JPH05183196A - Thermoelectric converting element - Google Patents

Thermoelectric converting element

Info

Publication number
JPH05183196A
JPH05183196A JP3357816A JP35781691A JPH05183196A JP H05183196 A JPH05183196 A JP H05183196A JP 3357816 A JP3357816 A JP 3357816A JP 35781691 A JP35781691 A JP 35781691A JP H05183196 A JPH05183196 A JP H05183196A
Authority
JP
Japan
Prior art keywords
silicon
thermoelectric conversion
conversion element
impregnated
converting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3357816A
Other languages
Japanese (ja)
Inventor
Kazuo Okano
一雄 岡野
Takuro Hirano
▲琢▼郎 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tekko Co Ltd
Original Assignee
Tokyo Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tekko Co Ltd filed Critical Tokyo Tekko Co Ltd
Priority to JP3357816A priority Critical patent/JPH05183196A/en
Publication of JPH05183196A publication Critical patent/JPH05183196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermoelectric converting element capable of generating larger electromotive force, by impregnating a porous board composed of silicon carbide with silicon. CONSTITUTION:A thermoelectric converting element 1 is a substance made by impregnating a board of porous structure with 10-50% silicon in ratio by weight, and has a body 11 with a through hole 11a bored inside composed of silicon carbide, and a core material 12 composed of silicon filling the through hole 11a. Incidentally, when the thermoelectric converting element is made a P-type or N-type semiconductor, a very small number of elements are added to at least one of the board and silicon contained in it. And it becomes possible for the thermoelectric converting element 1 obtained to have remarkably larger electromotive force than before.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱電池等に用いられ
る熱電変換素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element used in a thermal battery or the like.

【0002】[0002]

【従来の技術】一般に、熱電池は、P型またはN型半導
体からなる熱電変換素子の一端と他端との間に温度差を
付与することによって電気を発生させるものであり、排
熱の有効利用等の観点から多大の脚光を浴びている。と
ころで、熱電池の起電力の大きさは、熱電変換素子に付
与する温度差もさることながら、熱電変換素子の起電力
性能に大きく依存する。そこで、起電力性能の大きい熱
電変換素子が各種研究されている。
2. Description of the Related Art Generally, a thermal battery generates electricity by applying a temperature difference between one end and the other end of a thermoelectric conversion element made of a P-type or N-type semiconductor, and is effective in exhausting heat. It has been in the limelight from the standpoint of usage. By the way, the magnitude of the electromotive force of the thermoelectric battery largely depends on the electromotive force performance of the thermoelectric conversion element as well as the temperature difference applied to the thermoelectric conversion element. Therefore, various types of thermoelectric conversion elements having high electromotive force have been studied.

【0003】例えば、多孔質炭化珪素(SiC)からな
る熱電変換素子が最近開発されている。これは、炭化珪
素の粉末を焼成することによって多孔質構造としたもの
であり、従来の熱電変換素子に比較して大きな単位温度
当たりの起電力が得られる。しかも、耐熱性が高いため
大きな温度差を付与することができ、この点からも大き
な起電力が得られる(1989年 ダイヤモンド社発行
ニューセラミックスVol.2 56頁〜62頁参
照)。
For example, a thermoelectric conversion element made of porous silicon carbide (SiC) has been recently developed. This has a porous structure obtained by firing a powder of silicon carbide, and a large electromotive force per unit temperature can be obtained as compared with a conventional thermoelectric conversion element. Moreover, since it has high heat resistance, a large temperature difference can be given, and a large electromotive force can be obtained from this point as well (see New Ceramics Vol. 2, pages 56 to 62, issued by Diamond Co., 1989).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、多孔質
炭化珪素からなる熱電変換素子の起電力は、200μV
/°K程度であり、十分に満足し得るものではなかっ
た。そこで、さらに大きな起電力が得られる熱電変換素
子の開発が要望されていた。
However, the electromotive force of the thermoelectric conversion element made of porous silicon carbide is 200 μV.
It was about / ° K, which was not sufficiently satisfactory. Therefore, there has been a demand for the development of a thermoelectric conversion element that can obtain a larger electromotive force.

【0005】この発明は、上記の要望に応えるためにな
されたもので、起電力の大きな熱電変換素子を提供する
ことを目的とする。
The present invention has been made in order to meet the above demands, and an object thereof is to provide a thermoelectric conversion element having a large electromotive force.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明に係る熱電変換素子は、炭化珪素
からなる多孔質構造の基体に珪素を含浸させてなるもの
である。
In order to achieve the above object, the thermoelectric conversion element according to the invention of claim 1 is obtained by impregnating a substrate having a porous structure made of silicon carbide with silicon.

【0007】この場合、珪素については、基体に対し重
量比で10%〜50%含浸させるのが望ましい。これ
は、珪素の含浸量が10%以下になると、図1に示すよ
うに、起電力が急激が低下するからである。一方、珪素
の含浸量を50%以上にすると、それに対応して基体の
空孔率を大きくしなければならない。このため、珪素の
含浸量が50%を越えると、図2に示すように、基体の
強度が低下し、ひいては熱電変換素子の寿命が大幅に低
下するからである。
In this case, it is desirable to impregnate the substrate with 10% to 50% by weight of silicon. This is because when the impregnated amount of silicon is 10% or less, the electromotive force sharply decreases as shown in FIG. On the other hand, when the impregnated amount of silicon is 50% or more, the porosity of the substrate must be correspondingly increased. For this reason, if the impregnated amount of silicon exceeds 50%, the strength of the base body is lowered, and as a result, the life of the thermoelectric conversion element is greatly reduced, as shown in FIG.

【0008】また、基体については、珪素を含浸させた
後、その外面をコーティングするのが望ましい。これ
は、基体の外面をコーティング層によって被覆すること
により、珪素を外気に対して遮断し、これによって珪素
が酸化されるのを防止するものである。コーティング層
は炭化珪素から構成するのが望ましく、またその厚さは
100μm程度とするのが望ましい
Further, it is desirable that the substrate is impregnated with silicon and then the outer surface thereof is coated. This is to shield the silicon from the outside air by coating the outer surface of the substrate with a coating layer, thereby preventing the silicon from being oxidized. The coating layer is preferably made of silicon carbide, and its thickness is preferably about 100 μm.

【0009】なお、この発明の熱電変換素子にあって
も、P型またはN型半導体とすために、基体とそれに含
浸する珪素とのうちの少なくとも一方に微量の元素を添
加する。P型とする場合には、アルミニウム(Al)、
ボロン(B)等の3価の元素を添加し、N型とする場合
には窒素(N)、リン(P)等の5価の元素を添加す
る。
Even in the thermoelectric conversion element of the present invention, in order to form a P-type or N-type semiconductor, a trace amount of element is added to at least one of the substrate and silicon impregnated therein. In the case of P type, aluminum (Al),
A trivalent element such as boron (B) is added, and a pentavalent element such as nitrogen (N) or phosphorus (P) is added when the element is N-type.

【0010】また、請求項4に記載の発明に係る熱電変
換素子1は、図4示すように、内部に貫通孔11aが形
成された炭化珪素からなる本体11と、この本体11の
貫通孔11aに充填された珪素からなる芯材12とを備
えている。
Further, as shown in FIG. 4, a thermoelectric conversion element 1 according to a fourth aspect of the present invention includes a main body 11 made of silicon carbide having a through hole 11a formed therein, and a through hole 11a of the main body 11. And a core material 12 made of silicon filled therein.

【0011】この場合、本体11については、多孔質で
あるか否かを問わないが、多孔質とし、内部に珪素を含
浸させておくのが望ましい。本体11に珪素を含浸させ
る場合には、請求項1に記載の発明に係る熱電変換素子
のように、熱電変換素子1の表面全体にコーティング層
を形成するのが望ましい。珪素を含浸させない場合に
は、芯材12が露出する両端面にのみコーティングを施
せばよい。
In this case, the main body 11 may or may not be porous, but it is preferable that the main body 11 is porous and silicon is impregnated therein. When the main body 11 is impregnated with silicon, it is desirable to form a coating layer on the entire surface of the thermoelectric conversion element 1 as in the thermoelectric conversion element according to the first aspect of the invention. When not impregnated with silicon, coating may be applied only to both end surfaces of the core material 12 that are exposed.

【0012】また、芯材12を本体11の貫通孔11a
に充填するに際しては、予め芯材12を形成しておき、
それを貫通孔11aに挿入してもよいが、芯材12と本
体11との接触面積を十分に広くするという観点から、
本体11を溶融した珪素中に浸漬して貫通孔11aに溶
融珪素を充填し、その後貫通孔11a内の珪素を固化さ
せるようにするのがよい。このようにすれば、本体11
を多孔質構造とした場合、本体11に対する珪素の含浸
を同時に行うことができる。
Further, the core member 12 is formed through the through hole 11a of the main body 11.
When filling in, the core material 12 is formed in advance,
Although it may be inserted into the through hole 11a, from the viewpoint of sufficiently widening the contact area between the core material 12 and the main body 11,
It is preferable that the main body 11 is immersed in molten silicon to fill the through holes 11a with molten silicon, and then the silicon in the through holes 11a is solidified. In this way, the main body 11
In the case of having a porous structure, the main body 11 can be impregnated with silicon at the same time.

【0013】なお、本体11および芯材12について
は、いずれもP型またはN型とするために、上記微量の
元素を混入させる。この場合、本体11と芯材12とを
同一の型にすべきことは勿論である。
Since the main body 11 and the core material 12 are both P-type or N-type, the minute amounts of the above elements are mixed therein. In this case, it goes without saying that the main body 11 and the core 12 should be of the same mold.

【0014】[0014]

【実施例1】請求項1に係る熱電変換素子の実施例とし
て、直径が2.5mmで、長さが50mmの円柱状の基
体を製造し、これに重量比で30%の珪素を含浸させ
た。さらに、基体の外面全体に厚さが100μmである
炭化珪素のコーティング層を形成した。なお、炭化珪素
のコーティング層については、基体をフェノールの溶液
中に浸漬した後、引き上げて乾燥させ、その後真空中で
1350°C程度に加熱してフェノール中の炭素と基体
に含浸した珪素とを反応させることによって形成するこ
とができる。
Example 1 As an example of the thermoelectric conversion element according to claim 1, a columnar substrate having a diameter of 2.5 mm and a length of 50 mm was manufactured and impregnated with 30% by weight of silicon. It was Further, a coating layer of silicon carbide having a thickness of 100 μm was formed on the entire outer surface of the substrate. As for the coating layer of silicon carbide, the substrate was immersed in a solution of phenol, pulled up and dried, and then heated in vacuum to about 1350 ° C. to carbon in the phenol and silicon impregnated into the substrate. It can be formed by reacting.

【0015】図4は請求項3に係る熱電変換素子2を用
いた熱電池Aを示すものであり、熱電池AはP型の熱電
変換素子2とN型熱電変換素子2との一端部を炭化珪素
からなる板材3に接合することによって構成されてい
る。熱電池Aは2組直列に接続されている。
FIG. 4 shows a thermoelectric battery A using the thermoelectric conversion element 2 according to claim 3, wherein the thermoelectric battery A has one end portion of the P-type thermoelectric conversion element 2 and one end portion of the N-type thermoelectric conversion element 2. It is configured by bonding to a plate material 3 made of silicon carbide. Two sets of thermal batteries A are connected in series.

【0016】なお、熱電変換素子2と板材3との接合に
ついては、互いの接合面間に珪素の粉末を敷き詰め、接
合部を加熱して敷き詰めた珪素を溶融させた後固化させ
ることによって行うことができる。また、このように接
合する場合には、熱電変換素子2の接合面となる端面が
板材3によって遮蔽されるので、その端面にはコーティ
ングを形成しなくともよい。
The thermoelectric conversion element 2 and the plate member 3 are bonded by spreading silicon powder between the bonding surfaces of each other, heating the bonding portion to melt the spread silicon, and then solidify the silicon. You can Further, in the case of joining in this way, since the end face that is the joining face of the thermoelectric conversion element 2 is shielded by the plate material 3, it is not necessary to form a coating on the end face.

【0017】上記構成の熱電池Aにおいて、各熱電変換
素子2の板材3と逆側の端部を室温(293°K)に維
持した状態で、板材3側の端部を1000°Kに加熱し
たところ、1.2Vの電圧が発生した。
In the thermal battery A having the above structure, the end of each thermoelectric conversion element 2 on the side opposite to the plate material 3 is maintained at room temperature (293 ° K), and the end of the plate material 3 side is heated to 1000 ° K. Then, a voltage of 1.2 V was generated.

【0018】[0018]

【比較例】上記熱電変換素子2の基体(珪素が含浸され
ていない。)を比較すべき従来の熱電変換素子として用
い、これを図3に示す熱電池Aと同様に接続した。そし
て、上記と同様に加熱したところ、その熱電池による電
圧は0.3Vであった。これから明らかなように、この
発明の熱電変換素子2によれば、従来の熱電変換素子に
比して4倍の起電力が得られた。
Comparative Example The substrate of the thermoelectric conversion element 2 (not impregnated with silicon) was used as a conventional thermoelectric conversion element to be compared, and this was connected in the same manner as the thermoelectric battery A shown in FIG. When heated in the same manner as above, the voltage of the thermal battery was 0.3V. As is apparent from this, according to the thermoelectric conversion element 2 of the present invention, an electromotive force four times as high as that of the conventional thermoelectric conversion element was obtained.

【0019】[0019]

【実施例2】また、請求項5に係る熱電変換素子1とし
て、内径が0.5mmである貫通孔11aに珪素からな
る芯材12を充填した点以外、上記熱電変換素子2と同
様に構成したものを用い、熱電池Aと同様の熱電池を構
成した。そして、同一の条件で加熱したところ、その電
圧は1.5Vであり、さらに大きな起電力が得られた。
Second Embodiment Also, as the thermoelectric conversion element 1 according to claim 5, the same construction as the thermoelectric conversion element 2 except that a through hole 11a having an inner diameter of 0.5 mm is filled with a core material 12 made of silicon. Using the above, a thermal battery similar to the thermal battery A was constructed. When heated under the same conditions, the voltage was 1.5 V, and a larger electromotive force was obtained.

【0020】なお、この発明の熱電変換素子1,2は、
熱電池に用いることができるのみならず、熱源または冷
却源として用いることができる。すなわち、図4におい
て、負荷4に代えて電源を接続すれば、各熱電変換素子
2の一端側が加熱され、他端側が冷却される。これを利
用することにより、熱源または冷却源として用いること
ができる。
The thermoelectric conversion elements 1 and 2 of the present invention are
Not only can it be used in thermal batteries, but it can also be used as a heat or cooling source. That is, in FIG. 4, if a power source is connected instead of the load 4, one end side of each thermoelectric conversion element 2 is heated and the other end side is cooled. By utilizing this, it can be used as a heat source or a cooling source.

【0021】[0021]

【発明の効果】以上説明したように、この発明の熱電変
換素子によれば、炭化珪素からなる多孔質の基体に珪素
を含浸させたものであるから、起電力を従来の熱電変換
素子に比して著しく大きくすることができるという効果
が得られる。
As described above, according to the thermoelectric conversion element of the present invention, since the porous substrate made of silicon carbide is impregnated with silicon, the electromotive force is higher than that of the conventional thermoelectric conversion element. Therefore, it is possible to obtain a large effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】基体とそれに含浸させる珪素との重量比に対す
る起電力との関係を示す図である。
FIG. 1 is a diagram showing a relationship between an electromotive force and a weight ratio of a substrate and silicon impregnated into the substrate.

【図2】基体とそれに含浸させる珪素との重量比に対す
る起電力との関係を示す図である。
FIG. 2 is a diagram showing a relationship between an electromotive force and a weight ratio of a substrate and silicon with which the substrate is impregnated.

【図3】熱電変換素子を用いた熱電池の一例を示す図で
ある。
FIG. 3 is a diagram showing an example of a thermal battery using a thermoelectric conversion element.

【図4】請求項4に係る熱電変換素子の一例を示す断面
図である。
FIG. 4 is a cross-sectional view showing an example of a thermoelectric conversion element according to claim 4.

【符号の説明】[Explanation of symbols]

1 熱電変換素子 2 熱電変換素子 11 本体 11a 貫通孔 12 芯材 A 熱電池 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 2 Thermoelectric conversion element 11 Main body 11a Through hole 12 Core material A Thermal battery

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素からなる多孔質構造の基体に珪
素を含浸させてなることを特徴とする熱電変換素子。
1. A thermoelectric conversion element comprising a porous substrate made of silicon carbide impregnated with silicon.
【請求項2】 前記珪素を前記基体に対し重量比で10
%〜50%含浸させたことを特徴とする請求項1に記載
の熱電変換素子。
2. The weight ratio of the silicon to the substrate is 10
% To 50% impregnation, The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion element is impregnated.
【請求項3】 前記基体の外面をコーティング層で被覆
したことを特徴とする請求項1または2に記載の熱電変
換素子。
3. The thermoelectric conversion element according to claim 1, wherein the outer surface of the base is covered with a coating layer.
【請求項4】 内部に貫通孔が形成された炭化珪素から
なる本体と、この本体の貫通孔に充填された珪素からな
る芯材とを備えたことを特徴とする熱電変換素子。
4. A thermoelectric conversion element, comprising: a main body made of silicon carbide having a through hole formed therein; and a core material made of silicon filled in the through hole of the main body.
【請求項5】 前記本体は、多孔質構造をなし、内部に
珪素が含浸せしめられていることを特徴とする請求項4
に記載の熱電変換素子。
5. The main body has a porous structure, and is impregnated with silicon inside.
The thermoelectric conversion element described in.
JP3357816A 1991-12-26 1991-12-26 Thermoelectric converting element Pending JPH05183196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357816A JPH05183196A (en) 1991-12-26 1991-12-26 Thermoelectric converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357816A JPH05183196A (en) 1991-12-26 1991-12-26 Thermoelectric converting element

Publications (1)

Publication Number Publication Date
JPH05183196A true JPH05183196A (en) 1993-07-23

Family

ID=18456073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357816A Pending JPH05183196A (en) 1991-12-26 1991-12-26 Thermoelectric converting element

Country Status (1)

Country Link
JP (1) JPH05183196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039320A1 (en) * 2017-08-22 2019-02-28 株式会社白山 Thermoelectric material and thermoelectric module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039320A1 (en) * 2017-08-22 2019-02-28 株式会社白山 Thermoelectric material and thermoelectric module
CN111033772A (en) * 2017-08-22 2020-04-17 株式会社白山 Thermoelectric material and thermoelectric module
JPWO2019039320A1 (en) * 2017-08-22 2020-12-24 株式会社白山 Thermoelectric materials and thermoelectric modules
US11502235B2 (en) 2017-08-22 2022-11-15 Hakusan, Inc. Thermoelectric material and thermoelectric module
CN111033772B (en) * 2017-08-22 2023-12-01 株式会社白山 Thermoelectric material and thermoelectric module

Similar Documents

Publication Publication Date Title
CN102214620B (en) Semiconductor substrate having copper/diamond composite material and method of making same
JP4972640B2 (en) System and method for thermal management of electronic components
US6262357B1 (en) Thermoelectric devices and methods for making the same
KR830001651B1 (en) Manufacturing method of surface treated products with ceramic
US4471837A (en) Graphite heat-sink mountings
US5002122A (en) Tunnel artery wick for high power density surfaces
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
WO2002061825A8 (en) Electronic assembly with high capacity thermal interface and methods of manufacture
JP5562234B2 (en) Heat dissipation base and electronic device using the same
CA2232425A1 (en) Functionally gradient material and its use in a semiconductor circuit substrate
JPS5652835A (en) Impregnated cathode
JP2003174203A (en) Thermoelectric conversion device
JPH05183196A (en) Thermoelectric converting element
JP3482169B2 (en) Thermal stress relaxation pad, thermoelectric conversion system using the same, and Peltier cooling system
JPH0837258A (en) Carbon/carbon composite and electric apparatus containing it
US20050087327A1 (en) Supporting structure for planar heat pipe
JPH0582686A (en) Semiconductor heat sink structure
TW201007110A (en) Method of manufacturing evaporator for loop heat pipe system
US3416013A (en) Composite structure electrode and process for manufacturing such electrode
US6492034B1 (en) Heat shield
El Genk et al. Recent advances in vapor-anode, multi-tube, alkali metal thermal-to-electric conversion cells for space power
JP3441494B2 (en) Thermoelectric conversion element
JPH11168245A (en) Thermoelectric conversion device
CN218274563U (en) Packaging structure for cob
JP3552567B2 (en) Thermal stress relaxation pad, thermoelectric conversion system using the same, and Peltier cooling system