JPH05180709A - Ground pressure measuring device - Google Patents

Ground pressure measuring device

Info

Publication number
JPH05180709A
JPH05180709A JP36023291A JP36023291A JPH05180709A JP H05180709 A JPH05180709 A JP H05180709A JP 36023291 A JP36023291 A JP 36023291A JP 36023291 A JP36023291 A JP 36023291A JP H05180709 A JPH05180709 A JP H05180709A
Authority
JP
Japan
Prior art keywords
rock
image
stress
ground
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36023291A
Other languages
Japanese (ja)
Other versions
JPH0820322B2 (en
Inventor
Yoji Ishijima
洋二 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP3360232A priority Critical patent/JPH0820322B2/en
Publication of JPH05180709A publication Critical patent/JPH05180709A/en
Publication of JPH0820322B2 publication Critical patent/JPH0820322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To measure a ground pressure easily and accurately by taking up the image of the surface of a rock ground before stress is released and then comparing the image to find the displacement distance of a specific rock particle. CONSTITUTION:A reference plate 3 as a reference is fixed to a rock ground 1 before releasing stress of the rock ground 1. An insertion leg 3a for fixing of the plate 3 is inserted into a fitting hold of the rock ground 1 and a rock body 3b is made to adhere to the rock ground 1. Then, an area including part of the plate 3 and part of the surface of the rock plate 1 is imaged by a micro- watcher 2. An magnifying lens is provided at the micro watcher 2 and the image is magnified so that the shapes of specific rock particles 1a, 1b, 1c,... can be viewed. When pressure release is completed, the magnified image is taken up by the video camera again. Using the image the distances to specific rock particles 1a, 1b, 1c,... in reference to the plate 3 can be measured and the displacement distances of the specific rock particles 1a, 1b, 1c,... can be judged according to how much the distance changed before and after the stress release.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は地圧計測方法に関するも
ので、特に軟岩の地圧計測を行うのに適した地圧計測方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground pressure measuring method, and more particularly to a ground pressure measuring method suitable for measuring the ground pressure of soft rock.

【0002】[0002]

【従来の技術】従来知られている地圧計測方法として
は、岩盤に歪ゲージを糊着して応力開放後の岩盤の歪を
該歪ゲージで測定する方法、複数の測定ピンを岩盤に植
設して、この測定ピン間の距離変移によって測定する方
法、応力開放時のボアホールの口径の変化を測定する方
法、ボアホール内に圧力発生機構により圧力を作用さ
せ、そのときの圧力、変形および発生した割れ目の関係
から応力を推定する方法、ボアホール内に水圧を作用さ
せその結果発生する割れ目と水圧の関係から応力を推定
する方法等の各種の方法が知られている。
2. Description of the Related Art Conventionally known methods for measuring earth pressure include a method in which a strain gauge is glued to the rock to measure the strain of the rock after the stress is released, and a plurality of measuring pins are planted in the rock. Installed, the method of measuring the change in distance between the measuring pins, the method of measuring the change in bore diameter of the borehole when stress is released, the pressure generated by the pressure generating mechanism in the borehole, and the pressure, deformation and generation at that time. Various methods are known, such as a method of estimating stress from the relationship between the cracks and a method of estimating the stress from the relationship between the crack and the water pressure generated as a result of applying water pressure in the borehole.

【0003】しかし、上記従来法は硬岩や中硬岩で行わ
れ、軟弱な岩盤中の地圧計測事例はほとんど実施されて
いないのが実情である。軟岩中の各種施工は通常土かぶ
りの浅いことが多く、地圧は余り問題とならないという
事情があるのは確かであるが、軟岩中の地圧測定が技術
的に難しいことも、計測事例の少ないことの大きな原因
となっていると考えられる。
However, the above-mentioned conventional method is performed on hard rocks and medium-hard rocks, and it is the actual situation that almost no case of measuring the ground pressure in soft bedrock has been carried out. It is true that various constructions in soft rock usually have a shallow soil cover, and there is a situation in which the ground pressure is not a problem, but it is technically difficult to measure the ground pressure in the soft rock. It is considered that this is a major cause of the small number.

【0004】[0004]

【発明が解決しようとする課題】すなわち、軟岩は脆弱
で表面がはげ落ちたり変形し易く、多孔質で、しばしば
濡れているという性状を有している。したがって、歪ゲ
ージを糊着する従来法は、濡れている場合は歪ゲージの
糊着に先立って強制乾燥する工程が必要で、この強制乾
燥によって岩盤の性質が変化して正確な計測が保証でき
ないという課題を有している。また、この歪ゲージを使
用する方法は、岩盤表面の整形、糊着、糊材の固化とい
った煩雑な手数を要するという課題をも有していたし、
その他の方法も硬岩には適用可能であるが、軟岩には現
実的に対応が困難であるという課題を有していた。
That is, soft rock is fragile, and the surface is easily peeled off or deformed. It is porous and often wet. Therefore, the conventional method of gluing the strain gauge requires a step of forced drying before gluing the strain gauge when it is wet, and this forced drying changes the properties of the rock mass and cannot guarantee accurate measurement. Has the problem. Moreover, the method of using this strain gauge also had a problem that complicated steps such as shaping the rock surface, gluing, and solidifying the gluing material were required,
Although other methods can be applied to hard rock, they have a problem that it is difficult to deal with soft rock.

【0005】そこで、本発明は上記課題を解決すべくな
されたもので、地圧を容易に、しかも精度よく計測でき
る地圧計測方法を提供することを目的としたものであ
る。
Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a ground pressure measuring method capable of measuring ground pressure easily and accurately.

【0006】[0006]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、岩盤の表面をコアリング等で応力開放
する前後に映像撮影し、応力開放前後の映像を比較して
特定の岩石粒子の変移距離を求めて地圧を計測するよう
になしたことを特徴とする技術的手段を講じたものであ
る。
In order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims and has the above-mentioned objects, is provided before and after stress relief on the surface of rock mass by coring or the like. This is a technical measure characterized by taking a video image and comparing the images before and after the stress is released to obtain the displacement distance of a specific rock particle to measure the ground pressure.

【0007】[0007]

【作用】したがって、本発明法によると、応力開放前後
の映像の比較によって特定の岩石粒子の変移距離が検出
でき、この変移距離から地圧を計測することが可能とな
る作用を呈する。
Therefore, according to the method of the present invention, the displacement distance of a specific rock particle can be detected by comparing the images before and after the stress is released, and the earth pressure can be measured from this displacement distance.

【0008】[0008]

【実施例】次に、本発明の実施例を説明すれば以下の通
りである。まず、本発明法は岩盤の表面をコアリング等
で応力開放する前後に映像撮影する。
EXAMPLES Examples of the present invention will be described below. First, according to the method of the present invention, images are taken before and after stress is released from the surface of rock by coring or the like.

【0009】通常、上記撮影に先立って、岩盤1の表面
は撮影の鮮明さを保つため「図1」に示すごとく、平面
状に整形するが、本発明法では該岩盤1の表面に歪ゲー
ジ等を糊着する必要性がないため鏡面のような正確な平
面仕上げは不要で、この岩盤1の表面には多少の凹凸が
あっても差し支えはない。
Prior to the above-mentioned photographing, the surface of the bedrock 1 is usually shaped into a flat shape as shown in FIG. 1 in order to maintain the sharpness of the photographing, but in the method of the present invention, the strain gauge is formed on the surface of the bedrock 1. Since there is no need to glue the etc., there is no need for an accurate flat finish such as a mirror surface, and there is no problem even if the surface of this bedrock 1 has some irregularities.

【0010】そして、映像撮影は「図2」に示す応力開
放前と、「図3」の応力開放工程を経過した「図4」に
示す応力開放後との双方で行う。
The image capturing is performed both before the stress release shown in FIG. 2 and after the stress release shown in FIG. 4 after the stress release step of FIG.

【0011】上記映像撮影は、映像を得られるものであ
れば、カメラ、ビデオテープ用カメラ等の従来公知な各
種カメラが利用でき、図においては、2が上記撮影に使
用されるマイクロウオッチャで、拡大レンズを付設した
CCDビデオカメラの受光部や、オプチカルファイバ先
端の受光部等で構成され、このマイクロウオッチャ2で
受光した信号は、図示しない従来公知な信号処理回路と
モニタ部(CRTのみならず静止ハードコピーを含む)
とによって映像化(映像化を発展して岩石粒子を図形化
または記号化してもよい)されるようになしてある。な
お、通常のカメラを使用する場合は映像は印画紙等に記
録されるのは無論である。
In the above-mentioned image shooting, various conventionally known cameras such as a camera and a video tape camera can be used as long as an image can be obtained. In the figure, 2 is a microwatcher used for the above-mentioned shooting. The signal received by the microwatcher 2 is composed of a light receiving section of a CCD video camera equipped with a magnifying lens, a light receiving section at the end of an optical fiber, and the like. (Including static hardcopy)
It is adapted to be visualized (the visualization of the rock particles may be visualized or symbolized). When using a normal camera, it goes without saying that the image is recorded on photographic paper or the like.

【0012】そして、図示例では、岩盤1の応力開放前
の「図2」に示す状態での撮影は、まず、岩盤1に基準
を示す基準プレート3を固定する。この基準プレート3
は、盤体3bの裏面中央に固定用差込み足3aを凸設し
てなり、この固定用差込み足3aを岩盤1に削孔した装
着孔に挿入するかあるいは打ち込み、盤体3bが岩盤1
の表面に密接するように固定する。
In the illustrated example, in photographing the rock 1 in the state shown in FIG. 2 before releasing the stress, first, the reference plate 3 indicating the reference is fixed to the rock 1. This reference plate 3
Is formed by projecting a fixing insertion leg 3a at the center of the back surface of the board 3b. The fixing insertion foot 3a is inserted or driven into the mounting hole drilled in the bedrock 1 so that the board 3b becomes the bedrock 1b.
Fix it so that it closely contacts the surface of.

【0013】そして、マイクロウオッチャ2で、上記基
準プレート3の一部(「図5」に示すごとく、該基準プ
レート3の盤体3bには目盛り3Cを設けておくと便利
である。)と岩盤1の表面の一部とが共に取り込まれる
範囲を撮影する。この撮影は所定の一か所で行ってもよ
いが、本実施例では所定の複数カ所で行うようになして
あり、該マイクロウオッチャ2は上記固定用差込み足3
aの中心軸と同心の軸(図示せず)を回転中心軸ととし
て所定回転角度で間欠的に回動し、回動停止時ごとに映
像情報を得るようになしてある。
Then, with the microwatcher 2, a part of the reference plate 3 (it is convenient to provide a scale 3C on the plate body 3b of the reference plate 3 as shown in FIG. 5) and a bedrock. The range in which a part of the surface of 1 is taken in together is photographed. This photographing may be carried out at a predetermined one place, but in the present embodiment, the photographing is carried out at a plurality of predetermined places, and the microwatcher 2 is provided with the fixing plug 3
An axis (not shown) concentric with the central axis of a is used as a central axis of rotation to intermittently rotate at a predetermined rotation angle, and image information is obtained every time the rotation is stopped.

【0014】上記ビデオテープ用カメラによる撮影は、
通常CRTによって目視することになるから、撮影され
た岩盤表面の岩石粒子が識別できる程度に拡大撮影され
ることが必要で、また、図示実施例では基準プレート3
と岩石粒子1a,1b,1c・・・との距離関係を求め
ているため、マイクロウオッチャ2には拡大レンズを付
設して特定岩石粒子1a,1b,1c・・・の形状を目
視によって識別できる程度に拡大している。なお、近い
将来自動画像処理によって自動的に特定岩石粒子1a,
1b,1c・・・を識別する予定で、この場合は自動画
像処理によって特定岩石粒子1a,1b,1c・・・が
正確に識別可能な程度に拡大撮影することが要求される
のは無論である。
Shooting with the above video tape camera,
Since it is usually viewed by CRT, it is necessary to magnify and photograph the rock particles on the surface of the rock that have been photographed. In the illustrated embodiment, the reference plate 3 is used.
Since the distance relationship between the rock particles 1a, 1b, 1c, ... Is determined, a microlens 2 is attached to the microwatcher 2 to visually identify the shape of the specific rock particles 1a, 1b, 1c. It is expanding to some extent. In the near future, the specific rock particles 1a will be automatically
1b, 1c ... are to be identified. In this case, of course, it is required that the specific rock particles 1a, 1b, 1c ... is there.

【0015】そして、「図2」の撮影が終了したら岩盤
1の応力開放を行う。「図3」例では従来行われるコア
リングと称する一般的応力開放法で、岩盤1にリング状
の溝31を所定深さまで削成し、この溝31によって囲
まれた部位の応力を開放する。なお、岩盤1の応力開放
は上記形状のコアリングに限られるものではないが、円
形が通常最も簡易に削成できる。なお、「図9」乃至
「図11」例は直線状の溝32を削成することによって
部分的な応力開放を行っている。なお、この応力開放時
にマイクロウオッチャ2や基準プレート3が支障になる
場合は、これらを一時的に取り外せることができるよう
になしておくとよい。
Then, when the photographing of "FIG. 2" is completed, the stress of the bedrock 1 is released. In the example shown in FIG. 3, the ring-shaped groove 31 is cut in the bedrock 1 to a predetermined depth by a conventional stress relief method called a core ring, and the stress in the region surrounded by the groove 31 is released. The stress relief of the bedrock 1 is not limited to the core ring having the above-mentioned shape, but a circular shape is usually the easiest to grind. In the examples shown in FIGS. 9 to 11, the stress is partially released by cutting the linear groove 32. If the micro-watcher 2 and the reference plate 3 become a hindrance when the stress is released, it is advisable to temporarily remove them.

【0016】そして、「図3」の応力開放が終了した
ら、再度ビデオカメラで拡大撮影する。この再度の撮影
によって得られる映像は、最初の撮影位置で、言い換え
ると、対比画像は同一視点で撮影するようになし、しか
も基準プレート3の一部が必ず映像に撮影されているよ
うになしてある。なお、自動的に画像処理を行う場合は
複数の岩石粒子1a,1b,1c・・・の相対的変移を
演算することも可能であるから必ずしも撮影時の視点を
特定場所に設定する必要はないし、基準プレート3の一
部を映像に取り入れる必要もない。
When the stress relief shown in FIG. 3 is completed, the video camera is used for magnifying the image again. The image obtained by this re-shooting should be shot at the first shooting position, in other words, the contrast image should be shot from the same viewpoint, and a part of the reference plate 3 must be shot in the image. is there. In the case of automatically performing image processing, it is possible to calculate the relative displacement of a plurality of rock particles 1a, 1b, 1c ..., It is not always necessary to set the viewpoint at the time of photographing to a specific location. It is not necessary to incorporate a part of the reference plate 3 into the image.

【0017】上記撮影によって得た映像は「図5」の実
線に示されるごときものとなり、基準プレート3を基準
として特定の岩石粒子1a,1b,1c・・・までの距
離を測定することができ、基準プレート3より特定の岩
石粒子1a,1b,1c・・・までの距離を測定するこ
とができ、この距離が応力開放前後でどの程度変化した
かで特定の岩石粒子1a,1b,1c・・・の変移距離
が判明し、この変移距離によって歪成分を評価して地圧
を計測するればよいが、この際に二回の距離測定を行う
のは煩雑であるので、同「図5」に細線で示す応力開放
前の撮影で基準プレート3の縁に位置に適合した特定の
岩石粒子1bを選定しておいて、この岩石粒子1bが応
力開放後に移動した距離Dから歪成分を評価して地圧を
計測するればよい。
The image obtained by the above photographing is the actual image of "FIG. 5".
As shown by the line, refer to the reference plate 3
Distance to specific rock particles 1a, 1b, 1c ...
It is possible to measure the separation, and the specific rock from the reference plate 3
Measuring the distance to stone particles 1a, 1b, 1c ...
And how much this distance changed before and after stress relief
And the specific rock particles 1a, 1b, 1c ...
Was found, the strain component was evaluated by this displacement distance, and the ground pressure was
Should be measured, but the distance measurement should be performed twice at this time.
Since it is complicated, the stress release shown by the thin line in the same "Fig. 5" is released.
In the previous shooting, the specific position that fits the edge of the reference plate 3
The rock particle 1b is selected, and this rock particle 1b responds.
Evaluate the strain component from the distance D moved after releasing the force
Just measure it.

【0018】なお、「図6」乃至「図11」例は測定孔
33を設けて測定するもので、この例では、まず、測定
孔33を削孔(「図6」)し、次いで、必要に応じて基
準プレート4を設置して、孔壁をマイクロウオッチャ2
で撮影(「図7」、「図8」)し、その後で、スリット
32を削成(「図9」、「図10」)して部分応力開放
を行い、再度、孔壁をマイクロウオッチャ2で撮影
(「図11」)撮影するようになしてある。
In the examples of "FIG. 6" to "FIG. 11", measurement holes 33 are provided for measurement. In this example, first, the measurement holes 33 are drilled ("FIG. 6") and then required. Set the reference plate 4 according to the
(FIGS. 7 and 8), and then the slits 32 are cut (FIGS. 9 and 10) to release the partial stress. ("Fig. 11").

【0019】なお、上記基準プレー4は、測定孔33の
内周に適合するC形リング帯で構成され、この基準プレ
ー4には窓孔4aを設けて、測定孔33の中心側からこ
の窓孔4aを介してスリット32部位を撮影できるよう
になし、図示はしていないがこの基準プレー4にも目盛
りを付しておくとよい。
The reference play 4 is composed of a C-shaped ring band that fits the inner circumference of the measurement hole 33. The reference play 4 is provided with a window hole 4a so that the measurement hole 33 can be opened from the center side thereof. The slit 32 portion can be photographed through the hole 4a, and although not shown, it is preferable that the reference play 4 is also graduated.

【0020】なお、図示はしていない、通常のカメラで
印画紙等に映像を撮影する場合は、応力開放前後の二枚
の写真を拡大(実用的には50〜100倍)して、ある
基準点(マークを付けるか、溝31の縁等を基準点に使
用する)よりの岩石粒子1A,1B,1C・・・の変移
距離を計測すればよい。また、この場合も、基準点を使
用せず二つ以上の特定の岩石粒子1a,1b,1c・・
・間の距離変化を計測して相対的移動距離から歪成分を
評価して地圧を計測することも可能である。
When a picture is taken on a photographic printing paper or the like with an ordinary camera (not shown), the two photographs before and after the stress release are enlarged (practically 50 to 100 times). The displacement distance of the rock particles 1A, 1B, 1C, ... From the reference point (marked or the edge of the groove 31 is used as the reference point) may be measured. Also in this case, two or more specific rock particles 1a, 1b, 1c ..
・ It is also possible to measure the ground pressure by measuring the change in distance and evaluating the strain component from the relative movement distance.

【0021】また、上記応力開放前後の二枚の写真を使
用する場合、写真は拡大投影装置等で拡大する必要性が
あるので、拡大映像をコンピュータにデータとして書き
込むと共にCRTに表示させるようになすと、応力開放
前後の映像を所望の適合位置に重ねたり、CRT上にカ
ーソルを設けて該カーソルを二枚重ねの映像データの映
像ズレの間を移動させることで、特定の岩石粒子の変移
距離を自動演算表示したりすることが容易に実現可能
で、地圧測定の簡便性・信頼性の向上に有益である。
When using the two photographs before and after the stress is released, the photographs need to be magnified by a magnifying projection device or the like, so the magnified image is written as data in a computer and displayed on a CRT. By moving the images before and after the stress is released onto the desired matching position, or by placing a cursor on the CRT and moving the cursor between the image shifts of the image data of two sheets of the image, the transition distance of a specific rock particle is automatically detected. Calculation display can be easily realized, which is useful for improving the simplicity and reliability of ground pressure measurement.

【0022】[0022]

【発明の効果】本発明は上記のごときであるので、歪ゲ
ージの糊着といった困難な作業を伴わず簡単な作業で計
測でき、また、映像の比較であるので計測精度に信頼性
が高く、また、多数方向の歪が同一精度で計測されるの
で、誤差の少ない計測を可能となす地圧計測方法を提供
できるものである。
EFFECTS OF THE INVENTION Since the present invention is as described above, it is possible to perform measurement by a simple work without a difficult work such as gluing a strain gauge, and since the comparison of images is highly reliable in measurement accuracy, Further, since the strains in a large number of directions are measured with the same accuracy, it is possible to provide a ground pressure measuring method that enables measurement with less error.

【0023】また、本発明は応力開放に伴って生ずる岩
石の微視的変化をも観察でき、測定の信頼性等に関して
根本的な評価を行える可能性を有するものである。
Further, the present invention has the possibility of observing the microscopic changes of rocks caused by the release of stress, and having the possibility of fundamentally evaluating the reliability of measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明地圧計測方法により、計測する岩盤の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a rock mass measured by a ground pressure measuring method of the present invention.

【図2】応力開放前の撮影時の岩盤縦断面図である。FIG. 2 is a vertical cross-sectional view of rock mass at the time of photographing before releasing stress.

【図3】応力開放工程での測定孔の縦断面図である。FIG. 3 is a vertical cross-sectional view of a measurement hole in a stress release step.

【図4】応力開放後の撮影時の岩盤縦断面図である。FIG. 4 is a longitudinal sectional view of rock mass at the time of photographing after releasing stress.

【図5】撮影映像の要部平面図である。FIG. 5 is a plan view of a main part of a captured image.

【図6】本発明地圧計測方法を岩盤に測定孔を設けて行
う例の測定孔の縦断面図である。
FIG. 6 is a vertical cross-sectional view of a measurement hole of an example in which the measurement method of the present invention is performed by providing a measurement hole in rock.

【図7】上記測定孔の応力開放前の撮影時の縦断面図で
ある。
FIG. 7 is a vertical cross-sectional view of the measurement hole at the time of photographing before releasing stress.

【図8】「図7」に対しての直交方向の縦断面図であ
る。
FIG. 8 is a vertical cross-sectional view in a direction orthogonal to “FIG. 7”.

【図9】応力開放工程での測定孔の縦断面図である。FIG. 9 is a vertical cross-sectional view of a measurement hole in a stress release step.

【図10】「図9」のに対しての直交方向の縦断面図で
ある。
FIG. 10 is a vertical cross-sectional view in a direction orthogonal to that of “FIG. 9”.

【図11】上記測定孔の応力開放前の撮影時の縦断面図
である。
FIG. 11 is a vertical cross-sectional view of the measurement hole at the time of photographing before releasing stress.

【符合の説明】[Explanation of sign]

1 岩盤 31 溝 2 マイクロウオッチャ 1a 岩石粒子 1 Bedrock 31 Groove 2 Micro Watcher 1a Rock particles

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 岩盤の表面をコアリング等で応力開放す
る前後に映像撮影し、応力開放前後の映像を比較して特
定の岩石粒子の変移距離を求めて地圧を計測するように
なしたことを特徴とする地圧計測方法。
1. The surface of rock is photographed before and after stress is released by coring or the like, and the images before and after stress relief are compared to obtain the displacement distance of a specific rock particle to measure the ground pressure. A method for measuring earth pressure, which is characterized by the following.
JP3360232A 1991-12-30 1991-12-30 Ground pressure measurement method Expired - Fee Related JPH0820322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3360232A JPH0820322B2 (en) 1991-12-30 1991-12-30 Ground pressure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3360232A JPH0820322B2 (en) 1991-12-30 1991-12-30 Ground pressure measurement method

Publications (2)

Publication Number Publication Date
JPH05180709A true JPH05180709A (en) 1993-07-23
JPH0820322B2 JPH0820322B2 (en) 1996-03-04

Family

ID=18468487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3360232A Expired - Fee Related JPH0820322B2 (en) 1991-12-30 1991-12-30 Ground pressure measurement method

Country Status (1)

Country Link
JP (1) JPH0820322B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303916A (en) * 2006-05-10 2007-11-22 K & T Consultant:Kk Method for measuring stress of structure
JP2010048595A (en) * 2008-08-20 2010-03-04 Jfe Steel Corp Method for measuring accumulated strain inside subgrade
JP2019109099A (en) * 2017-12-16 2019-07-04 株式会社山本金属製作所 Optimal measuring method of residual stress
JP2020063552A (en) * 2018-10-15 2020-04-23 国立大学法人東北大学 Method for sampling core from bedrock

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199130A (en) * 1987-10-13 1989-08-10 Agency Of Ind Science & Technol Method for evaluating three-dimensional rock pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199130A (en) * 1987-10-13 1989-08-10 Agency Of Ind Science & Technol Method for evaluating three-dimensional rock pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303916A (en) * 2006-05-10 2007-11-22 K & T Consultant:Kk Method for measuring stress of structure
JP2010048595A (en) * 2008-08-20 2010-03-04 Jfe Steel Corp Method for measuring accumulated strain inside subgrade
JP2019109099A (en) * 2017-12-16 2019-07-04 株式会社山本金属製作所 Optimal measuring method of residual stress
JP2020063552A (en) * 2018-10-15 2020-04-23 国立大学法人東北大学 Method for sampling core from bedrock

Also Published As

Publication number Publication date
JPH0820322B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP3530978B2 (en) Image measurement method and recording medium recording image measurement program
US20100103275A1 (en) Digital camera with integrated accelerometers
JP5137448B2 (en) Survey system for tunnel face
FR2633474A1 (en) IMAGE PROCESSING APPARATUS
US20100037474A1 (en) Geodetic instrument and related method
GB2288662A (en) Measuring rotational velocity of a spherical object
JP4901797B2 (en) Construction digital camera
JPH05180709A (en) Ground pressure measuring device
US3736849A (en) On-film optical recording of camera lens settings
JP2001317915A (en) Three-dimensional measurement apparatus
Sinha et al. Use of Photron cameras and TEMA software to measure 3D displacements in centrifuge tests
US6616347B1 (en) Camera with rotating optical displacement unit
JP2007064668A (en) Shape measurement device, shape measurement method and targets
JPH10302703A (en) Magnification and inclination angle measurement method
JP2002131054A (en) Automatic surveying method
JP3201533B2 (en) Presentation method of video and its shooting information
JPH06118062A (en) Defect recording and regenerating method for nondestructive inspection
Chandler et al. Analytical aspects of small format surveys using oblique aerial photographs
CN113175318B (en) Borehole wall eyelet size measuring method with positioning function
JP2021060287A (en) Coating state evaluating device and coating state evaluating method
JP3427313B2 (en) Current direction meter
CN113791532B (en) Machine vision travel time detection method and system
JP7323492B2 (en) soil density test method
JP2002243444A (en) Method and apparatus for surveying by aerial photography
De Pater et al. Method for measuring the deformations of a sand surface

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100304

LAPS Cancellation because of no payment of annual fees