JPH05180634A - Method for estimating position of virtual point by measurement with lighthouse type sensor - Google Patents

Method for estimating position of virtual point by measurement with lighthouse type sensor

Info

Publication number
JPH05180634A
JPH05180634A JP93992A JP93992A JPH05180634A JP H05180634 A JPH05180634 A JP H05180634A JP 93992 A JP93992 A JP 93992A JP 93992 A JP93992 A JP 93992A JP H05180634 A JPH05180634 A JP H05180634A
Authority
JP
Japan
Prior art keywords
point
sensor
measurement
vehicle body
lighthouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP93992A
Other languages
Japanese (ja)
Other versions
JP2808959B2 (en
Inventor
Motonori Endo
元紀 遠藤
Kazuya Masuko
和也 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP93992A priority Critical patent/JP2808959B2/en
Publication of JPH05180634A publication Critical patent/JPH05180634A/en
Application granted granted Critical
Publication of JP2808959B2 publication Critical patent/JP2808959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the estimating accuracy of the position of a virtual point by changing the position of a lighthouse type sensor when the missing number of measuring points is more than a specified degree, performing the scanning of the surface of an object again, and obtaining the point line of the measuring points again. CONSTITUTION:A control part 9 makes a lighthouse type sensor 7 corresponding to each reference part measure the shape of the cross section of a vehicle body panel 6 by one scanning of laser light. The video signal outputted from the sensor 7 is converted into the binary-coded signal by using a threshold value with a sensor-output- signal converting part 10. The signal is further converted into the coordinate data of the point line. The point-line data are stored into a point-line data storing memory 11 as a table, wherein the coordinate values of each measuring point are described. A processing part 12 reads the point-line data for each reference part out of the memory 11 and judges whether the data are normal or abnormal. Namely, when the number of the measuring points is less than the standard number stored in a standard-value storing memory 13, it is judged that the number of the missing measuring points is many. A corresponding sensor moving mechanism 8 is operated, and the position of the sensor 7 is moved. The abnormal reference part is measured again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、灯台式センサで、計
測光の方向を少しづつ変えることにより対象物の表面を
断続的に走査して、三角測量の原理によりその表面の断
面形状を計測して求めた計測点の点列から、二本の直線
を近似により定めて、それらの直線の交点を求めること
により仮想点の位置を推定するに際し、その推定精度を
向上させ得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a lighthouse type sensor that intermittently scans the surface of an object by gradually changing the direction of the measuring light and measures the cross-sectional shape of the surface by the principle of triangulation. From the point sequence of the measured points obtained by determining the two straight lines by approximation, when estimating the position of the virtual point by obtaining the intersection of these straight lines, it relates to a method that can improve the estimation accuracy. is there.

【0002】[0002]

【従来の技術】灯台式センサは一般に、図9に示すよう
に、光源1からのレーザー光2をスキャン用ミラー3で
反射させて対象物4の表面上に照射し、そこからの反射
光を再びスキャン用ミラー3で反射させた後CCDセン
サ5で受光して、その受光位置から当該灯台式センサと
対象物4との距離を三角測量の原理で計測し、スキャン
用ミラー3の角度を少しずつ変化させることにてその照
射位置をずらし、対象物4の表面を断続的に走査して、
その表面の二次元断面形状に対応する計測点の点列座標
データをもたらす。また灯台式センサは通常、CCDセ
ンサ5の受光量に基づき図示しない受光量調節回路で光
源1の作動をフィードバック制御して、CCDセンサ5
の受光量が距離計測に適した範囲内に収まるようにレー
ザー光2の強さを調節している。
2. Description of the Related Art In general, a lighthouse type sensor, as shown in FIG. 9, reflects a laser beam 2 from a light source 1 on a surface of an object 4 by reflecting the laser beam 2 from a light source 1 on the surface of an object 4 and reflecting the reflected light therefrom. After being reflected by the scanning mirror 3 again, the CCD sensor 5 receives the light, and the distance between the lighthouse type sensor and the object 4 is measured from the light receiving position by the principle of triangulation, and the angle of the scanning mirror 3 is slightly changed. The irradiation position is shifted by changing each, and the surface of the object 4 is intermittently scanned,
The point sequence coordinate data of the measurement points corresponding to the two-dimensional sectional shape of the surface is obtained. In addition, the lighthouse type sensor normally performs feedback control of the operation of the light source 1 by a light receiving amount adjusting circuit (not shown) based on the light receiving amount of the CCD sensor 5,
The intensity of the laser light 2 is adjusted so that the amount of received light of is within a range suitable for distance measurement.

【0003】かかる灯台式センサは、例えば自動車車体
の組立ライン内で、そこで組み立てられた車体の組立精
度を計測する際に用いられており、その組立精度計測は
例えば、あらかじめ車体の複数箇所について、それらの
箇所の車体パネルの概略L字状の二次元断面形状を持つ
部分を基準部位として設定し、それらの基準部位の各々
につきL字の各辺に対応する概略直線状の部分をそれぞ
れ近似した二本の直線の交点を仮想点として設定してお
き、組立ライン内では所定タクト時間内に、図10に示す
如く、実際に組み立てられた車体の、対象物としての車
体パネル6の上記各基準部位の始点と終点との間の表面
の二次元断面形状を、図9に示す構成の灯台式センサ7
で計測し、その計測結果から各基準部位につき得られた
計測点の点列から、それぞれ二本の直線L1,L2 を近似
により定めて、それらの直線の交点を演算で求めること
により仮想点Pの位置を推定し、それら推定により求め
た複数の仮想点の相互の位置関係と設計上の車体での上
記仮想点の相互の位置関係とを比較して位置誤差を求め
る、という方法で行われている。
Such a lighthouse type sensor is used, for example, in an assembly line of an automobile body to measure the assembling accuracy of the assembled vehicle body. The portions having a roughly L-shaped two-dimensional cross-sectional shape of the vehicle body panel at those locations are set as reference portions, and the substantially linear portions corresponding to the respective sides of the L shape are approximated for each of these reference portions. The intersections of the two straight lines are set as virtual points, and within the predetermined tact time within the assembly line, as shown in FIG. 10, the above-mentioned respective criteria of the vehicle body panel 6 as the object of the actually assembled vehicle body. A lighthouse-type sensor 7 having a configuration shown in FIG. 9 is a two-dimensional cross-sectional shape of the surface between the start point and the end point of the part.
Is calculated, and two straight lines L 1 and L 2 are determined by approximation from the point sequence of the measurement points obtained for each reference part from the measurement result, and the intersection points of these straight lines are calculated to obtain a virtual A method of estimating the position of the point P and comparing the mutual positional relationship between the plurality of virtual points obtained by the estimation with the mutual positional relationship between the virtual points on the designed vehicle body to obtain the position error. Has been done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、所定タ
クト時間内で上記各基準部位についての形状計測を行い
得るように上記走査用ミラー3の角度変化を速くする
と、CCDセンサ5の受光量の変化速度が速すぎてフィ
ードバック制御が追いつかず、車体パネル6の表面の向
きや汚れ等に起因して受光量が不足して、計測点が幾つ
か抜け落ちてしまう場合があり、かかる場合にはそれら
の計測点の点列が実際の断面形状を充分表すものとなら
ないため、上記従来の推定方法では、その点列に基づい
て推定した仮想点Pの位置が実際の位置から多少ずれて
しまって、仮想点位置の推定精度ひいては組立誤差計測
精度を充分高め得ないという問題があった。
However, if the angle change of the scanning mirror 3 is made fast so that the shape of each reference portion can be measured within a predetermined takt time, the change speed of the amount of light received by the CCD sensor 5 can be increased. Is too fast for feedback control to catch up, the amount of received light may be insufficient due to the direction of the surface of the vehicle body panel 6, dirt, etc., and some measurement points may fall out. Since the point sequence of points does not sufficiently represent the actual cross-sectional shape, in the above conventional estimation method, the position of the virtual point P estimated based on the point sequence is slightly displaced from the actual position, and the virtual point There is a problem in that the accuracy of position estimation and thus the accuracy of assembly error measurement cannot be sufficiently improved.

【0005】[0005]

【課題を解決するための手段】この発明は、上記従来の
灯台式センサでの計測による仮想点位置推定方法の課題
を有利に解決した方法を提供することを目的とするもの
であり、この発明の推定方法は、灯台式センサで、計測
光の方向を少しずつ変えることにより対象物の表面を断
続的に走査して、三角測量の原理によりその表面の断面
形状を計測して求めた計測点の点列から、二本の直線を
近似により定めて、それらの直線の交点を求めることに
より仮想点の位置を推定するに際し、前記点列中におけ
る計測点の欠落を調査して、その欠落が所定程度以上の
場合には、前記灯台式センサの位置を変更した後にその
灯台式センサで前記対象物表面の再走査を行って、再度
計測点の点列を求めることを特徴とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method that advantageously solves the problems of the conventional method of estimating the virtual point position by measuring with a lighthouse sensor. Is a lighthouse-type sensor that changes the direction of the measuring light little by little to scan the surface of the object intermittently and measure the cross-sectional shape of the surface according to the principle of triangulation. From the point sequence of, the two straight lines are determined by approximation, and when estimating the position of the virtual point by obtaining the intersection of these straight lines, the lack of the measurement points in the point sequence is investigated, and the missing point is In the case of a predetermined level or more, after changing the position of the lighthouse type sensor, the lighthouse type sensor rescans the surface of the object, and the point sequence of measurement points is obtained again. ..

【0006】[0006]

【作用】上記したこの発明の仮想点位置推定方法によれ
ば、灯台式センサで対象物の表面の断面形状を計測して
求めた計測点の点列中に、対象物表面の向きや汚れ等に
起因する受光量の不足によって幾つか計測点の抜け落ち
が生じた場合でも、その計測点の欠落を調査して、その
欠落が所定程度以上の場合は灯台式センタの位置を変更
した後対象物表面の再走査を行って、再度計測点の点列
を求めるので、充分な数の計測点を用いて直線近似を行
うことになって、対象物表面の実際の断面形状に対する
計測点の点列が表す断面形状の誤差を減少させることが
でき、ひいては仮想点位置の推定精度を向上させること
ができる。
According to the virtual point position estimating method of the present invention described above, the orientation and dirt of the surface of the target object are included in the point sequence of the measurement points obtained by measuring the cross-sectional shape of the surface of the target object by the lighthouse sensor. Even if some measurement points are missing due to the lack of the amount of light received due to, the missing points at the measurement points are investigated, and if the missing points are above a certain level, the position of the lighthouse center is changed and the target Since the surface is rescanned and the point sequence of measurement points is obtained again, linear approximation is performed using a sufficient number of measurement points, and the point sequence of measurement points for the actual cross-sectional shape of the object surface It is possible to reduce the error in the cross-sectional shape represented by, and to improve the estimation accuracy of the virtual point position.

【0007】[0007]

【実施例】以下にこの発明の実施例を図面に基づき詳細
に説明する。図1は、この発明の仮想点位置推定方法を
先に記した自動車車体の組立ライン内での組み立てられ
た車体の組立精度の計測に適用した一実施例の実施に用
いる車体組立精度計測装置を例示する構成図であり、こ
の実施例の方法では、概略従来の方法と同様、あらかじ
め車体の複数箇所について、それらの箇所の車体パネル
の概略L字状の二次元断面形状を持つ部分を基準部位と
して設定し、それらの基準部位の各々につきL字の各辺
に対応する概略直線状の部分をそれぞれ近似した二本の
直線の交点を仮想点として設定しておき、組立ライン内
では所定タクト時間内に、実際に組み立てられた車体の
車体パネル6の上記各基準部位の始点と終点との間の表
面の二次元断面形状を灯台式センサ7で計測し、その計
測結果から各基準部位につき得られた計測点の点列か
ら、それぞれ二本の直線L1,L2 を近似により定めて、
それらの直線の交点を演算で求めることにより仮想点P
の位置を推定し、それら推定により求めた複数の仮想点
の相互の位置関係と設計上の車体での上記仮想点の相互
の位置関係とを比較して位置誤差を求める、という手順
で車体組立精度計測を行う。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a vehicle body assembly precision measuring device used for carrying out an embodiment in which the virtual point position estimating method of the present invention is applied to the measurement of the assembly precision of an assembled vehicle body in an automobile body assembly line described above. FIG. 1 is a configuration diagram illustrating an example, and in the method of this embodiment, similar to the conventional method, a plurality of portions of a vehicle body are preliminarily divided into portions having a substantially L-shaped two-dimensional cross-sectional shape of a vehicle body panel as reference portions. , And the intersections of two straight lines that approximate each of the substantially linear portions corresponding to the L-shaped sides for each of these reference parts are set as virtual points, and the predetermined tact time is set in the assembly line. Inside, the two-dimensional cross-sectional shape of the surface of the body panel 6 of the actually assembled vehicle body between the start point and the end point of each of the above-mentioned reference parts is measured by the lighthouse sensor 7, and the reference result is obtained for each reference part. From the sequence of points of measurement points that, two of the straight lines L 1, L 2 respectively determined by approximation,
The virtual point P is obtained by calculating the intersection of these straight lines.
Of the vehicle body assembly by estimating the position of each of the virtual points and comparing the mutual positional relationship of the plurality of virtual points obtained by the estimation with the mutual positional relationship of the virtual points on the designed vehicle body to obtain the position error. Perform precision measurement.

【0008】しかして、かかる手順を行うためここにお
ける車体組立精度計測装置は、例えば図9に示すものと
同様に構成された灯台式センサ7と、例えば通常の直角
座標型ロボットの如く構成されたセンサ移動機構8と、
例えば通常のマイクロコンピュータにて構成された制御
部9とを具え、ここでセンサ移動機構8は、各々灯台式
センサ7を支持し、自動車車体の組立ライン内の所定の
計測工程に複数設置されて、その組立ライン内で組み立
てられてその計測工程に配置された車体の上記各基準部
位に対してそれぞれ灯台式センサ7を移動させ、制御部
9は、灯台式センサ7のスキャン用ミラーの振り角度や
振り速度を制御するとともに光源の発光強度を前記の如
くフィードバック制御し、さらにセンサ移動機構8の作
動を制御して、各灯台式センサ7を上記組み立てられた
車体の各基準部位に対しあらかじめ設定された所定位置
に配置する。
In order to carry out such a procedure, the vehicle body assembly accuracy measuring device here is constituted, for example, by a lighthouse type sensor 7 having the same structure as that shown in FIG. 9 and, for example, a normal rectangular coordinate type robot. A sensor moving mechanism 8,
For example, the control unit 9 is composed of an ordinary microcomputer. Here, the sensor moving mechanism 8 supports the lighthouse type sensors 7, and a plurality of sensors are installed in a predetermined measurement process in an assembly line of an automobile body. , The lighthouse type sensor 7 is moved with respect to each of the reference parts of the vehicle body assembled in the assembly line and arranged in the measurement process, and the control unit 9 controls the swing angle of the scanning mirror of the lighthouse type sensor 7. The light emitting intensity of the light source is feedback-controlled as described above, the operation of the sensor moving mechanism 8 is controlled, and each lighthouse type sensor 7 is preset for each reference portion of the assembled vehicle body. It is placed at the specified position.

【0009】さらにここにおける車体組立精度計測装置
は、例えば通常のマイクロコンピュータにて構成された
センサ出力信号変換部10と、例えば読出し書込み可能メ
モリにて構成された点列データ格納メモリ11と、例えば
通常のマイクロコンピュータにて構成された処理部12
と、例えば通常の読出し専用メモリにて構成された規格
値格納メモリ13とを具え、ここでセンサ出力信号変換部
10は、灯台式センサ7の出力信号を計測点の点列の座標
データに変換し、点列データ格納メモリ11は、センサ出
力信号変換部10が出力した点列座標データを格納し、処
理部12は、その点列データ格納メモリ10内の点列座標デ
ータを読み出してそれに基づき点列データの判断と仮想
点位置の推定処理と車体組立精度判定とを行い、そして
規格値格納メモリ13は、例えば図2(a)〜(c)に示
す如き各基準部位についての設計上の車体パネル6上で
の各計測点PS (sは計測点の番号; s =1,2,3, . . .
n)の位置とそれら計測点に基づく仮想点位置の座標お
よび、各基準部位毎にあらかじめ設定された、充分な精
度で直線近似を行うために最低限必要な正常な計測点の
数である規格数Mk (kは基準部位の番号; k =1,2,3, .
. .)を格納しており、それらを所要に応じて処理部12
に提供する。
Further, the vehicle body assembly accuracy measuring device herein includes a sensor output signal conversion unit 10 composed of, for example, an ordinary microcomputer, a point sequence data storage memory 11 composed of, for example, a readable / writable memory, and Processing unit 12 composed of a normal microcomputer
And a standard value storage memory 13 composed of, for example, a normal read-only memory, in which the sensor output signal conversion unit is provided.
Reference numeral 10 converts the output signal of the lighthouse sensor 7 into coordinate data of a point sequence of measurement points, and the point sequence data storage memory 11 stores the point sequence coordinate data output by the sensor output signal conversion unit 10 and a processing unit. 12 reads the point sequence coordinate data in the point sequence data storage memory 10 and performs the determination of the point sequence data, the virtual point position estimation processing, and the vehicle body assembly accuracy determination based on it, and the standard value storage memory 13 For example, as shown in FIGS. 2A to 2C, each measurement point P S (s is a measurement point number; s = 1,2,3 ,. .
n) Positions and coordinates of virtual point positions based on those measurement points, and the standard number of normal measurement points that is set in advance for each reference part and is the minimum number of normal measurement points required to perform linear approximation with sufficient accuracy. Number M k (k is the reference site number; k = 1,2,3 ,.
..) and stores them as required by the processing unit 12
To provide.

【0010】上記の如く構成されたこの車体組立精度計
測装置は、図3のフローチャートに示す手順に従って、
以下の如くしてこの実施例に基づく仮想点位置の推定お
よびそれに基づく車体の組立精度計測を行う。すなわち
ここでは、先ずステップ101で、制御部9が各基準部位
に対応する灯台式センサ7に、レーザー光での一回の走
査によって車体パネル6の断面形状計測を一度行わせ、
それによって灯台式センサ7が、各計測点について正常
時ならば図4(a)に示す如き、適宜設定された閾値を
越えるような充分高い山形波形となるビデオ信号を逐次
出力し、そのビデオ信号を、センサ出力信号変換部10
が、先ず上記閾値を用いて逐次図4(b)に示す如き二
値化信号に変換し、その二値化信号が1である画素の位
置から図4(c)に示すように図中破線で示す如きパネ
ル形状を表す各計測点PS の直交座標値を求めて点列の
座標データに変換し、その点列データを、続くステップ
102で点列データ格納メモリ11が、図4(d)に示す如
き各計測点の座標値を記述したテーブルとして一旦格納
する。
This vehicle body assembly accuracy measuring device constructed as described above follows the procedure shown in the flow chart of FIG.
As described below, the virtual point position is estimated based on this embodiment and the vehicle body assembly accuracy is measured based on the estimation. That is, here, first, in step 101, the control unit 9 causes the lighthouse type sensor 7 corresponding to each reference portion to once measure the cross-sectional shape of the vehicle body panel 6 by one scanning with the laser light,
As a result, if the lighthouse type sensor 7 is normal at each measurement point, as shown in FIG. 4A, a video signal having a sufficiently high chevron waveform that exceeds an appropriately set threshold value is sequentially output. Sensor output signal converter 10
However, first, it is converted into a binarized signal as shown in FIG. 4 (b) by using the above-mentioned threshold value first, and the pixel position where the binarized signal is 1 is indicated by a broken line in the figure as shown in FIG. 4 (c). The orthogonal coordinate value of each measurement point P S representing the panel shape as shown in FIG.
At 102, the point sequence data storage memory 11 temporarily stores it as a table describing the coordinate values of each measurement point as shown in FIG.

【0011】ところで、上記計測工程に配置された車体
の各基準部位に対する灯台式センサ7の位置は、基準部
位の全体に亘って確実にビデオ信号が得られるように、
図5(a)および(d)に示す如く、図中仮想線で示す
向きの設計上の車体パネルのL字の頂点と灯台式センサ
7とを結ぶ直線cがL字の各辺に対応する部分に対し等
しい角度となる(直線cに対しL字の各辺に対応する部
分が対称に位置する)ような位置に設定されが、実際の
車体パネル6の向きは、例えば図5(a)や図5(d)
中実線で示すように設計上の車体パネルの向きに対して
傾いている場合があり、かかる場合に、図5(b)や図
5(e)中符号a,bで示すような直線cに対する角度
が大きく開いている方の辺の部分の計測点で反射したレ
ーザー光の受光量は不足気味となる。また実際の車体パ
ネル6の表面の向きが設計上の車体パネルの向きにほぼ
一致していても、パネル表面の汚れ等に起因して受光量
が不足気味となる場合もある。
By the way, the position of the lighthouse type sensor 7 with respect to each reference part of the vehicle body arranged in the above-mentioned measuring step is such that a video signal can be surely obtained over the entire reference part.
As shown in FIGS. 5 (a) and 5 (d), a straight line c connecting the L-shaped apex of the designed vehicle body panel and the lighthouse sensor 7 in the direction shown by the imaginary line in the figure corresponds to each side of the L-shape. The positions are set such that they are at the same angle with respect to the parts (the parts corresponding to the respective sides of the L-shape are symmetrical with respect to the straight line c), but the actual orientation of the vehicle body panel 6 is, for example, as shown in FIG. And Figure 5 (d)
As shown by the solid line, it may be inclined with respect to the direction of the designed vehicle body panel, and in such a case, with respect to the straight line c as shown by reference characters a and b in FIG. 5B and FIG. The amount of received laser light reflected at the measurement point on the side of the side where the angle is wide open is likely to be insufficient. Even if the actual surface orientation of the vehicle body panel 6 is substantially the same as the designed vehicle body panel orientation, the amount of received light may be insufficient due to stains on the panel surface.

【0012】このような受光量不足の場合には、灯台式
センサ7は、その受光量不足の各計測点について図3
(e)に示す如き上記閾値を越えられない低い山形波形
となるビデオ信号を逐次出力し、センサ出力信号変換部
10は、そのビデオ信号を上記閾値を用いて逐次図3
(f)に示す如き二値化信号に変換するが、その二値化
信号が1である画素の位置が定まらないため、図3
(g)に示すように受光量不足の計測点PS の直交座標
値を(0, 0)として点列の座標データに変換し、続くステ
ップ102 で点列データ格納メモリ11がその直交座標値
(0, 0)を含む点列データを、図3(h)に示す如くテー
ブルとして一旦格納する。
In the case of such an insufficient amount of received light, the lighthouse type sensor 7 is shown in FIG.
As shown in (e), the sensor output signal conversion unit sequentially outputs a video signal having a low mountain-shaped waveform that does not exceed the threshold value.
10 indicates the video signal sequentially using the above threshold value.
Although it is converted into a binarized signal as shown in (f), since the position of the pixel whose binarized signal is 1 is not determined,
An orthogonal coordinate value of the measurement point P S of the received light amount shortage, as shown in (g) (0, 0) is converted into coordinate data of point sequence as followed point sequence data storage memory 11 in step 102 is the orthogonal coordinates
The point sequence data including (0, 0) is temporarily stored as a table as shown in FIG.

【0013】次いでここではステップ103 で、処理部12
が、点列データ格納メモリ11中から各基準部位について
上記点列データを読出して、その点列データが正常か異
常かを判断する。この判断処理は図6に示すフローチャ
ートに従って行われ、ここでは先ずステップ201 でその
点列データ中の、直交座標値が(0, 0)でない正常な計測
点の数を数えて、その数値をmk とし、次いでステップ
202 で、規格値格納メモリ13が上記のようにあらかじめ
格納している基準部位毎の正常な計測点の規格数から、
その点列データに対応する基準部位の規格数Mk を読出
して、その規格数Mk を上記正常な計測点の数mk と比
較し、正常な計測点数mk が規格数Mk を越えていれ
ば、欠落した計測点の数が少ないと判断できるためステ
ップ203 で点列データは正常と判断する一方、正常な計
測点数mk が規格数Mk 以下であれば、欠落した計測点
の数が多いと判断できるためステップ204 で点列データ
は異常と判断する。
Next, here, in step 103, the processing unit 12
The point sequence data is read out from the point sequence data storage memory 11 for each reference part, and it is determined whether the point sequence data is normal or abnormal. This judgment processing is performed according to the flow chart shown in FIG. 6. Here, first, in step 201, the number of normal measurement points whose Cartesian coordinate values are not (0, 0) in the point sequence data is counted, and the numerical value is m. k , then step
In 202, from the standard number of normal measurement points for each reference part stored in the standard value storage memory 13 in advance as described above,
The standard number M k of the reference site corresponding to the point sequence data is read, the standard number M k compared to the number m k of the normal measurement point, a normal number of measurement points m k exceeds the standard number M k If so, it can be determined that the number of missing measurement points is small, and therefore the point sequence data is determined to be normal in step 203, while if the number of normal measurement points m k is equal to or less than the standard number M k , Since it can be determined that the number is large, the point sequence data is determined to be abnormal in step 204.

【0014】かかる判断処理の結果、何れかの基準部位
について点列データが異常と判断した場合には、計測状
態を変化させるため図3中のステップ103 からステップ
104へ進んで、処理部12が制御部9に、その異常があっ
た基準部位に対応するセンサ移動機構8を作動させてそ
こにおける灯台式センサ7の位置を移動させるよう指示
し、その後ステップ101 へ戻ってその異常があった基準
部位の再計測を行う。なお、灯台式センサ7の位置が図
5(a)および(d)の何れの側にずれているか、ある
いは何れの側にずらせばさらに受光量が増やせるかは不
明であるため、上記移動は例えば、先ず図5(c)に矢
印で示すように、灯台式センサ7を当初の計測位置から
車体パネル6の断面を含むような平面内でその車体パネ
ル6に対する向きが変わるような所定の方向(図では下
方)へ若干ずらし、上記再計測を行った後再度上記判断
を行った結果未だ点列データが異常の場合は、図5
(f)に矢印で示すように、灯台式センサ7を当初の計
測位置へ一旦戻した後そこから上記平面内で先にずらし
た方向と逆の方向(図では上方)へ若干ずらす、という
手順で行う。
As a result of the judgment processing, when it is judged that the point sequence data is abnormal for any of the reference parts, in order to change the measurement state, steps 103 to 103 in FIG.
Proceeding to 104, the processing unit 12 instructs the control unit 9 to operate the sensor moving mechanism 8 corresponding to the abnormal reference portion to move the position of the lighthouse type sensor 7 there, and then step 101 Return to and re-measure the reference part where the abnormality occurred. The position of the lighthouse type sensor 7 is deviated to which side of FIGS. 5 (a) and 5 (d), or to which side the light receiving amount can be further increased. First, as shown by an arrow in FIG. 5C, the lighthouse sensor 7 is moved in a predetermined direction from the initial measurement position so that the direction with respect to the vehicle body panel 6 changes in a plane including the cross section of the vehicle body panel 6. If the point sequence data is still abnormal as a result of making the above determination again after performing the above remeasurement,
As shown by the arrow in (f), the lighthouse sensor 7 is temporarily returned to the initial measurement position and then slightly displaced in the opposite direction (upward in the figure) to the direction in which the lighthouse sensor 7 has been previously displaced in the plane. Done in.

【0015】そして一度目の計測あるいは再計測の後の
上記判断処理の結果、全ての基準部位について点列デー
タが正常と判断した場合には、図3中のステップ103 か
らステップ105 へ進み、処理部12が各基準部位につき、
その点列データが表す車体パネル6の二次元断面形状の
L字の両辺に対応する部分から二本の直線L1,L2 を近
似により定めて、それらの直線の交点を演算で求めるこ
とにより仮想点Pの位置を推定し、次いで、規格値格納
メモリ13からあらかじめ格納している基準部位毎の設計
上の車体での仮想点位置を読出して、上記推定により求
めた複数の仮想点Pの相互の位置関係と設計上の車体で
の仮想点の相互の位置関係とを比較し、位置誤差を求め
て、その誤差が所定範囲内であれば組立精度正常、誤差
が所定範囲外であれば組立精度異常と判定し、その判定
結果を出力する。
As a result of the above judgment processing after the first measurement or remeasurement, when it is judged that the point sequence data is normal for all the reference parts, the routine proceeds from step 103 to step 105 in FIG. Part 12 is for each reference part,
By approximating two straight lines L 1 and L 2 from the portions corresponding to both sides of the L-shape of the two-dimensional cross-sectional shape of the vehicle body panel 6 represented by the point sequence data, and calculating the intersection points of these straight lines. The position of the virtual point P is estimated, and then the virtual point position on the designed vehicle body for each reference part that is stored in advance from the standard value storage memory 13 is read out, and the plurality of virtual points P obtained by the above estimation are calculated. If the positional error is calculated by comparing the mutual positional relationship with the mutual positional relationship of virtual points on the designed vehicle body, and the error is within a predetermined range, the assembly accuracy is normal, and if the error is outside the predetermined range. The assembly accuracy is determined to be abnormal, and the determination result is output.

【0016】上述の如くしてこの実施例の方法によれ
ば、所定タクト時間内で上記各基準部位についての形状
計測を行い得るように灯台式センサ7の走査用ミラーの
角度変化を速くした場合に、CCDセンサの受光量の変
化速度が速すぎてフィードバック制御が追いつかず、車
体パネル6の表面の向きや汚れ等に起因して受光量が不
足して、計測点が幾つか抜け落ちてしまった場合でも、
その計測点の欠落数を調査して、その欠落数が所定数以
上の場合は灯台式センタ7の位置を変更し、計測点が欠
落した部分での受光量が増えるようにした後、車体パネ
ル6の表面の再走査を行って、再度計測点の点列を求め
るので、充分な数の計測点を用いて直線近似を行うこと
になるため、車体パネル6の表面の実際の断面形状に対
する計測点の点列が表す断面形状の誤差を減少させるこ
とができ、ひいては仮想点Pの位置の推定精度を向上さ
せ得て、車体組立精度の判定の信頼性を向上させること
ができる。しかも、上記方法は、図3のステップ101 〜
104 の、時間がそれ程かからない車体パネル6の表面の
走査等のみを再度行い、ステップ105 の時間がかかる仮
想点算出演算等は一度だけ行うので、所定タクト時間内
でも充分実行することができる。
As described above, according to the method of this embodiment, when the angle change of the scanning mirror of the lighthouse type sensor 7 is made fast so that the shape of each of the reference parts can be measured within a predetermined tact time. In addition, the rate of change in the amount of light received by the CCD sensor was too fast for feedback control to catch up, the amount of light received was insufficient due to the direction of the surface of the vehicle body panel 6 and dirt, and some measurement points were missed. Even if
After checking the number of missing measurement points and changing the position of the lighthouse type center 7 when the number of missing points is more than a predetermined number, the amount of light received at the part where the measurement points are missing is increased, and then the vehicle body panel Since the surface of 6 is rescanned and the point sequence of the measurement points is obtained again, linear approximation is performed using a sufficient number of measurement points. Therefore, measurement of the actual cross-sectional shape of the surface of the vehicle body panel 6 is performed. The error of the cross-sectional shape represented by the point sequence of points can be reduced, and the estimation accuracy of the position of the virtual point P can be improved, and the reliability of the determination of the vehicle body assembly accuracy can be improved. Moreover, the above method is performed in steps 101-
Since the scanning of the surface of the vehicle body panel 6 which takes less time in 104 is performed again and the time-consuming virtual point calculation calculation in step 105 is performed only once, it can be sufficiently executed within the predetermined tact time.

【0017】ところで、計測点PS の位置は通常、直線
近似の精度を良好ならしめるため、図7(a)に示すよ
うに、車体パネル6上でのそれらの間隔d1,d2, . . が
一定となるように設定されているので、車体パネル6の
表面の向きや汚れ等に起因して受光量が不足して、計測
点が幾つか抜け落ちた場合には、図7(b)に示すよう
に、計測点の間隔d1,d2, . .も互いに異なったものとな
る。かかる点に着目してなされたこの発明の推定方法の
他の実施例を次に説明する。
By the way, since the position of the measuring point P S normally makes the accuracy of the linear approximation good, as shown in FIG. 7A, the intervals d 1 , d 2 ,. Is set to be constant. Therefore, when the amount of received light is insufficient due to the direction of the surface of the vehicle body panel 6 or dirt, and some measurement points fall out, FIG. As shown in, the distances d 1 , d 2 , ... Of the measurement points are also different from each other. Another embodiment of the estimation method of the present invention, which has been made with attention to such points, will be described below.

【0018】この実施例の方法では、先の実施例におけ
る装置の規格値格納メモリ13に、上記規格数Mk に代え
て、各基準部位毎にあらかじめ設定した、本来設定した
計測点位置から求まる平均計測点間隔より若干大きい数
値の規格数Dk (kは基準部位の番号; k =1,2,3, . .
.)を格納しておき、先の実施例における図3のステッ
プ103 で、図6に示す点列データの判断処理に代えて、
図8に示す点列データの判断処理を行い、他の部分は先
の実施例と同様とする。
In the method of this embodiment, instead of the standard number M k in the standard value storage memory 13 of the apparatus in the previous embodiment, it is found from the originally set measurement point position preset for each reference part. A standard number D k (k is a reference site number; k = 1,2,3 ,.
.) Is stored, and instead of the point sequence data determination process shown in FIG. 6 in step 103 of FIG. 3 in the previous embodiment,
The point sequence data determination process shown in FIG. 8 is performed, and the other parts are the same as those in the previous embodiment.

【0019】すなわちここでは、図3のステップ101 お
よびステップ102 で、車体パネル6の断面形状計測およ
びそれによって得た計測点PS (sは計測点の番号; s =
1,2,3, . . . n)の点列データ(ただしここでは座標が
(0, 0)となった計測点は点列データ中に含めない。)の
格納を行った後、図3のステップ103 で処理部12が、点
列データ格納メモリ11中から各基準部位について上記点
列データを読出して、その点列データが正常か異常かを
図8に示すフローチャートに従って判断する。この判断
においては、先ず図8のステップ301 で、次式により平
均計測点間距離を算出してその数値をdk とする。
That is, here, in step 101 and step 102 of FIG. 3, the cross-sectional shape of the vehicle body panel 6 is measured and the measurement point P S (s is the measurement point number; s =
1,2,3, .. .n) point sequence data (where the coordinates are
Do not include the measurement point with (0, 0) in the point sequence data. ) Is stored, the processing unit 12 reads the above-mentioned point sequence data for each reference part from the point sequence data storage memory 11 in step 103 of FIG. 3 to determine whether the point sequence data is normal or abnormal. The determination is made according to the flowchart shown in FIG. In this determination, first, in step 301 of FIG. 8, the average distance between measurement points is calculated by the following equation and the value is set as d k .

【数1】 [Equation 1]

【0020】次いでここではステップ302 で、規格値格
納メモリ13が上記のようにあらかじめ格納している基準
部位毎の規格数から、その点列データに対応する基準部
位の規格数Dk を読出して、その規格数Dk を上記平均
計測点間距離dk と比較し、平均計測点間距離dk が規
格数Dk 未満であれば、欠落した計測点の数が少ないと
判断できるためステップ303 で点列データは正常と判断
する一方、平均計測点間距離dk が規格数Dk 以上であ
れば欠落した計測点の数が多いと判断できるためステッ
プ304 で点列データは異常と判断する。そして、以後は
図3のステップ103 からその判断結果に従いステップ10
4 またはステップ105 へ進んで先の実施例と同様の処理
を行う。
Next, in step 302, the standard number D k of the reference part corresponding to the point sequence data is read from the standard number for each reference part stored in the standard value storage memory 13 in advance as described above. Then, the standard number D k is compared with the average inter-measurement-point distance d k, and if the average inter-measurement-point distance d k is less than the standard number D k , it can be determined that the number of missing measurement points is small. While the point sequence data is determined to be normal, the point sequence data is determined to be abnormal in step 304 because it can be determined that the number of missing measurement points is large if the average inter-measurement point distance d k is greater than or equal to the standard number D k. .. Then, after that, from step 103 of FIG. 3 to step 10 according to the judgment result.
4 or proceeds to step 105 to perform the same processing as in the previous embodiment.

【0021】かかる実施例によれば、車体パネル6の表
面の向きや汚れ等に起因して受光量が不足して、計測点
が幾つか抜け落ちてしまった場合に、その計測点の欠落
を平均計測点間距離に基づき調査して、その欠落が所定
程度以上の場合は灯台式センタ7の位置を変更し、計測
点が欠落した部分での受光量が増えるようにした後、車
体パネル6の表面の再走査を行って、再度計測点の点列
を求めるので、先の実施例と同様、充分な数の計測点を
用いて直線近似を行うことになるため、車体パネル6の
表面の実際の断面形状に対する計測点の点列が表す断面
形状の誤差を減少させることができ、ひいては仮想点P
の位置の推定精度を向上させ得て、車体組立精度の判定
の信頼性を向上させることができる。そしてこの実施例
でも先の実施例と同様、図3のステップ101 〜104 の、
時間がそれ程かからない車体パネル6の表面の走査等の
みを再度行い、ステップ105 の時間がかかる仮想点算出
演算等は一度だけ行うので、所定タクト時間内でも充分
実行することができる。
According to this embodiment, when the amount of received light is insufficient due to the direction of the surface of the vehicle body panel 6 or dirt, and some measurement points are missing, the missing measurement points are averaged. After investigating based on the distance between the measurement points, if the lack is more than a predetermined level, the position of the lighthouse type center 7 is changed so that the amount of light received at the part where the measurement points are missing is increased. Since the rescanning of the surface is performed and the point sequence of the measurement points is obtained again, the linear approximation is performed using a sufficient number of measurement points as in the previous embodiment. Error in the cross-sectional shape represented by the point sequence of the measurement points with respect to the cross-sectional shape can be reduced, and by extension, the virtual point P
The position estimation accuracy can be improved, and the reliability of the vehicle body assembly accuracy determination can be improved. Also in this embodiment, as in the previous embodiment, steps 101 to 104 of FIG.
Since the scanning of the surface of the vehicle body panel 6 which does not take much time is performed again and the virtual point calculation and the like in step 105 are performed only once, they can be sufficiently executed within the predetermined tact time.

【0022】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、一つの
マイクロコンピュータを上記実施例における制御部9と
処理部12とで共用するようにして良い。またこの発明の
方法は、車体組立ライン外での、車体組立精度計測や車
体パネル単体の形状精度計測に適用することもでき、さ
らに、車体パネル以外の対象物の計測にも適用すること
ができる。
Although the present invention has been described above based on the illustrated example, the present invention is not limited to the above example. For example, one microcomputer may be shared by the control section 9 and the processing section 12 in the above embodiment. Good to Further, the method of the present invention can be applied to the vehicle body assembly accuracy measurement outside the vehicle body assembly line and the shape accuracy measurement of the vehicle body panel alone, and can also be applied to the measurement of objects other than the vehicle body panel. ..

【0023】[0023]

【発明の効果】かくしてこの発明の仮想点位置推定方法
によれば、灯台式センサで対象物の表面の断面形状を計
測して求めた計測点の点列中に、対象物表面の向きや汚
れ等に起因する受光量の不足によって幾つか計測点の抜
け落ちが生じた場合でも、その計測点の欠落を調査し
て、その欠落が所定程度以上の場合は灯台式センタの位
置を変更した後対象物表面の再走査を行って、再度計測
点の点列を求めるので、充分な数の計測点を用いて直線
近似を行うことになって、対象物表面の実際の断面形状
に対する計測点の点列が表す断面形状の誤差を減少させ
ることができ、ひいては仮想点位置の推定精度を向上さ
せることができる。
As described above, according to the virtual point position estimating method of the present invention, the orientation and dirt of the surface of the object are included in the point sequence of the measurement points obtained by measuring the cross-sectional shape of the surface of the object by the lighthouse type sensor. Even if some measurement points are missed due to lack of received light due to, etc., the missing points at the measurement points are investigated. Since the object surface is rescanned and the point sequence of measurement points is obtained again, linear approximation is performed using a sufficient number of measurement points, and the points of measurement points for the actual cross-sectional shape of the object surface It is possible to reduce the error of the cross-sectional shape represented by the row, and consequently to improve the estimation accuracy of the virtual point position.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の仮想点位置推定方法を自動車車体の
組立ライン内での組み立てられた車体の組立精度の計測
に適用した一実施例に用いる車体組立精度計測装置を例
示する構成図である。
FIG. 1 is a configuration diagram illustrating a vehicle body assembly accuracy measuring device used in an embodiment in which a virtual point position estimating method according to the present invention is applied to measurement of an assembly accuracy of an assembled vehicle body in an assembly line of an automobile body. ..

【図2】(a)〜(c)は上記車体組立精度計測装置の
規格値格納メモリにあらかじめ格納する各基準部位の計
測点位置を例示する説明図である。
2A to 2C are explanatory views illustrating the measurement point positions of respective reference parts stored in advance in a standard value storage memory of the vehicle body assembly accuracy measuring device.

【図3】上記車体組立精度計測装置が上記実施例の方法
に基づき仮想点位置推定および車体組立精度計測を実行
する際の処理手順を示すフローチャートである。
FIG. 3 is a flowchart showing a processing procedure when the vehicle body assembly accuracy measuring device executes virtual point position estimation and vehicle body assembly accuracy measurement based on the method of the embodiment.

【図4】(a)〜(h)は上記車体組立精度計測装置が
上記実施例の方法に基づき計測点位置の計測を行う際の
作動状態をそれぞれ示す説明図である。
4 (a) to (h) are explanatory views showing operating states when the vehicle body assembly accuracy measuring device measures a measurement point position based on the method of the embodiment.

【図5】(a)〜(f)は上記車体組立精度計測装置が
上記実施例の方法に基づき灯台式センサの位置を移動さ
せる際の作動状態をそれぞれ示す説明図である。
5 (a) to (f) are explanatory views showing operating states when the vehicle body assembly accuracy measuring device moves the position of the lighthouse type sensor based on the method of the embodiment.

【図6】上記車体組立精度計測装置が上記実施例の方法
に基づき点列データの正常・異常を判断する際の処理手
順を示すフローチャートである。
FIG. 6 is a flowchart showing a processing procedure when the vehicle body assembly accuracy measuring device determines normality / abnormality of point sequence data based on the method of the embodiment.

【図7】(a)および(b)は点列データの正常時およ
び異常時の計測点の状態をそれぞれ示す説明図である。
7 (a) and 7 (b) are explanatory views showing states of measurement points of point sequence data in a normal state and an abnormal state, respectively.

【図8】図7(a),(b)に示す状態の差異に着目し
てなされたこの発明の他の実施例の方法に基づき点列デ
ータの正常・異常を判断する際の処理手順を示すフロー
チャートである。
FIG. 8 shows a processing procedure for judging normality / abnormality of point sequence data based on the method of another embodiment of the present invention, which is made by paying attention to the difference between the states shown in FIGS. 7 (a) and 7 (b). It is a flowchart shown.

【図9】従来例および上記両実施例の方法で用いる灯台
式センサーの構成を示す説明図である。
FIG. 9 is an explanatory view showing a configuration of a lighthouse type sensor used in the methods of the conventional example and the above-described both examples.

【図10】従来の灯台式センサーでの計測による仮想点
位置の推定方法を示す説明図である。
FIG. 10 is an explanatory diagram showing a method of estimating a virtual point position by measurement with a conventional lighthouse sensor.

【符号の説明】[Explanation of symbols]

6 車体パネル 7 灯台式センサ 8 センサ移動機構 9 制御部 10 センサ出力信号変換部 11 点列データ格納メモリ 12 処理部 13 規格値格納メモリ 6 Body panel 7 Lighthouse type sensor 8 Sensor moving mechanism 9 Control unit 10 Sensor output signal conversion unit 11 Point sequence data storage memory 12 Processing unit 13 Standard value storage memory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 灯台式センサで、計測光の方向を少しず
つ変えることにより対象物の表面を断続的に走査して、
三角測量の原理によりその表面の断面形状を計測して求
めた計測点の点列から、二本の直線を近似により定め
て、それらの直線の交点を求めることにより仮想点の位
置を推定するに際し、 前記点列中における計測点の欠落を調査して、その欠落
が所定程度以上の場合には、前記灯台式センサの位置を
変更した後にその灯台式センサで前記対象物表面の再走
査を行って、再度計測点の点列を求めることを特徴とす
る、灯台式センサでの計測による仮想点位置推定方法。
1. A lighthouse sensor for intermittently scanning the surface of an object by gradually changing the direction of measurement light,
When estimating the position of the virtual point by determining the two straight lines by approximation from the point sequence of the measurement points obtained by measuring the cross-sectional shape of the surface by the principle of triangulation and determining the intersection of these straight lines , Investigating the lack of measurement points in the point sequence, and if the lack is more than a predetermined level, re-scan the object surface with the lighthouse type sensor after changing the position of the lighthouse type sensor. A method of estimating a virtual point position by measuring with a lighthouse sensor, characterized in that the point sequence of the measurement points is obtained again.
JP93992A 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor Expired - Lifetime JP2808959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP93992A JP2808959B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP93992A JP2808959B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Publications (2)

Publication Number Publication Date
JPH05180634A true JPH05180634A (en) 1993-07-23
JP2808959B2 JP2808959B2 (en) 1998-10-08

Family

ID=11487646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP93992A Expired - Lifetime JP2808959B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Country Status (1)

Country Link
JP (1) JP2808959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281841A (en) * 1999-10-29 2010-12-16 Safegate Internatl Ab Aircraft identification and docking guidance system
CN103782128A (en) * 2011-09-09 2014-05-07 空中客车德国运营有限责任公司 Measurement method and device for determining the position of a profile component applied to a shell component
JP2016028249A (en) * 2015-09-29 2016-02-25 株式会社Sumco Method for determining three-dimensional distribution of bubble distribution in silica glass crucible and method for manufacturing silicon single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281841A (en) * 1999-10-29 2010-12-16 Safegate Internatl Ab Aircraft identification and docking guidance system
CN103782128A (en) * 2011-09-09 2014-05-07 空中客车德国运营有限责任公司 Measurement method and device for determining the position of a profile component applied to a shell component
US9242742B2 (en) 2011-09-09 2016-01-26 Airbus Operations Gmbh Measurement method and device for determining the position of a profile component applied to a shell component
CN103782128B (en) * 2011-09-09 2017-03-22 空中客车德国运营有限责任公司 Measurement method and device for determining the position of a profile component applied to a shell component
JP2016028249A (en) * 2015-09-29 2016-02-25 株式会社Sumco Method for determining three-dimensional distribution of bubble distribution in silica glass crucible and method for manufacturing silicon single crystal

Also Published As

Publication number Publication date
JP2808959B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP4810763B2 (en) Distance measuring device
US4705395A (en) Triangulation data integrity
US5780866A (en) Method and apparatus for automatic focusing and a method and apparatus for three dimensional profile detection
US6172755B1 (en) Three dimensional measurement system and pickup apparatus
US5739912A (en) Object profile measuring method and apparatus
US4983827A (en) Linescan apparatus for detecting salient pattern of a product
JP3802339B2 (en) Axis adjustment method for rangefinder
KR19990081876A (en) Distance and positioning devices
US6321139B1 (en) Operation line searching method and robot/sensor system having operation line searching function
JPH05180634A (en) Method for estimating position of virtual point by measurement with lighthouse type sensor
JP2720077B2 (en) Ultrasonic flaw detector
JP3814201B2 (en) Axis adjustment target and axis adjustment method for distance measuring apparatus
JP2783031B2 (en) Estimation method of virtual point position by measurement with lighthouse sensor
EP0511117B1 (en) Object profile measuring method and apparatus
US5017864A (en) Apparatus for the inspection of printed circuit boards on which components have been mounted
JP2001317935A (en) Range finder
JPH0448204A (en) Height measurement system
JP2828797B2 (en) Measuring method for depth of minute concave surface
JPH07229728A (en) Device for detecting road surface
CN112504125B (en) Non-contact cuboid volume measurement method based on TOF
JPH07248220A (en) Self-analyzing method of article-detecting apparatus
US20230314610A1 (en) Surveying apparatus, surveying method, and surveying program
JP3112537B2 (en) Optical three-dimensional shape measuring method and measuring device
JPH10293178A (en) Laser radar measurement method and device
JP2002055718A (en) Unmanned vehicle position detection system