JPH05180520A - Freezing cycle device - Google Patents

Freezing cycle device

Info

Publication number
JPH05180520A
JPH05180520A JP3344678A JP34467891A JPH05180520A JP H05180520 A JPH05180520 A JP H05180520A JP 3344678 A JP3344678 A JP 3344678A JP 34467891 A JP34467891 A JP 34467891A JP H05180520 A JPH05180520 A JP H05180520A
Authority
JP
Japan
Prior art keywords
compressor
gas refrigerant
discharge gas
time
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3344678A
Other languages
Japanese (ja)
Inventor
Koji Ishikawa
孝治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3344678A priority Critical patent/JPH05180520A/en
Publication of JPH05180520A publication Critical patent/JPH05180520A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent burning loss of a compressor caused by a lack of feeding oil to a sliding part which is produced by phenomenon of generating bubbles when the first and second compressors arranged in parallel to each other are energized. CONSTITUTION:The second compressor 2 arranged in parallel with the first compressor 1 during the same freezing cycle and driven by an inverter 11 is energized under an energizing frequency. In the case that a heating temperature of discharged gas calculated by a discharged gas refrigerant heating temperature calculation means 13 in reference to the discharged gas pressure and its temperature is more than the predetermined heating temperature set value, the first compressor 1 is energized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は圧縮機を並列に接続し
た冷凍サイクル装置に係わり、特にその起動制御に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus in which compressors are connected in parallel, and more particularly to start-up control thereof.

【0002】[0002]

【従来の技術】図5は、例えば特開昭63−29778
6号公報に示された従来の冷凍サイクル装置の構成図で
ある。図において、1は所定能力を有する第1の圧縮
機、2は第1の圧縮機1に並列に接続されインバータ駆
動により容量制御する第2の圧縮機、3は吐出ガスより
冷凍機油を分離する油分離器、4は冷媒流路を切り換え
る四方切換弁、5は非利用側熱交換器、6a、6bは減
圧装置、7a、7bは利用側熱交換器、8はアキュムレ
ータ、9は油分離器3で回収した冷凍機油を返油する返
油回路、10は各圧縮機1、2の冷凍機油量を均等にす
るための均油管、11は第2の圧縮機2の回転数を可変
に駆動するインバータ、13は各圧縮機1、2の起動制
御装置、12は第1のタイマ手段である。図中、実線矢
印は冷房運転時の冷媒流れ方向を、破線矢印は暖房運転
時の冷媒流れ方向を示す。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-63-29778.
It is a block diagram of the conventional refrigeration cycle apparatus shown by the 6th publication. In the figure, 1 is a first compressor having a predetermined capacity, 2 is a second compressor which is connected in parallel to the first compressor 1 and whose capacity is controlled by inverter drive, and 3 separates refrigerating machine oil from discharge gas. Oil separator 4, four-way switching valve for switching the refrigerant flow path, 5 non-use side heat exchanger, 6a and 6b decompressor, 7a and 7b use side heat exchanger, 8 accumulator, 9 oil separator An oil returning circuit for returning the refrigerating machine oil collected in 3; 10 is an oil equalizing pipe for equalizing the refrigerating machine oil amounts of the compressors 1 and 2; 11 is a variable driving speed of the second compressor 2 An inverter, a start control device 13 for the compressors 1 and 2, and a first timer means 12. In the figure, the solid line arrow indicates the refrigerant flow direction during the cooling operation, and the broken line arrow indicates the refrigerant flow direction during the heating operation.

【0003】次に、冷凍サイクル上の動作について説明
する。冷房運転時には、第1または第2の圧縮機1、2
にて圧縮された高温高圧のガス冷媒は、油分離器3に入
りガス冷媒内に含む冷凍機油を分離され、切換弁4を介
して非利用側熱交換器5に入る。非利用側熱交換器5で
は、大気または熱源水に放熱して、冷媒は凝縮して高圧
の液冷媒となり、減圧装置6a、6bで減圧され、低圧
の気液混合冷媒となって、利用側熱交換器7a、7bに
流入する。利用側熱交換器7a、7bでは、室内空気よ
り採熱して冷媒は蒸発ガス化して、冷房運転を達成す
る。利用側熱交換器7a、7bでガス化した低圧のガス
冷媒は、四方切換弁4を介して、アキュムレータ8に入
り、未蒸発冷媒液とガス冷媒とを分離し、ガス冷媒のみ
を第1または第2の圧縮機1、2に吸入される。尚、利
用側熱交換器7a、7bの運転状態は個別に選択でき、
停止させる場合には、減圧装置6a、6bを閉止状態に
することにより、容量制御運転を行う。
Next, the operation of the refrigeration cycle will be described. During the cooling operation, the first or second compressor 1, 2
The high-temperature and high-pressure gas refrigerant compressed in (3) enters the oil separator 3 to separate refrigerating machine oil contained in the gas refrigerant, and enters the non-use side heat exchanger 5 via the switching valve 4. In the non-use side heat exchanger 5, the heat is radiated to the atmosphere or the heat source water, and the refrigerant is condensed to become a high-pressure liquid refrigerant, which is decompressed by the decompression devices 6a and 6b and becomes a low-pressure gas-liquid mixed refrigerant, and the use side It flows into the heat exchangers 7a and 7b. In the use side heat exchangers 7a and 7b, heat is taken from the indoor air to evaporate the refrigerant to achieve cooling operation. The low-pressure gas refrigerant gasified in the use-side heat exchangers 7a and 7b enters the accumulator 8 through the four-way switching valve 4, separates the unevaporated refrigerant liquid and the gas refrigerant, and only the gas refrigerant is the first or It is sucked into the second compressors 1 and 2. In addition, the operating states of the use side heat exchangers 7a and 7b can be individually selected,
When stopping, the capacity control operation is performed by closing the pressure reducing devices 6a and 6b.

【0004】次に、暖房運転時の冷凍サイクル上の動作
について説明する。暖房運転時には、四方切換弁4を破
線側に切り換えることにより、圧縮機1、2から吐出さ
れる高温高圧のガス冷媒は、油分離器3および四方切換
弁4を介して、利用側熱交換器7a、7bに流入し、室
内空気に放熱して暖房運転を行うと共に、冷媒自身は凝
縮して高圧の液冷媒となる。この高圧の液冷媒は減圧装
置6a、6bで減圧され、低圧の気液混合冷媒となり、
非利用側熱交換器5に流入し、大気または熱源水より採
熱して蒸発し、四方切換弁4、アキュムレータ8を介し
て第1と第2の圧縮機1、2に戻る。
Next, the operation of the refrigeration cycle during the heating operation will be described. During heating operation, by switching the four-way switching valve 4 to the side of the broken line, the high-temperature and high-pressure gas refrigerant discharged from the compressors 1 and 2 is passed through the oil separator 3 and the four-way switching valve 4 to the use side heat exchanger. The refrigerant flows into 7a and 7b and radiates heat to the room air to perform a heating operation, and the refrigerant itself is condensed into a high-pressure liquid refrigerant. This high-pressure liquid refrigerant is decompressed by the decompression devices 6a and 6b to become a low-pressure gas-liquid mixed refrigerant,
It flows into the non-use side heat exchanger 5, takes heat from the atmosphere or heat source water, evaporates, and returns to the first and second compressors 1 and 2 via the four-way switching valve 4 and the accumulator 8.

【0005】次に、図6に示されるフローチャートに基
づき第1および第2の圧縮機1、2の起動制御装置20
による起動方法について説明する。運転をスタートする
とステップS1で第2の圧縮機2を起動周波数で起動
し、ステップ2に進む。ステップS2では第2の圧縮機
2起動時に計時をスタートする第1のタイマー手段12
による積算時間T1が起動遅延時間t1以上か否かを判定
する。起動遅延時間t1は、起動時のラッシュ電流を軽
減するため数秒程度に設定されており、積算時間T1
起動遅延時間t1以上になると、ステップS3に進み第
1の圧縮機1を起動させる。ステップS4で、積算時間
1が起動制御時間t2以上か否かを判定し、起動制御時
間t2を経過すればステップS5に進んで起動制御を終
了する。
Next, the starting control device 20 for the first and second compressors 1 and 2 will be described with reference to the flow chart shown in FIG.
The starting method by will be described. When the operation is started, the second compressor 2 is started at the starting frequency in step S1, and the process proceeds to step 2. In step S2, the first timer means 12 for starting timekeeping when the second compressor 2 is started up.
It is determined whether or not the integrated time T 1 due to is greater than or equal to the activation delay time t 1 . The start-up delay time t 1 is set to about several seconds in order to reduce the rush current at the start-up. When the integrated time T 1 becomes the start-up delay time t 1 or more, the process proceeds to step S3 to start the first compressor 1. Let In step S4, the integrated time T 1 is determined whether the startup control time t 2 or more, and terminates the start control proceeds to step S5 if elapsed activation control time t 2.

【0006】[0006]

【発明が解決しようとする課題】従来の空気調和機は以
上のように構成されており、第2の圧縮機2を起動させ
てから一定時間経過後に第1の圧縮機1を起動させるの
で、起動前に各圧縮機1、2内に冷媒液が貯留されてい
た場合には、急激な発泡現象が発生する。第2の圧縮機
2については、インバータ10により低速で起動するた
め、軸受などの摺動部に加わる荷重は少ないが、第1の
圧縮機1は商用電源で直入起動するため、発泡現象によ
り冷凍機油の供給が不十分となり摺動部の焼付事故が発
生し、冷凍サイクル装置としての機能を発揮できないと
いう問題点があった。
The conventional air conditioner is configured as described above, and since the first compressor 1 is started after a lapse of a fixed time after the second compressor 2 is started, When the refrigerant liquid is stored in each of the compressors 1 and 2 before starting, a rapid foaming phenomenon occurs. Since the second compressor 2 is started at a low speed by the inverter 10, a load applied to a sliding portion such as a bearing is small, but since the first compressor 1 is directly started by a commercial power source, it is frozen due to a foaming phenomenon. There was a problem that the function of the refrigeration cycle device could not be exerted due to insufficient supply of machine oil and seizure of sliding parts.

【0007】この発明は、上記の如き問題点を解消する
ためになされたものであり、圧縮機内に冷媒液が貯留さ
れていても、摺動部の焼付事故等を生じることなく起動
することができる冷凍サイクル装置を得ることを目的と
する。
The present invention has been made to solve the above-mentioned problems, and even if the refrigerant liquid is stored in the compressor, it can be started without causing seizure of the sliding portion. The object is to obtain a refrigeration cycle device that can be used.

【0008】[0008]

【課題を解決するための手段】この発明に係る冷凍サイ
クル装置は第1の圧縮機と同一サイクル中に並列に設け
られインバータにより駆動される第2の圧縮機の吐出ガ
ス冷媒圧力及び温度を検出する圧力及び温度検出装置
と、上記両検出装置で検出された吐出ガス冷媒圧力と吐
出ガス冷媒温度とにより吐出ガス冷媒加熱度を演算する
吐出ガス冷媒加熱度演算手段と、上記インバータを介し
起動周波数で上記第2の圧縮機を起動すると共に、上記
演算された吐出ガス冷媒加熱度と予め設定された過熱度
設定値とを比較し、吐出ガス冷媒加熱度が過熱度設定値
以上のとき上記第1の圧縮機を駆動するよう制御する起
動制御装置とを設けたものである。
A refrigeration cycle apparatus according to the present invention detects the discharge gas refrigerant pressure and temperature of a second compressor provided in parallel with the first compressor and driven by an inverter in the same cycle. Pressure and temperature detecting device, discharge gas refrigerant heating degree calculating means for calculating the discharge gas refrigerant heating degree by the discharge gas refrigerant pressure and the discharge gas refrigerant temperature detected by the both detecting devices, and the starting frequency via the inverter The second compressor is started with, and the calculated discharge gas refrigerant heating degree is compared with a preset superheat degree set value. When the discharge gas refrigerant heating degree is equal to or higher than the superheat degree set value, the second compressor is activated. And a start control device for controlling to drive the first compressor.

【0009】また、上記吐出ガス冷媒加熱度が過熱度設
定値以上で、かつ、上記上記第2の圧縮機の起動時から
の積算時間が予め設定された起動遅延時間を経過したと
き、上記第1の圧縮機を起動する。
Further, when the discharge gas refrigerant heating degree is equal to or higher than the superheat degree set value and the integrated time from the start of the second compressor has passed a preset start delay time, Start the compressor of 1.

【0010】また、上記第1と第2の圧縮機の油溜部を
加熱装置で加熱し、上記インバータを介し起動周波数で
上記第2の圧縮機を起動すると共に、上記起動が上記加
熱装置への通電後初回起動のとき、上記加熱装置への通
電時からの積算時間t3に応じた起動時間t1と上記第2
の圧縮機の起動時からの積算時間T1と比較し、上記積
算時間T1が上記起動遅延時間t1以上のとき上記第1の
圧縮機を起動する。
Further, the oil reservoirs of the first and second compressors are heated by a heating device, the second compressor is started at a starting frequency via the inverter, and the start is sent to the heating device. At the time of the first start after energization, the starting time t 1 corresponding to the cumulative time t 3 from when the heating device is energized and the second time
In comparison with the cumulative time T 1 from the startup of the compressor, the first compressor is started when the cumulative time T 1 is the startup delay time t 1 or more.

【0011】[0011]

【作用】この発明においては、起動制御手段により並列
に設けられた第1と第2の圧縮機の第2の圧縮機を軸受
等の摺動部に加わる荷重が少ない起動周波数で起動し、
起動後の吐出ガス冷媒の加熱度が予め設定された過熱度
以上になったとき、上記第1の圧縮機を起動する。
According to the present invention, the start control means starts the second compressor of the first and second compressors provided in parallel at a start frequency at which a load applied to a sliding portion such as a bearing is small.
When the degree of heating of the discharged gas refrigerant after startup becomes equal to or higher than the preset degree of superheat, the first compressor is started.

【0012】また、吐出ガス冷媒の加熱度が予め設定さ
れた過熱度以上となり、かつ第2の圧縮機の起動後一定
時間経過後に第1の圧縮機を起動する。
Further, the first compressor is started after the heating degree of the discharged gas refrigerant becomes equal to or higher than a preset superheat degree and a predetermined time has elapsed after the second compressor was started.

【0013】また、並列に設けられた第1と第2の圧縮
機の油溜部を加熱装置で加熱すると共に第2の圧縮機を
起動周波数で起動し、この起動時からの積算時間が、上
記加熱装置への通電時からの積算時間に応じた起動遅延
時間t1を経過したとき第1の圧縮機を起動する。
Further, the oil reservoirs of the first and second compressors provided in parallel are heated by the heating device and the second compressor is started at the starting frequency, and the integrated time from the start is The first compressor is started when the start delay time t 1 according to the accumulated time from the time when the heating device is energized has elapsed.

【0014】[0014]

【実施例】【Example】

実施例1.以下、図1に示されるこの発明の一実施例に
よる冷凍サイクル装置の構成図について説明する。図1
において、図5と同一符号は相当部分を示すのでその説
明を省略する。15は並列に接続された第1と第2の圧
縮機1、2の吐出ガス冷媒圧力を検出する圧力検出手
段、16は上記並列に接続された第1と第2の圧縮機
1、2の吐出ガス冷媒温度を検出する温度検出手段、1
3は圧力検出手段15により検出された吐出ガス冷媒圧
力と温度検出手段16による吐出ガス冷媒温度とにより
吐出ガス冷媒の過熱度を演算する吐出ガス冷媒過熱度演
算手段、14は第1と第2の圧縮機を起動制御する起動
制御装置である。
Example 1. The block diagram of the refrigeration cycle apparatus according to the embodiment of the present invention shown in FIG. 1 will be described below. Figure 1
5, the same reference numerals as those in FIG. 5 indicate corresponding parts, and therefore their explanations are omitted. Reference numeral 15 is a pressure detecting means for detecting the discharge gas refrigerant pressure of the first and second compressors 1 and 2 connected in parallel, and 16 is the pressure detecting means of the first and second compressors 1 and 2 connected in parallel. Temperature detection means for detecting the discharge gas refrigerant temperature, 1
Reference numeral 3 is a discharge gas refrigerant superheat degree calculating means for calculating the superheat degree of the discharge gas refrigerant based on the discharge gas refrigerant pressure detected by the pressure detecting means 15 and the discharge gas refrigerant temperature detected by the temperature detecting means 16, and 14 is a first and a second. Is a startup control device for controlling startup of the compressor.

【0015】次に動作について説明する。冷暖房時の冷
凍サイクル上の動作については前述の従来の冷凍サイク
ル装置と同様であるのでその説明を省略する。以下、図
2に示されるフローチャートに基づき起動制御装置13
による第1と第2の圧縮機1、2の起動制御について説
明する。先ず、冷凍サイクル装置の電源(図示せず)が
投入され、次いで冷暖房運転するに当たりスタートスイ
ッチ(図示せず)を投入すると、そのオン信号が入力さ
れ起動制御処理がスタートして、ステップS1において
所定周波数まで逐次上昇する起動周波数信号を出力する
ようインバータを制御し、この起動周波数信号で第2の
圧縮機2を起動すると共に、第1のタイマ手段12の計
時をスタートしステップS10に進む。ステップS10
では圧力検出手段15および温度検出手段16により検
出された吐出ガス冷媒圧力と吐出ガス冷媒温度を入力
し、ステップ11で入力された吐出ガス冷媒圧力に基づ
き飽和温度を算出し、上記入力された吐出ガス冷媒温度
との差温をとることにより吐出ガス冷媒の過熱度SHを
演算する。次にステップS12では第1と第2の圧縮機
1、2内部に余分な液冷媒がなくなり液圧縮なしと判断
される予め設定された過熱度設定値ta(例えば15〜
20deg)よりも上記演算された吐出ガス冷媒の過熱
度SHの方が高いか否かを判定し、否の場合にはステッ
プS10に処理が戻り、再度吐出ガス冷媒の加熱度SH
を判定する。また、吐出ガス冷媒の過熱度SHが高い場
合には第1と第2の圧縮機1、2の内部に余分な冷媒液
がないと判定しステップS2に進む。ステップS2にお
いては第1のタイマ手段12による第2の圧縮機2の起
動時からの積算時間T1が、第1と第2の圧縮機1、2
から冷媒液が概ね放出されると共にアキュームレータ
8、室内外熱交換器7a、7b、5等における冷媒の分
布がほぼ均一となるに要する予め設定された起動遅延時
間t1(例えば1〜2分)以上か否かを判定し、起動遅
延時間t1を経過していればステップS3に進んで第1
の圧縮機1を起動する。また上記積算時間T1が起動遅
延時間t1以下の場合はステップS10に処理が戻る。
次にステップ4では上記積算時間T1が、第1と第2の
圧縮機1、2内の冷凍機油濃度が適度な濃度に安定する
に要する予め定められた起動制御時間t2(例えば4〜
5分)以上か否かを判定し、否の場合は第1と第2の圧
縮機1、2を上記起動状態に保持する。また、起動制御
時間t2を経過していればステップS5に進んで起動制
御を終了し起動状態の保持を解除し、通常運転に移行す
る。
Next, the operation will be described. The operation of the refrigerating cycle during cooling and heating is the same as that of the conventional refrigerating cycle device described above, and therefore its explanation is omitted. Hereinafter, based on the flowchart shown in FIG. 2, the startup control device 13
The starting control of the first and second compressors 1 and 2 by the above will be described. First, the power supply (not shown) of the refrigeration cycle apparatus is turned on, and then the start switch (not shown) is turned on for the cooling and heating operation, the ON signal is input and the start control process is started, and at step S1 The inverter is controlled so as to output a starting frequency signal that sequentially increases to the frequency, the second compressor 2 is started by this starting frequency signal, and the time counting of the first timer means 12 is started, and the process proceeds to step S10. Step S10
Then, the discharge gas refrigerant pressure and the discharge gas refrigerant temperature detected by the pressure detecting means 15 and the temperature detecting means 16 are input, the saturation temperature is calculated based on the discharge gas refrigerant pressure input in step 11, and the input discharge is performed. The superheat degree SH of the discharged gas refrigerant is calculated by taking the temperature difference from the gas refrigerant temperature. Next, in step S12, a preset superheat degree set value ta (for example, 15 to 15) is determined in which there is no excess liquid refrigerant inside the first and second compressors 1 and 2 and it is determined that there is no liquid compression.
It is determined whether the calculated superheat degree SH of the discharged gas refrigerant is higher than 20 deg.), And if not, the process returns to step S10 to reheat the discharged gas refrigerant SH.
To judge. When the superheat degree SH of the discharged gas refrigerant is high, it is determined that there is no excess refrigerant liquid inside the first and second compressors 1 and 2, and the process proceeds to step S2. In step S2, the cumulative time T 1 from the start of the second compressor 2 by the first timer means 12 is the first and second compressors 1 and 2.
A preset start delay time t 1 (for example, 1 to 2 minutes) required for the refrigerant liquid to be substantially discharged from the tank and the distribution of the refrigerant in the accumulator 8 and the indoor / outdoor heat exchangers 7a, 7b, 5 and the like to be substantially uniform Whether or not the above is determined, and if the activation delay time t 1 has elapsed, the process proceeds to step S3 and the first
The compressor 1 is started. If the integrated time T 1 is shorter than the activation delay time t 1 , the process returns to step S10.
Next, at step 4, the integrated time T 1 is set to a predetermined start control time t 2 (for example, 4 to 4) required for stabilizing the refrigerating machine oil concentrations in the first and second compressors 1 and 2 to an appropriate concentration.
5 minutes) or more, and if not, the first and second compressors 1 and 2 are held in the above-mentioned activated state. If the startup control time t 2 has elapsed, the process proceeds to step S5 to end the startup control, release the hold of the startup state, and shift to the normal operation.

【0016】実施例2.図3はこの発明の他の実施例に
よる冷凍サイクル装置の構成図であり、図3において、
図5と同一符号は相当部分を示すのでその説明を省略す
る。17、18は第1と第2の圧縮機1、2の油溜部を
加熱し、上記油溜部に貯溜された冷凍機油内に溶け込ん
だ冷媒液を蒸発気化させる加熱装置であり、冷凍サイク
ル装置の電源(図示せず)の投入と同時に通電される。
19は冷凍サイクル装置の電源(図示せず)の投入時よ
り計時を開始する第2のタイマ手段である。
Example 2. 3 is a block diagram of a refrigeration cycle apparatus according to another embodiment of the present invention. In FIG.
The same reference numerals as those in FIG. 5 indicate corresponding parts, and thus the description thereof will be omitted. Reference numerals 17 and 18 denote heating devices that heat the oil reservoirs of the first and second compressors 1 and 2 to evaporate the refrigerant liquid dissolved in the refrigerating machine oil stored in the oil reservoirs. It is energized at the same time when the power source (not shown) of the device is turned on.
Reference numeral 19 is a second timer means for starting time counting when the power source (not shown) of the refrigeration cycle apparatus is turned on.

【0017】次に図4に示されるフローチャートに基づ
き起動制御装置20による第1と第2の圧縮機1、2の
起動制御について説明する。先ず冷凍サイクル装置の電
源(図示せず)を投入する。この電源の投入と同時に加
熱装置17、18および第2のタイマ手段19に通電さ
れ、加熱装置17、18によって第1と第2の圧縮機
1、2の油溜部が加熱され、第2のタイマ手段により電
源投入時から計時される。次いで冷暖房運転するに当た
りスタートスイッチ(図示せず)を投入すると、そのオ
ン信号が起動制御装置20に入力され起動制御処理がス
タートして、ステップS1において、所定周波数まで逐
次上昇する起動周波数信号を出力するようにインバータ
11を制御し、この起動周波数信号で第2の圧縮機2を
起動すると共に、第2のタイマ手段12の計時をスター
トしステップS20に進む。ステップS20では第2の
圧縮機2の起動が電源投入後初回起動か否かを判定し、
初回起動の場合にはステップS21に進み、ステップS
21で第2のタイマ手段19によって計測された電源投
入時から第2の圧縮機2の初回起動までの積算時間であ
る電源投入後時間t3を読み込みステップS22に進
む。ステップS22においては予め設定されメモリ部
(図示せず)に書き込まれた電源投入後時間t3に応じ
て変化する起動遅延時間t1および起動制御時間t2のデ
ータから上記読み込まれた電源投入後時間t3を元に、
この時の適正な起動遅延時間t1および起動制御時間t2
を読み出しステップS2に進む。なお、上記起動遅延時
1は電源投入後時間t3が大きくなると加熱装置17、
18による第1と第2の圧縮機1、2の油溜部の加温効
果が十分となり、油溜部に冷凍機油と共に貯溜されてい
る冷媒液が少量となるので電源投入後時間t3が大きく
なる程小さく設定され、また起動制御時間t2は起動遅
延時間t1に応じた時間に設定される。具体的設定例と
しては、電源投入後時間t3が1時間程度の場合には起
動遅延時間t1は4〜5分、起動制御時間t2は6〜7分
に設定し、電源投入後時間t3が4時間程度の場合には
起動遅延時間t1は1〜2分、起動制御時間t2は3〜4
分、電源投入時間t3が6時間以上の場合には起動遅延
時間t1は0.5〜1分、起動制御時間t2は2〜3分と
比較的短時間に設定される。
Next, the starting control of the first and second compressors 1 and 2 by the starting control device 20 will be described with reference to the flow chart shown in FIG. First, the power supply (not shown) of the refrigeration cycle apparatus is turned on. At the same time when this power is turned on, the heating devices 17 and 18 and the second timer means 19 are energized, the heating devices 17 and 18 heat the oil reservoirs of the first and second compressors 1 and 2, and the second The time is measured by the timer means after the power is turned on. Next, when the start switch (not shown) is turned on for the air conditioning operation, the ON signal is input to the start control device 20 to start the start control process, and in step S1, a start frequency signal that sequentially increases to a predetermined frequency is output. The inverter 11 is controlled so that the second compressor 2 is started by this starting frequency signal, and the second timer means 12 starts the time measurement, and the process proceeds to step S20. In step S20, it is determined whether the second compressor 2 is started up for the first time after the power is turned on,
In the case of the first activation, the process proceeds to step S21 and step S21.
In step 21, the post-power-on time t 3 , which is the integrated time from the power-on time measured by the second timer means 19 to the first startup of the second compressor 2, is read, and the process proceeds to step S22. In step S22, after the power is turned on, which is read from the data of the start delay time t 1 and the start control time t 2 which are set in advance and written in the memory unit (not shown) and which change according to the time t 3 after the power is turned on. Based on time t 3 ,
At this time, proper start delay time t 1 and start control time t 2
Is read and the process proceeds to step S2. Incidentally, the startup delay time t 1 and the heating device 17 after power on time t 3 becomes large,
18 and the first by become second warming effect of the oil reservoir of the compressor 1 is sufficiently and after power time t 3 the refrigerant liquid is a small amount that is the reservoir with the refrigerating machine oil in the oil reservoir The larger it is, the smaller it is set, and the start control time t 2 is set to a time corresponding to the start delay time t 1 . As a specific setting example, when the time t 3 after the power is turned on is about 1 hour, the start delay time t 1 is set to 4 to 5 minutes and the start control time t 2 is set to 6 to 7 minutes. When t 3 is about 4 hours, the activation delay time t 1 is 1 to 2 minutes and the activation control time t 2 is 3 to 4
When the power-on time t 3 is 6 hours or more, the start delay time t 1 is set to 0.5 to 1 minute and the start control time t 2 is set to a relatively short time of 2 to 3 minutes.

【0018】また、ステップS2において、電源投入後
起動回数が初回以外の場合はステップS23に進み、ス
テップS23において初回以外の場合における起動遅延
時間t1、起動制御時間t2をメモリ部(図示せず)から
読み出しステップS2に進む。なお、この初回以外の場
合における起動遅延時間t1、起動制御時間t2は初回の
起動で第1と第2の圧縮機1、2の油溜部における冷媒
液の貯溜等の問題が解消されているので、比較的短時間
に、例えば起動遅延時間t1は0.5〜1分、起動制御
時間t2は2〜3分に設定されている。ステップS2で
第1のタイマ手段12によって積算された第2の圧縮機
2の起動時からの積算時間T1がステップS22または
ステップS23で読み出された起動遅延時間t1以上で
あるか否かを判定し、起動遅延時間t1を経過していれ
ばステップS3に進んで第1の圧縮機1を起動し、ステ
ップS4に進む。ステップS4では上記積算時間T1
ステップS22またはステップS23で読み出した起動
制御時間t2以上か否かを判定し、否の場合には第1と
第2の圧縮機1、2を上記起動状態に保持し、起動制御
時間t2を経過すればステップS5に進んで起動制御を
終了し、起動状態の保持を解除し、通常運転に移行す
る。
In step S2, if the number of startups after power-on is other than the first time, the process proceeds to step S23, and in step S23, the startup delay time t 1 and the startup control time t 2 in the case other than the first time are stored in the memory unit (not shown). No.) to read step S2. It should be noted that the startup delay time t 1 and the startup control time t 2 in cases other than the first time can be solved by solving the problems such as the storage of the refrigerant liquid in the oil reservoirs of the first and second compressors 1 and 2 at the first startup. Therefore, the start delay time t 1 is set to 0.5 to 1 minute and the start control time t 2 is set to 2 to 3 minutes in a relatively short time. Whether the integrated time T 1 from the start of the second compressor 2 integrated by the first timer means 12 in step S2 is equal to or longer than the startup delay time t 1 read in step S22 or step S23 If the activation delay time t 1 has elapsed, the routine proceeds to step S3, the first compressor 1 is activated, and the routine proceeds to step S4. In step S4, it is determined whether or not the integrated time T 1 is equal to or longer than the startup control time t 2 read in step S22 or step S23. If not, the first and second compressors 1 and 2 are set to the startup state. If the start control time t 2 has elapsed, the process proceeds to step S5 to end the start control, release the hold of the start state, and shift to normal operation.

【0019】[0019]

【発明の効果】以上のように、この発明によれば並列に
設けられた第1と第2の圧縮機の吐出冷媒圧力と吐出冷
媒温度を検出して、吐出ガス冷媒の過熱度を演算し、こ
の過熱度が予め設定された過熱度以上になったとき第1
の圧縮機を起動するように構成したので、起動時の発泡
現象による摺動部への給油不足による圧縮機の焼付等の
事故が防止される。
As described above, according to the present invention, the discharge refrigerant pressure and the discharge refrigerant temperature of the first and second compressors provided in parallel are detected to calculate the superheat degree of the discharge gas refrigerant. , When the degree of superheat exceeds a preset degree of superheat
Since the compressor is configured to be started, an accident such as seizure of the compressor due to insufficient oil supply to the sliding portion due to a foaming phenomenon at the time of start can be prevented.

【0020】また、吐出ガス冷媒の過熱度が所定値以上
で、かつ、第2の圧縮機の起動時からの積算時間が予め
定められた起動遅延時間以上になったとき上記第1の圧
縮機を起動するように構成したので、アキュームレータ
から過渡的液バックに伴う、前記過熱度の不安定な時間
帯に第1の圧縮機を起動させることがないので、更に信
頼性が向上する。
When the degree of superheat of the discharged gas refrigerant is equal to or higher than a predetermined value and the integrated time from the start of the second compressor is equal to or longer than a predetermined start delay time, the first compressor is used. Since it is configured to start, the first compressor is not started in the time zone in which the superheat degree is unstable due to the transient liquid back from the accumulator, so that the reliability is further improved.

【0021】また、並列に設けられた第1と第2の圧縮
機の油溜部を加熱する加熱装置への通電時から第2の圧
縮機の起動までの積算時間t3に応じた起動遅延時間t1
と第2の圧縮機の起動時からの積算時間T1とを比較
し、積算時間T1が起動遅延時間以上になったとき、第
1の圧縮機を起動するように構成したので、第1の圧縮
機の起動時における冷媒液の貯溜が少なく、起動時の発
泡現象が緩和され、圧縮機の焼付等の事故が防止され
る。
Further, a start delay corresponding to an integrated time t 3 from when the heating device for heating the oil reservoirs of the first and second compressors provided in parallel is energized to the start of the second compressor. Time t 1
And the cumulative time T 1 from the start of the second compressor are compared, and the first compressor is started when the cumulative time T 1 becomes equal to or longer than the startup delay time. The refrigerant liquid is less accumulated at the time of starting the compressor, the foaming phenomenon at the time of starting is alleviated, and accidents such as seizure of the compressor are prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による冷凍サイクル装置を
示す構成図である。
FIG. 1 is a configuration diagram showing a refrigeration cycle apparatus according to an embodiment of the present invention.

【図2】図1における起動制御装置の起動制御処理手段
を示すフローチャートである。
FIG. 2 is a flow chart showing a start control processing means of the start control device in FIG.

【図3】この発明の他の実施例による冷凍サイクル装置
を示す構成図である。
FIG. 3 is a configuration diagram showing a refrigeration cycle apparatus according to another embodiment of the present invention.

【図4】図3における起動制御装置の起動制御処理手順
を示すフローチャートである。
FIG. 4 is a flowchart showing a startup control processing procedure of the startup control device in FIG.

【図5】従来の冷凍サイクル装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional refrigeration cycle apparatus.

【図6】図5に示される起動制御装置の起動制御処理手
順を示すフローチャートである。
FIG. 6 is a flowchart showing a startup control processing procedure of the startup control device shown in FIG.

【符号の説明】[Explanation of symbols]

1 第1の圧縮機 2 第2の圧縮機 11 インバータ 12 第1のタイマ手段 13 吐出ガス冷媒過熱度演算手段 14 起動制御手段 15 圧力検出手段 16 温度検出手段 DESCRIPTION OF SYMBOLS 1 1st compressor 2 2nd compressor 11 Inverter 12 1st timer means 13 Discharge gas refrigerant superheat degree calculation means 14 Startup control means 15 Pressure detection means 16 Temperature detection means

【手続補正書】[Procedure amendment]

【提出日】平成4年4月2日[Submission date] April 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】この発明に係る冷凍サイ
クル装置は第1の圧縮機と同一サイクル中に並列に設け
られインバータにより駆動される第2の圧縮機の吐出ガ
ス冷媒圧力及び温度を検出する圧力及び温度検出装置
と、上記両検出装置で検出された吐出ガス冷媒圧力と吐
出ガス冷媒温度とにより吐出ガス冷媒熱度を演算する
吐出ガス冷媒熱度演算手段と、上記インバータを介し
起動周波数で上記第2の圧縮機を起動すると共に、上記
演算された吐出ガス冷媒熱度と予め設定された過熱度
設定値とを比較し、吐出ガス冷媒熱度が過熱度設定値
以上のとき上記第1の圧縮機を駆動するよう制御する起
動制御装置とを設けたものである。
A refrigeration cycle apparatus according to the present invention detects the discharge gas refrigerant pressure and temperature of a second compressor provided in parallel with the first compressor and driven by an inverter in the same cycle. and pressure and temperature sensing device for a discharge gas refrigerant superheat calculation means for calculating a discharged gas refrigerant superheat by the detected discharged gas refrigerant pressure and the discharged gas refrigerant temperature at the both detection devices, start frequency through the inverter in addition to activating the second compressor, comparing the preset degree of superheat setpoint and the discharge gas refrigerant superheat that is the arithmetic, the first when the discharge gas refrigerant superheat is higher superheat setpoint And a start control device for controlling to drive the first compressor.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】また、吐出ガス冷媒の熱度が予め設定さ
れた過熱度以上となり、かつ第2の圧縮機の起動後一定
時間経過後に第1の圧縮機を起動する。
Further, it becomes superheat of the discharge gas refrigerant preset degree of superheat above, and starts the first compressor after the second compressor after starting a predetermined time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の圧縮機と、上記第1の圧縮機と同
一冷凍サイクル中に並列に設けられインバータにより駆
動される第2の圧縮機と、上記並列に設けられた第1と
第2の圧縮機の吐出ガス冷媒圧力および吐出ガス冷媒温
度をそれぞれ検出する圧力検出器および温度検出器と、
上記両検出器で検出された吐出ガス冷媒圧力と吐出ガス
冷媒温度とにより吐出ガス冷媒加熱度を演算する吐出ガ
ス冷媒加熱度演算手段と、上記インバータを介し起動周
波数で上記第2の圧縮機を起動すると共に上記演算され
た吐出ガス冷媒過熱度と予め設定された過熱度設定値と
を比較し、吐出ガス冷媒過熱度が過熱度設定値以上のと
き上記第1の圧縮機を起動するよう制御する起動制御装
置を備えていることを特徴とする冷凍サイクル装置。
1. A first compressor, a second compressor provided in parallel with the first compressor in the same refrigeration cycle and driven by an inverter, and first and second devices provided in parallel. A pressure detector and a temperature detector for respectively detecting the discharge gas refrigerant pressure and the discharge gas refrigerant temperature of the second compressor;
The discharge gas refrigerant heating degree calculating means for calculating the discharge gas refrigerant heating degree based on the discharge gas refrigerant pressure and the discharge gas refrigerant temperature detected by the both detectors, and the second compressor at the starting frequency via the inverter. Control is performed so that the first compressor is started when the calculated discharge gas refrigerant superheat degree is compared with a preset superheat degree set value, and the discharge gas refrigerant superheat degree is equal to or higher than the superheat set value. A refrigeration cycle apparatus, comprising:
【請求項2】 第1の圧縮機と、上記第1の圧縮機と同
一冷凍サイクル中に並列に設けられインバータにより駆
動される第2の圧縮機と、上記並列に設けられた第1と
第2の圧縮機の吐出ガス冷媒圧力および吐出ガス冷媒温
度をそれぞれ検出する圧力検出器および温度検出器と、
上記検出された吐出ガス冷媒圧力および吐出ガス冷媒温
度とにより吐出ガス冷媒過熱度を演算する吐出ガス冷媒
過熱度演算手段と、上記インバータを介し起動周波数で
上記第2の圧縮機を起動すると共に上記演算された吐出
ガス冷媒過熱度と予め設定された過熱度設定値とを比較
し、吐出ガス冷媒過熱度が過熱度設定値以上で、かつ上
記第2の圧縮機の起動時からの積算時間が予め設定され
た起動遅延時間を経過したとき、上記第1の圧縮機を起
動するよう制御する起動制御装置を備えていることを特
徴とする冷凍サイクル装置。
2. A first compressor, a second compressor provided in parallel with the first compressor in the same refrigeration cycle and driven by an inverter, and the first and the second compressor provided in parallel. A pressure detector and a temperature detector for respectively detecting the discharge gas refrigerant pressure and the discharge gas refrigerant temperature of the second compressor;
Discharge gas refrigerant superheat degree calculating means for calculating a discharge gas refrigerant superheat degree based on the detected discharge gas refrigerant pressure and discharge gas refrigerant temperature, and starting the second compressor at a starting frequency via the inverter and The calculated discharge gas refrigerant superheat degree is compared with a preset superheat degree setting value, and the discharge gas refrigerant superheat degree is equal to or higher than the superheat degree set value, and the accumulated time from the start of the second compressor. A refrigeration cycle apparatus comprising: a startup control device that controls to start the first compressor when a preset startup delay time has elapsed.
【請求項3】 第1の圧縮機と、上記第1の圧縮機と同
一冷凍サイクル内に並列に設けられインバータにより駆
動される第2の圧縮機と、上記第1と第2の圧縮機の油
溜部を加熱する加熱装置と、上記インバータを介し起動
周波数で上記第2の圧縮機を起動すると共に上記起動が
上記加熱装置への通電後初回起動のとき、上記加熱装置
への通電時からの積算時間t3に応じた起動遅延時間t1
と上記第2の圧縮機の起動時からの積算時間T1とを比
較し、上記積算時間T1が上記起動遅延時間t1以上のと
き、上記第1の圧縮機を起動するよう制御する起動制御
装置を備えていることを特徴とする冷凍サイクル装置。
3. A first compressor, a second compressor provided in parallel in the same refrigeration cycle as the first compressor and driven by an inverter, and the first and second compressors. A heating device that heats the oil sump and the second compressor is started at a starting frequency via the inverter, and when the starting is the first start after the heating device is energized, from the time when the heating device is energized. Start delay time t 1 according to the cumulative time t 3 of
And the cumulative time T 1 from the startup of the second compressor are compared, and when the cumulative time T 1 is the startup delay time t 1 or more, the startup is controlled to start the first compressor. A refrigeration cycle apparatus comprising a control device.
JP3344678A 1991-12-26 1991-12-26 Freezing cycle device Pending JPH05180520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344678A JPH05180520A (en) 1991-12-26 1991-12-26 Freezing cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344678A JPH05180520A (en) 1991-12-26 1991-12-26 Freezing cycle device

Publications (1)

Publication Number Publication Date
JPH05180520A true JPH05180520A (en) 1993-07-23

Family

ID=18371135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344678A Pending JPH05180520A (en) 1991-12-26 1991-12-26 Freezing cycle device

Country Status (1)

Country Link
JP (1) JPH05180520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064909A (en) * 2005-12-19 2007-06-22 삼성전자주식회사 Air conditioner
JP2008057920A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Refrigerating device
CN114754505A (en) * 2022-04-28 2022-07-15 青岛海尔空调电子有限公司 Cascade heat pump system and compressor control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064909A (en) * 2005-12-19 2007-06-22 삼성전자주식회사 Air conditioner
JP2008057920A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Refrigerating device
CN114754505A (en) * 2022-04-28 2022-07-15 青岛海尔空调电子有限公司 Cascade heat pump system and compressor control method thereof

Similar Documents

Publication Publication Date Title
KR101954151B1 (en) Air conditioner and Method for controlling it
JPH109687A (en) Air conditioner
JP2009085463A (en) Air conditioner
CN114729765B (en) Cold and heat source unit and refrigeration cycle device
JPH05180520A (en) Freezing cycle device
JPH09236336A (en) Operation controller for air conditioner
JPH08166174A (en) Air conditioner
KR100517600B1 (en) A warming drive method of air-conditioner
JP3416897B2 (en) Air conditioner
JP2508191B2 (en) Refrigeration equipment
JPS61101736A (en) Defrosting control device of air conditioner
JPH0367965A (en) Air conditioner
JPH1019344A (en) Air conditioner
KR100457590B1 (en) A warming drive method of air-conditioner
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
JP2557656B2 (en) Refrigerator capacity control method
JP2894367B2 (en) Starting method and stopping method during cooling in a cooling or cooling / heating device
KR0182133B1 (en) Method and apparatus for controlling the compressor of a refrigerator
JPH07120080A (en) Air conditioner
JP3534968B2 (en) Refrigerant heating air conditioner
KR100237922B1 (en) Method for prevention of compressor restriction of heat pump
JPH0726769B2 (en) Heat pump type air conditioner
JPS6362667B2 (en)
JPH05322331A (en) Air conditioner
JPH0566498B2 (en)