JPH05185353A - Deflection sensing method for work being chucked - Google Patents

Deflection sensing method for work being chucked

Info

Publication number
JPH05185353A
JPH05185353A JP2623792A JP2623792A JPH05185353A JP H05185353 A JPH05185353 A JP H05185353A JP 2623792 A JP2623792 A JP 2623792A JP 2623792 A JP2623792 A JP 2623792A JP H05185353 A JPH05185353 A JP H05185353A
Authority
JP
Japan
Prior art keywords
sensor
measurement
output
measuring
shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2623792A
Other languages
Japanese (ja)
Other versions
JP2646051B2 (en
Inventor
Toshihiro Yamano
敏広 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP2623792A priority Critical patent/JP2646051B2/en
Publication of JPH05185353A publication Critical patent/JPH05185353A/en
Application granted granted Critical
Publication of JP2646051B2 publication Critical patent/JP2646051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow a sensor to avoid colliding with a work due to failure such as mischucking or bad material by establishing an automatic deflection sensing method using a contactless sensor to be executed after a spindle chuck grips the work such as aluminum wheel on which such a requirement is imposed that the deflection of its scale face lies below a certain allowable value. CONSTITUTION:The measuring distance of a contactless sensor 4 is changed at two steps by an air cylinder 6, and at the first step, the sensor 4 is located in a certain position apart from the measuring surface in the nonlinear region of the sensor characteristics to perform measuring any failure such as mischucking, bad material, etc., and a correction is conducted with a correction factor stored previously in a control device 12 for the nonlinear region output of the sensor, and failuere is sensed, and only when no failure, the sensor is located within the normal specification measuring area as the second step to conduct measuring of fine deflections.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主軸チャック又は取付け
治具等に鋳物又は鋳造等黒皮素材を把持して非接触式セ
ンサにより自動的に振れを検知する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically detecting shake by a non-contact type sensor by holding a casting or a black skin material such as casting on a spindle chuck or a mounting jig.

【0002】[0002]

【従来の技術】従来、例えば自動車用アルミホィールを
旋削加工する場合、図4に示すように主軸チャック10
2にて把持した素材101の振れ測定を行って許容値以
上振れのある素材を取り除いている。アルミホィールの
計測面は黒皮のため、凹凸が多く不安定で接触式又は光
学式センサによる計測は困難であり、非接触式磁気セン
サ103を用いることが多い。この磁気センサ103は
図5の性能を示すグラフ図に示すように、測定面に対す
るセンサ測定位置(距離)は、直線領域内の仕様測定域
a内にするよう指定されており、この仕様測定域aにセ
ンサを位置決めしてアルミホィールを低速回転させたと
きのセンサ出力を、センサ用コントローラ104により
増幅して距離目盛に置き換え、制御装置105内で予め
設定されている許容値と比較して判定を行っていた。
2. Description of the Related Art Conventionally, when turning an aluminum wheel for an automobile, for example, as shown in FIG.
The shake of the material 101 gripped in 2 is measured to remove the material having the shake over the allowable value. Since the measurement surface of the aluminum wheel is a black skin, it has many irregularities and is unstable, and measurement by a contact type or optical sensor is difficult. Therefore, the non-contact magnetic sensor 103 is often used. As shown in the graph showing the performance of FIG. 5, the magnetic sensor 103 is specified so that the sensor measurement position (distance) with respect to the measurement surface is within the specified measurement area a within the linear area. The sensor output when the sensor is positioned at a and the aluminum wheel is rotated at a low speed is amplified by the sensor controller 104 and replaced with a distance scale, and the result is compared with an allowable value preset in the control device 105 for determination. Was going on.

【0003】[0003]

【発明が解決しようとする課題】従来の技術で述べた非
接触式センサ103による計測方法は、比較的測定距離
が短い仕様測定域a内にセンサを位置決めして計測を行
っていたので、チャッキングミス,材料歪み,ばり等が
あると計測面の最大振れ部分がセンサと衝突して計測不
能になるばかりでなく、最悪の場合センサが破損すると
いう問題点を有していた。本発明は従来の技術の有する
このような問題点に鑑みなされたものであり、その目的
とするところは一個の非接触式センサで段階的に計測距
離をかえて計測を行い衝突を防止する振れ検知方法を提
供しようとするものである。
In the measuring method using the non-contact type sensor 103 described in the prior art, since the sensor is positioned within the specification measuring range a where the measuring distance is relatively short, the measurement is performed. If there is a king miss, material distortion, flash, etc., the maximum deflection of the measurement surface collides with the sensor, making measurement impossible, and in the worst case, the sensor is damaged. The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to prevent a collision by changing the measurement distance step by step with a single non-contact sensor to perform measurement. It is intended to provide a detection method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明における素材チャッキング時の振れ検知方法
は、主軸チャック又は取付け又は治具等にチャッキング
された黒皮素材の振れを非接触式センサにより自動的に
検知する方法において、前記黒皮素材の振れの計測面に
対する前記センサの位置をセンサ性能の直線領域を越え
た非直線領域に位置決めして第1測定を行い、該第1測
定時の前記非直線領域のセンサ出力に対して補正を行っ
たのち予め記憶する基準値と比較してチャッキングミ
ス,素材不良等の異常の有・無を判定し、該判定結果が
無のときのみ前記センサを前記直線領域に位置決めして
第2測定を行い、該第2測定時のセンサ出力を予め記憶
する許容値と比較して前記許容値以下のとき加工準備完
了信号を出力するものである。
In order to achieve the above object, a shake detection method at the time of material chucking in the present invention is a non-contact method for detecting the shake of a black skin material chucked on a spindle chuck, an attachment, or a jig. In the method of automatically detecting by a linear sensor, the position of the sensor with respect to the measurement surface of the shake of the black skin material is positioned in a non-linear area beyond the linear area of the sensor performance, and the first measurement is performed. After correcting the sensor output in the non-linear region at the time of measurement, it is compared with a reference value stored in advance to determine whether or not there is an abnormality such as a chucking error or a material defect, and the determination result is no. Only when the sensor is positioned in the linear region, the second measurement is performed, and the sensor output at the time of the second measurement is compared with an allowable value that is stored in advance, and a machining preparation completion signal is output when the value is less than the allowable value. A.

【0005】[0005]

【作用】第1段階でセンサを仕様距離の倍近い距離に位
置決めして、チャッキングミス,素材不良等の異常を計
測し、予め制御装置内に記憶する補正係数にてセンサの
非直線領域の出力を補正し、基準値と比較して異常の検
出を行い異常のない場合にのみ、第2段階でセンサを仕
様距離内に位置決めして細かい振れの計測を行い、予め
制御装置内に記憶する許容値と比較して、許容値以下の
とき加工基準完了信号を出力する。
In the first step, the sensor is positioned at a distance close to twice the specified distance, and an abnormality such as a chucking error or a material defect is measured. The output is corrected and an abnormality is detected by comparing it with the reference value. Only when there is no abnormality, the sensor is positioned within the specified distance in the second step to measure the fine shake, and stored in advance in the control device. Compared with the allowable value, a machining standard completion signal is output when the allowable value is less than or equal to the allowable value.

【0006】[0006]

【実施例】実施例について図1〜図3を参照して説明す
る。旋盤の主軸1の先端同心に嵌着されているチャック
2に、例えば自動車用アルミホィールの黒皮(鋳はだ)
の素材3がチャッキングされている。振れ測定用センサ
4を先端に有するアーム5は、エアシリンダ6のピスト
ン7と一体のピストンロッド8の上端に固着されてお
り、ピストン7はばね9により常時突出勝手に付勢され
ている。センサ4は非接触式磁気センサが使用され、こ
の磁気センサは、KEYENCE製アンプ分離型近接ス
イッチESシリーズ等を使用することができ、センサ出
力はセンサ用コントローラ11を介して制御装置12に
送られるようになっている。
EXAMPLES Examples will be described with reference to FIGS. On the chuck 2 fitted concentrically with the tip of the main shaft 1 of the lathe, for example, a black leather of an aluminum wheel for automobile (casting)
Material 3 is chucked. An arm 5 having a shake measuring sensor 4 at its tip is fixed to an upper end of a piston rod 8 which is integral with a piston 7 of an air cylinder 6, and the piston 7 is always urged by a spring 9 to project freely. A non-contact type magnetic sensor is used as the sensor 4, and this magnetic sensor can use an amplifier separation type proximity switch ES series made by KEYENCE, etc., and the sensor output is sent to the control device 12 via the sensor controller 11. It is like this.

【0007】図2は磁気センサ4の性能を示すグラフ図
で、これによればセンサ測定位置即ちセンサ4の計測距
離が、例えば5mm以下ではセンサ出力との距離との関
係が直線状に変化する直線領域に納まり、5〜10mm
の間は非直線状に変化する非直線領域となる。従って5
mm以下の測定域aを使用すれば磁気センサ出力の変化
を容易に距離の変化に置き換えることができ、通常はこ
の測定域aが仕様測定域に指定されている。非直線領域
に当たる5〜10mmの間の測定域bの出力は、出力曲
線から予め補正係数を求めてパラメータとして制御装置
12内に記憶し,補正係数により補正することによりセ
ンサ出力の変化を距離の変化に置き換えることが可能と
なる。
FIG. 2 is a graph showing the performance of the magnetic sensor 4. According to this graph, when the sensor measurement position, that is, the measurement distance of the sensor 4 is, for example, 5 mm or less, the relationship between the sensor output and the distance changes linearly. Fits in a linear area, 5-10 mm
In between, there is a non-linear region that changes non-linearly. Therefore 5
If the measurement area a of mm or less is used, the change of the magnetic sensor output can be easily replaced by the change of the distance, and this measurement area a is usually designated as the specification measurement area. The output of the measurement range b corresponding to the non-linear region of 5 to 10 mm is obtained by previously obtaining a correction coefficient from the output curve and stored in the control device 12 as a parameter. It becomes possible to replace it with change.

【0008】本発明は、この測定域bをチャッキングミ
スや材料不良等大きな振れを対称とする第1段階測定域
に、また測定域aを通常の細かい振れを対称とする第2
段階測定域にそれぞれ使用する。切換弁13はセンサ位
置決め用エアシリンダ6に供給するエア切換用で、ソレ
ノイドSOL1は制御装置12によりオン/オフされ、
SOL1オフで切換弁13がB位置に切換わり、エアシ
リンダ6の前室が大気に連通されて、ばね9の力でピス
トンロッド8が押し出され、センサ4が第1段階測定域
bに位置決めされ、SOL1オフでA位置に切換わり、
エアシリンダ6の前室にエアが供給されて、ピストンロ
ッド8がばねの力に抗して引き込まれ、センサ4が第2
段階測定域aに位置決めされるようになっている。
According to the present invention, the measurement area b is a first-step measurement area in which a large shake such as a chucking error or a defective material is symmetrical, and the measurement area a is a second step in which a normal small shake is symmetrical.
Used for each step measurement area. The switching valve 13 is for switching the air supplied to the sensor positioning air cylinder 6, and the solenoid SOL1 is turned on / off by the controller 12.
When SOL1 is turned off, the switching valve 13 is switched to the B position, the front chamber of the air cylinder 6 is communicated with the atmosphere, the piston rod 8 is pushed out by the force of the spring 9, and the sensor 4 is positioned in the first stage measurement area b. , When SOL1 is off, switch to position A,
Air is supplied to the front chamber of the air cylinder 6, the piston rod 8 is pulled in against the force of the spring, and the sensor 4 moves to the second position.
It is positioned in the step measurement area a.

【0009】続いて本実施例の作用について図3のフロ
ーチャートに従って説明する。ステップS1において、
第1段階測定域bにセンサ4を位置決めし、ステップS
2において、チャック2に把持した素材3を低速で回転
して、チャッキングミス,材料不良等の異常測定を行
う。ステップS3において測定時のセンサ用コントロー
ラ11の出力を、予め制御装置12内に記憶する補正係
数により補正を行い、ステップS4において、基準値と
比較して異常測定を行う。次いでステップS5におい
て、異常なしかが確認され、ノーの場合は、ステップS
6において、素材の回転が停止され、ステップS7にお
いて、素材除外指令が出力される。またステップS5に
おいて、イエスの場合には、ステップS8において、第
2段階測定域aにセンサを位置決めし、ステップS9に
おいて振れ測定を行い、ステップS10において予め制
御装置12内に記憶する許容値と比較し、ステップS1
1において許容値以下かが確認され、ノーの場合は、ス
テップS6に戻り素材の回転が停止され、ステップS7
において素材除外指令が出力される。またステップS1
1においてイエスの場合には、ステップS12において
素材の回転が停止され、ステップS13において加工準
備完了信号が出力される。
Next, the operation of this embodiment will be described with reference to the flowchart of FIG. In step S1,
The sensor 4 is positioned in the first stage measurement area b, and step S
In 2, the material 3 gripped by the chuck 2 is rotated at a low speed, and an abnormality measurement such as a chucking error or a material defect is performed. In step S3, the output of the sensor controller 11 at the time of measurement is corrected by a correction coefficient stored in advance in the control device 12, and in step S4, an abnormality measurement is performed by comparing with a reference value. Next, in step S5, it is confirmed whether or not there is an abnormality.
In step 6, the rotation of the material is stopped, and in step S7, a material exclusion command is output. If YES in step S5, the sensor is positioned in the second-stage measurement area a in step S8, shake measurement is performed in step S9, and comparison is made with the allowable value stored in advance in the control device 12 in step S10. And step S1
If the value is less than or equal to the allowable value in step 1 and the result is no, the process returns to step S6 to stop the rotation of the material, and step S7 is performed.
A material exclusion command is output at. Step S1
If YES in step 1, the rotation of the material is stopped in step S12, and a processing preparation completion signal is output in step S13.

【0010】[0010]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。黒皮素材の振れ測定
面に対して非接触式センサを感知能力いっぱいの非直線
領域に位置決めしてチャッキングミスや材料不良等の異
常を測定し、異常の無い場合のみセンサを直線領域(仕
様測定域)内に位置決めして細かい振れの計測を行うよ
うにしたので、異常の場合の衝突によるセンサの破損が
防止でき、更にセンサの非直線領域出力に対して補正を
行うようにしたので仕様距離範囲を2倍以上にすること
ができ、一個のセンサで多段階的な計測が可能となる。
Since the present invention is configured as described above, it has the following effects. The non-contact type sensor is positioned in the non-linear area where the sensing capability is full with respect to the shake measurement surface of the black leather material, and anomalies such as chucking mistakes and material defects are measured. Since it is positioned within the measurement area) to measure the small shake, it is possible to prevent the sensor from being damaged due to a collision in the event of an abnormality, and to correct for the sensor's non-linear area output. The distance range can be doubled or more, and a single sensor can perform multi-step measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における振れ検知装置の構成
図である。
FIG. 1 is a configuration diagram of a shake detection device according to an embodiment of the present invention.

【図2】本実施例に使用する非接触センサの性能を示す
グラフ図である。
FIG. 2 is a graph showing the performance of the non-contact sensor used in this example.

【図3】本実施例の作用説明用フローチャート図であ
る。
FIG. 3 is a flow chart for explaining the operation of the present embodiment.

【図4】従来の技術の振れ検知装置の構成図である。FIG. 4 is a configuration diagram of a shake detecting device according to a conventional technique.

【図5】従来の技術説明用の非接触センサの性能を示す
グラフ図である。
FIG. 5 is a graph showing performance of a non-contact sensor for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 主軸 2 チャック 3 素材 4 センサ 6 エアシリンダ 11 センサ
用コントローラ 12 制御装置 13 切換弁
1 Spindle 2 Chuck 3 Material 4 Sensor 6 Air Cylinder 11 Sensor Controller 12 Controller 13 Switching Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主軸チャック又は取付け治具等にチャッ
キングされた黒皮素材の振れを非接触式センサにより自
動的に検知する方法において、前記黒皮素材の振れの計
測面に対する前記センサの位置をセンサ性能の直線領域
を越えた非直線領域に位置決めして第1測定を行い、該
第1測定時の前記非直線領域のセンサ出力に対して補正
を行ったのち予め記憶する基準値と比較してチャッキン
グミス,素材不良等の異常の有・無を判定し、該判定結
果が無のときのみ前記センサを前記直線領域に位置決め
して第2測定を行い、該第2測定時のセンサ出力を予め
記憶する許容値と比較して前記許容値以下のとき加工準
備完了信号を出力することを特徴とする素材チャッキン
グ時の振れ検知方法。
1. A method for automatically detecting a shake of a black skin material chucked on a spindle chuck or a mounting jig by a non-contact type sensor, wherein the position of the sensor with respect to a measurement surface of the shake of the black skin material. Is positioned in a non-linear region beyond the linear region of the sensor performance to perform the first measurement, and the sensor output in the non-linear region at the time of the first measurement is corrected and then compared with a reference value stored in advance. Then, the presence / absence of an abnormality such as a chucking error or a defective material is determined, and only when the determination result is absent, the sensor is positioned in the linear region to perform the second measurement, and the sensor at the time of the second measurement. A shake detection method at the time of material chucking, characterized in that an output is compared with an allowable value stored in advance and a processing preparation completion signal is output when the output is less than the allowable value.
JP2623792A 1992-01-16 1992-01-16 Deflection detection method during material chucking Expired - Fee Related JP2646051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2623792A JP2646051B2 (en) 1992-01-16 1992-01-16 Deflection detection method during material chucking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2623792A JP2646051B2 (en) 1992-01-16 1992-01-16 Deflection detection method during material chucking

Publications (2)

Publication Number Publication Date
JPH05185353A true JPH05185353A (en) 1993-07-27
JP2646051B2 JP2646051B2 (en) 1997-08-25

Family

ID=12187712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2623792A Expired - Fee Related JP2646051B2 (en) 1992-01-16 1992-01-16 Deflection detection method during material chucking

Country Status (1)

Country Link
JP (1) JP2646051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043645A1 (en) * 2002-11-09 2004-05-27 Springer Gmbh Mounting device provided with a part positioning system
JP2017042856A (en) * 2015-08-25 2017-03-02 株式会社ディスコ Positioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043645A1 (en) * 2002-11-09 2004-05-27 Springer Gmbh Mounting device provided with a part positioning system
JP2017042856A (en) * 2015-08-25 2017-03-02 株式会社ディスコ Positioning device

Also Published As

Publication number Publication date
JP2646051B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US7863539B2 (en) Positioning method of spot welding robot
US5093754A (en) Control system for a magnetic levitation body
JPH05185353A (en) Deflection sensing method for work being chucked
US5771599A (en) Method of and instrument for measuring roll diameter in roll grinder
WO2004108339A1 (en) Spot welding method, spot welding machine and spot welding robot
JPH07103707A (en) Position detector for actuator
JPH0367823B2 (en)
KR102486089B1 (en) Sasang cooperative robot system that is easy for multi-product production
EP1859888A2 (en) Welding workpiece movement sensing system
KR19990023516A (en) Material testing machine
JPH09189501A (en) Outer diameter measuring device
JP3266390B2 (en) Workpiece thickness detection method in resistance welding machine
JPH10227603A (en) Method for adjusting eddy current type distance measuring device and eddy current type distance measuring device
JP2715615B2 (en) Magnetic bearing control device
JP2551314Y2 (en) Planar accuracy correction device during face milling with variable rotation speed
WO2012049130A1 (en) Methods of and apparatuses for balancing electrode arms of a welding device taking into account spatial orientation
JPH0288187A (en) Control method for robot
JPH01244989A (en) Manufacture of automobile body
JP3415101B2 (en) Under-floor wheel lathe
JP3025369U (en) Lathe with unbalance correction function
JPS63191559A (en) Swivel device for grinding machine
JP2007010456A (en) Workpiece measuring device and measuring method
JPS59152021A (en) Wire cut electric discharge machining equipment
JPH11254272A (en) Thermal displacement correcting method for feed screw
JP2000263302A (en) Tool tip position measuring device and method for numerically controlled machine tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees