gas g is supplied with thermal energy by the heater 7a at the portion 1c. On the other hand, the light energy is also supplied from the laser light 9 incident from the laser light irradiation window 10. As a result, N 2 O is excited at the site 1 c on the substrate and dissociated, and the radicals react with SiH 4 to cause SiO 2 on the substrate 4.
It grows as a film. In this way, the production of the thin film 6 on the substrate 4 can be completed. At this growth stage, the laser energy is properly adjusted in the photo CVD apparatus of the present application, so that a thin film having a uniform thickness along the optical path direction can be formed more easily and surely than before. You can

【0013】〔別実施例〕本願の別実施例を以下に箇条
書きする。 (イ)上記の実施例においては、膜形成面4aの上方
で、光路に沿った方向において前記焦点位置が、膜形成
面の中央位置C上方に設定されている例を示したが、成
膜状態においては、材料ガスのエネルギー吸収状態等の
要因により、焦点位置が膜形成面の中央位置Cに対して
その光軸方向にずれているほうが良好な成膜を得られる
場合もある。従って、こういった状況に対応するため、
基板と焦点位置を相対的に光軸に沿った方向に移動自在
に構成するとともに、膜形成面の光軸に沿った方向で、
焦点位置を膜形成面の中央位置に対して近接・離間自在
に調整する焦点位置調整手段を設けてもよい。要する
に、焦点位置は膜形成面4aの上方に設定されていれば
よい。
[Other Embodiments] Other embodiments of the present application are listed below. (A) In the above embodiment, an example is shown in which the focal position is set above the film forming surface 4a in the direction along the optical path and above the center position C of the film forming surface. In some cases, due to factors such as the energy absorption state of the material gas, it may be possible to obtain a better film when the focus position is displaced in the optical axis direction with respect to the central position C of the film formation surface. Therefore, in order to respond to these situations,
The substrate and the focus position are configured to be relatively movable in the direction along the optical axis, and in the direction along the optical axis of the film formation surface,
A focus position adjusting means may be provided to adjust the focus position so that the focus position can be moved closer to and away from the center position of the film formation surface. In short, the focus position may be set above the film formation surface 4a.

【0014】(ロ)上記の実施例においては、光線束R
3の幅方向、厚み方向の両方を収束するものとしたが、
いずれか一方を収束させるものとした場合にも、充分に
本願の目的を達成することは可能である。
(B) In the above embodiment, the ray bundle R
Although the width direction and the thickness direction of 3 are converged,
Even when either one is made to converge, the object of the present application can be sufficiently achieved.

【0015】(ハ)さらに上記の実施例においては、S
i基板上にSiO2膜を形成する例について説明した
が、他の膜の例として、材料ガスとして、(SiH4
NH3)、(Si26 NH3)を一対として使用して、
Si34膜を形成する場合についても、本願の構成を採
用することが可能である。即ち、形成される膜の制限は
ない。
(C) Further, in the above embodiment, S
Although the example of forming the SiO 2 film on the i substrate has been described, as an example of another film, (SiH 4
NH 3 ), (Si 2 H 6 NH 3 ) as a pair,
The configuration of the present application can also be adopted when forming the Si 3 N 4 film. That is, there is no limitation on the film formed.

【0016】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の光CVD装置の概略構成図FIG. 1 is a schematic configuration diagram of an optical CVD apparatus of the present application.

【図2】矩形光線束の整形状態の説明図FIG. 2 is an explanatory view of a shaped state of a rectangular ray bundle.

【図3】基板位置と焦点位置の位置関係を示す説明図FIG. 3 is an explanatory diagram showing a positional relationship between a substrate position and a focus position.

【符号の説明】[Explanation of symbols]

1 光CVD装置 1a 薄膜形成室 4 基板 4a 膜形成面 6 薄膜 R3 励起光線束 P 光学系 g 材料ガス DESCRIPTION OF SYMBOLS 1 Optical CVD apparatus 1a Thin film forming chamber 4 Substrate 4a Film forming surface 6 Thin film R3 Excitation light flux P Optical system g Material gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森川 茂 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 坂井 久 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeru Morikawa Inventor Shigeru-ku, Kyoto City, Kyoto Prefecture 17 Chudo-dera Minami-cho 17 Stock company, Kansai Institute of New Technology (72) Inventor Hisashi Sakai 17 Shareoru-cho, Chudo-ku, Kyoto-shi, Kyoto Company Kansai Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄膜形成室(1a)内に成膜対象の基板
(4)を保持し、前記基板(4)の膜形成面(4a)に
対して、エキシマレーザー光源(11)を備えた光学系
(P)により得られる励起光線束(R3)を、前記膜形
成面(4a)に沿って照射して、前記膜形成面(4a)
近傍に導かれる材料ガス(g)を前記励起光線束(R
3)により励起し、前記膜形成面(4a)上に薄膜
(6)を形成する光CVD装置であって、 前記光学系(P)の焦点位置が、前記膜形成面(4a)
の上方に設定されている光CVD装置。
1. A substrate (4) to be film-formed is held in a thin film forming chamber (1a), and an excimer laser light source (11) is provided on a film forming surface (4a) of the substrate (4). Excitation light flux (R3) obtained by the optical system (P) is irradiated along the film forming surface (4a) to form the film forming surface (4a).
The material gas (g) guided to the vicinity is converted into the excitation light flux (R).
3) An optical CVD apparatus that is excited by 3) to form a thin film (6) on the film forming surface (4a), wherein the focal position of the optical system (P) is the film forming surface (4a).
Photo CVD apparatus set above the.
【請求項2】 前記光学系(P)に配設されるレンズ群
が、 前記エキシマレーザー光源(11)より得られる光線束
を、その光軸に直角な断面形状が、前記膜形成面に沿う
辺と、前記膜形成面から離間する方向の辺で形成される
矩形である矩形光線束とする第一光学系(LS1)と、 前記矩形光線束の光軸方向の横幅と厚みの少なくとも一
方を、光軸方向に沿って小さくする第二光学系(LS
2)とを備えている請求項1記載の光CVD装置。
2. A lens group disposed in the optical system (P) forms a bundle of rays obtained from the excimer laser light source (11) in a cross-sectional shape perpendicular to the optical axis along the film forming surface. A side, and a first optical system (LS1) that is a rectangular bundle of rays formed by a side in a direction away from the film forming surface, and at least one of a lateral width and a thickness of the rectangular bundle of rays in the optical axis direction. , A second optical system (LS that reduces in size along the optical axis direction)
2) The photo-CVD apparatus according to claim 1, further comprising:
【請求項3】 前記光学系(P)の焦点位置が、前記光
軸に沿った方向において前記膜形成面の中央位置(C)
上方にある請求項1記載の光CVD装置。
3. A focal position of the optical system (P) is a central position (C) of the film forming surface in a direction along the optical axis.
The photo-CVD apparatus according to claim 1, which is located above.
【請求項4】 前記膜形成面(4a)の前記光軸に沿っ
た方向で、前記焦点位置を前記膜形成面の中央位置
(C)に対して近接・離間調整自在とする焦点位置調整
手段が設けられている請求項1記載の光CVD装置。
4. A focus position adjusting means for adjusting the focus position in a direction along the optical axis of the film forming surface (4a) so that the focus position can be adjusted to be close to or away from the central position (C) of the film forming surface. The photo-CVD apparatus according to claim 1, further comprising:
JP4003633A 1992-01-13 1992-01-13 Optical CVD equipment Expired - Fee Related JP3065760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4003633A JP3065760B2 (en) 1992-01-13 1992-01-13 Optical CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4003633A JP3065760B2 (en) 1992-01-13 1992-01-13 Optical CVD equipment

Publications (2)

Publication Number Publication Date
JPH05186875A true JPH05186875A (en) 1993-07-27
JP3065760B2 JP3065760B2 (en) 2000-07-17

Family

ID=11562895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003633A Expired - Fee Related JP3065760B2 (en) 1992-01-13 1992-01-13 Optical CVD equipment

Country Status (1)

Country Link
JP (1) JP3065760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683005B2 (en) 2001-08-30 2004-01-27 Micron Technology, Inc. Method of forming capacitor constructions
US7763327B2 (en) 1996-04-22 2010-07-27 Micron Technology, Inc. Methods using ozone for CVD deposited films
WO2015147843A1 (en) * 2014-03-27 2015-10-01 Intel Corporation Precursor and process design for photo-assisted metal atomic layer deposition (ald) and chemical vapor deposition (cvd)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763327B2 (en) 1996-04-22 2010-07-27 Micron Technology, Inc. Methods using ozone for CVD deposited films
US8420170B2 (en) 1996-04-22 2013-04-16 Micron Technology, Inc. Methods of forming glass on a substrate
US6683005B2 (en) 2001-08-30 2004-01-27 Micron Technology, Inc. Method of forming capacitor constructions
US6720272B2 (en) 2001-08-30 2004-04-13 Micron Technology, Inc. Methods of forming capacitor constructions
US6764956B2 (en) 2001-08-30 2004-07-20 Micron Technology, Inc. Methods of treating dielectric materials
US7101594B2 (en) 2001-08-30 2006-09-05 Micron Technology, Inc. Methods of forming capacitor constructions
WO2015147843A1 (en) * 2014-03-27 2015-10-01 Intel Corporation Precursor and process design for photo-assisted metal atomic layer deposition (ald) and chemical vapor deposition (cvd)
CN106164332A (en) * 2014-03-27 2016-11-23 英特尔公司 Precursor and the technological design of (CVD) is deposited for light assistant metal ald (ALD) and chemical gaseous phase
US9932671B2 (en) 2014-03-27 2018-04-03 Intel Corporation Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD)
CN106164332B (en) * 2014-03-27 2019-03-19 英特尔公司 Precursor and technological design for light assistant metal atomic layer deposition (ALD) and chemical vapor deposition (CVD)

Also Published As

Publication number Publication date
JP3065760B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US8105435B2 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
KR20170028426A (en) Method and device for the laser-based working of two-dimensional, crystalline substrates, in particular semiconductor substrates
EP1129998B1 (en) Method for producing quartz glass member
JPH05186875A (en) Photo-assisted cvd device
JP3157241B2 (en) Optical CVD equipment
JPS61116820A (en) Annealing method for semiconductor
JPS60260125A (en) Selective formation of semiconductor substrate
JPH0578847A (en) Formation of thin film and photo-cvd device
JPH04142030A (en) Manufacture of semiconductor film
JPH11292551A (en) Production of synthetic quartz glass and synthetic quartz glass produced thereby
JPS5952831A (en) Beam annealing method
JP3093005B2 (en) Optical CVD equipment
JPH0559557A (en) Photo-cvd device
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPH05152648A (en) Fabrication of synthetic quartz glass molded article for ultraviolet laser
JP2551753B2 (en) Photo CVD equipment
JPH01246819A (en) Beam annealing
JPH05140749A (en) Device for forming thin film by cvd
JPH11195613A (en) Device and method for ultraviolet annealing
JPS59175120A (en) Beam shape forming device
JPH0551752A (en) Photoassisted cvd system
JPS6124226A (en) Laser annealing device
JPS6152365A (en) Formation of thin film
JPS609116A (en) Manufacture of semiconductor
JPH01246826A (en) Beam annealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100512

LAPS Cancellation because of no payment of annual fees