JPH05180146A - Windmill overload preventive device - Google Patents

Windmill overload preventive device

Info

Publication number
JPH05180146A
JPH05180146A JP3358103A JP35810391A JPH05180146A JP H05180146 A JPH05180146 A JP H05180146A JP 3358103 A JP3358103 A JP 3358103A JP 35810391 A JP35810391 A JP 35810391A JP H05180146 A JPH05180146 A JP H05180146A
Authority
JP
Japan
Prior art keywords
hydraulic cylinder
air brake
windmill
blade
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3358103A
Other languages
Japanese (ja)
Inventor
Eiji Kato
英司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3358103A priority Critical patent/JPH05180146A/en
Publication of JPH05180146A publication Critical patent/JPH05180146A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/307Blade tip, e.g. winglets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To provide a device which conducts the load control of a windmill and prevents overload. CONSTITUTION:An air brake 5 driven by means of a hydraulic cylinder 6 is provided in the vicinity of the tip of each vane 4 of a windmill, and load control is carried out by operating the hydraulic cylinder 6 at the time of a high air speed, actuating the air brake 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は風車の負荷制御に関し、
特に、高風速時における風車の負荷を制御して過負荷を
防止する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to load control of a wind turbine,
In particular, it relates to a device that controls the load of a wind turbine at high wind speeds to prevent overload.

【0002】[0002]

【従来の技術】従来の風車の負荷制御には2種類の方法
があり、その内の一つは、翼の出力特性として高風速時
に失速させるようにすることにより風力エネルギを逃が
して負荷を制御する、いわゆるストールコントロールに
よる方法と、もう一つは、翼ピッチ角度を可変させるこ
とにより風力エネルギを逃がすという可変ピッチコント
ロールによる方法の2種類があった。
2. Description of the Related Art There are two conventional methods for controlling the load of a wind turbine. One of them is to control the load by releasing wind energy to stall at high wind speed as a blade output characteristic. There is a so-called stall control method, and another method is a variable pitch control method in which wind energy is released by changing the blade pitch angle.

【0003】[0003]

【発明が解決しようとする課題】これら従来の風車の負
荷制御においては、翼の失速特性による方法も翼ピッチ
角度可変による方法もエネルギを逃がすことによってお
り、いずれの方法も、風力エネルギを受けてからの受動
的な制御であるので、高風速時での過負荷の危険性が非
常に高い方法である。
In the load control of these conventional wind turbines, both the method based on the blade stall characteristic and the method based on the variable blade pitch angle allow energy to escape, and both methods receive wind energy. Since it is a passive control, the risk of overload at high wind speed is very high.

【0004】本発明は上記事情にかんがみなされたもの
で、高風速時における負荷を制御して風車の過負荷を防
止する装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a device for controlling load at high wind speed to prevent overload of a wind turbine.

【0005】[0005]

【課題を解決するための手段】上記目的に対し、本発明
によれば、風車の翼内に設けられた油圧シリンダと、前
記翼の表面に設けられ過負荷時に前記油圧シリンダによ
り駆動制御されるエアブレーキとを備えてなる風車過負
荷防止装置が提供される。
For the above object, according to the present invention, a hydraulic cylinder provided in a blade of a wind turbine and a drive control of the hydraulic cylinder provided on the surface of the blade at the time of overload. A wind turbine overload prevention device including an air brake is provided.

【0006】[0006]

【作用】上記手段によれば、高風速になった時、負荷目
標値と実際の負荷との差に応じて油圧シリンダを作動さ
せ、これに連動するエアブレーキを作動させて負荷を制
御することにより過負荷を防止する。
According to the above means, when the wind speed becomes high, the hydraulic cylinder is operated according to the difference between the target load value and the actual load, and the air brake linked to this is operated to control the load. To prevent overload.

【0007】[0007]

【実施例】以下本発明による風車過負荷防止装置を添付
図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A wind turbine overload prevention device according to the present invention will be described in detail below with reference to the accompanying drawings.

【0008】図1ないし図4は本発明の第1の実施例を
示したもので、図1は本発明による過負荷防止装置を適
用した風車の概要を示し、図2は過負荷防止装置の構成
を示し、図3はその制御系統を示し、図4はその制御フ
ローを示している。
1 to 4 show a first embodiment of the present invention. FIG. 1 shows an outline of a wind turbine to which an overload prevention device according to the present invention is applied, and FIG. 2 shows an overload prevention device. FIG. 3 shows the configuration, FIG. 3 shows the control system, and FIG. 4 shows the control flow.

【0009】図1及び図2において、タワー1の上にナ
セル2が取り付けられ、そのナセル2には回転するロー
タヘッド3が取り付けられている。そのロータヘッド3
には複数枚、図示の例では3枚の翼4が取り付けられて
いる。これら翼4の先端部にはエアブレーキ5が取り付
けられている。このエアブレーキ5はたとえば縁部が回
動自在に翼先端部に止着されたフラップによって構成さ
れたものとすることができ、その回動角は翼4の先端部
付近に内設された油圧シリンダ6によって駆動されるよ
う構成されている。
1 and 2, a nacelle 2 is mounted on a tower 1, and a rotating rotor head 3 is mounted on the nacelle 2. The rotor head 3
A plurality of blades 4, in the illustrated example, three blades 4 are attached to the. An air brake 5 is attached to the tips of these blades 4. The air brake 5 may be constituted by a flap whose edge is rotatably fixed to the blade tip, and the rotation angle of the air brake 5 depends on the hydraulic pressure provided in the vicinity of the tip of the blade 4. It is configured to be driven by the cylinder 6.

【0010】翼4の先端部に取り付けられているエアブ
レーキ5は高風速時に負荷が設定値を越えると油圧シリ
ンダ6により駆動され、負荷をその設定値まで低下させ
る。
The air brake 5 attached to the tip of the blade 4 is driven by the hydraulic cylinder 6 when the load exceeds a set value at high wind speed, and reduces the load to the set value.

【0011】この油圧シリンダ6の制御は図3に示した
ような回路によって行われる。すなわち、風力発電プラ
ントの目標出力(kWset)と実際の出力(kW)と
が減算器10で比較され、その出力偏差値(ΔkW=k
W−kWset)が演算器11へ送られる。演算器11
内では予め記憶されている出力偏差値ΔkWとエアブレ
ーキ5用油圧シリンダ6のリフト量Δhとの関数表12
に基づいてリフト量Δhが演算され、そのリフト量Δh
はディジタル/アナログ変換器13を経てアナログ制御
信号の形でサーボ弁14に入力される。サーボ弁14は
演算されたリフト量Δhに応じて作動され、エアブレー
キ5用油圧シリンダ6への油流を制御する。油圧シリン
ダ6の動きはこれと連動するよう設けられたポテンショ
メータ15によって電気量に変換され、抵抗/電流変換
器16を経て演算器11へ実際のリフト量信号としてフ
ィードバックされる。
The control of the hydraulic cylinder 6 is performed by the circuit as shown in FIG. That is, the target output (kWset) of the wind power plant and the actual output (kW) are compared by the subtractor 10, and the output deviation value (ΔkW = k
W-kWwset) is sent to the calculator 11. Calculator 11
In the table, the function table 12 of the output deviation value ΔkW and the lift amount Δh of the hydraulic cylinder 6 for the air brake 5 stored in advance is shown.
The lift amount Δh is calculated based on
Is input to the servo valve 14 in the form of an analog control signal via the digital / analog converter 13. The servo valve 14 is operated according to the calculated lift amount Δh, and controls the oil flow to the hydraulic cylinder 6 for the air brake 5. The movement of the hydraulic cylinder 6 is converted into an electric quantity by a potentiometer 15 provided so as to be linked with this, and is fed back to the calculator 11 via the resistance / current converter 16 as an actual lift amount signal.

【0012】また、油圧シリンダ6の駆動用油圧回路
は、油圧ポンプ17、逆止弁18、アキュムレータ19
及び油タンク20より構成され、サーボ弁14を介して
油圧シリンダ6に接続されている。
The hydraulic circuit for driving the hydraulic cylinder 6 includes a hydraulic pump 17, a check valve 18, and an accumulator 19.
And an oil tank 20, and is connected to the hydraulic cylinder 6 via a servo valve 14.

【0013】次に、図4のフローチャートを参照して図
3の回路の作用について説明する。 (1)図4に示したように、制御が開始されると、ま
ず、負荷目標値(目標出力)kWsetをセットする。 (2)次に、実際の出力kWを検知する。このとき、同
時に、シリンダリフトhも検知する。 (3)負荷目標値kWsetと実際の出力kWとを比較
し、出力偏差値ΔkW=kW−kWsetを算出する。 (4)出力偏差値ΔkWの正負を判定する。 (5)出力偏差値ΔkWが0より大であれば、シリンダ
リフト増加量Δhを計算する。 (6)シリンダリフトを増加させる。 (7)シリンダリフトとその目標値とを比較する。 (8)シリンダリフトが目標値に合致していれば、油圧
シリンダの動作を停止する。 (9)上記(4)にて、出力偏差値ΔkWが0より大で
なければ、それが0であるか0より小であるかを判断す
る。 (10)出力偏差値ΔkWが0に等しければ、シリンダ
リフトはそのままとする。 (11)出力偏差値ΔkWが0より小であれば、シリン
ダリフト減少量Δhを計算する。 (12)シリンダリフトを減少させる。 (13)シリンダリフトとその目標値とを比較する。 (14)シリンダリフトが目標値に合致していれば、油
圧シリンダの動作を停止する。
Next, the operation of the circuit of FIG. 3 will be described with reference to the flowchart of FIG. (1) As shown in FIG. 4, when the control is started, first, the load target value (target output) kWset is set. (2) Next, the actual output kW is detected. At this time, the cylinder lift h is also detected at the same time. (3) The load target value kWset and the actual output kW are compared, and the output deviation value ΔkW = kW−kWWset is calculated. (4) Determine whether the output deviation value ΔkW is positive or negative. (5) If the output deviation value ΔkW is larger than 0, the cylinder lift increase amount Δh is calculated. (6) Increase the cylinder lift. (7) Compare the cylinder lift with its target value. (8) If the cylinder lift matches the target value, the operation of the hydraulic cylinder is stopped. (9) In the above (4), if the output deviation value ΔkW is not larger than 0, it is judged whether it is 0 or smaller than 0. (10) If the output deviation value ΔkW is equal to 0, the cylinder lift is left unchanged. (11) If the output deviation value ΔkW is smaller than 0, the cylinder lift reduction amount Δh is calculated. (12) Reduce the cylinder lift. (13) Compare the cylinder lift with its target value. (14) If the cylinder lift matches the target value, the operation of the hydraulic cylinder is stopped.

【0014】図5及び図6は本発明の第2の実施例を示
したもので、図中、図1及び図2に示したものと同一の
要素には同一の符号を示してある。
FIGS. 5 and 6 show a second embodiment of the present invention. In the drawings, the same elements as those shown in FIGS. 1 and 2 are designated by the same reference numerals.

【0015】図5及び図6によれば、エアブレーキ5は
翼4の先端に近い表面に長手方向に細長いフラップによ
って構成され、そのエアブレーキ5は第1の実施例と同
様、翼4に内設された油圧シリンダ6によって駆動され
る。この油圧シリンダ6の制御は第1の実施例のものと
同一である。
According to FIGS. 5 and 6, the air brake 5 is constituted by a flap elongated in the longitudinal direction on the surface close to the tip of the blade 4, and the air brake 5 is provided inside the blade 4 as in the first embodiment. It is driven by a hydraulic cylinder 6 provided. The control of this hydraulic cylinder 6 is the same as that of the first embodiment.

【0016】[0016]

【発明の効果】本発明によれば、風車の翼先端付近に、
油圧シリンダで駆動されるエアブレーキを設けた構成を
有しているので、特に高風速時における負荷制御の効果
が大きく、しかも、現在行われているフルスパンピッチ
制御の風車に比較して非常にコンパクトに実現できる。
According to the present invention, in the vicinity of the tip of a wind turbine blade,
Since it has a structure with an air brake driven by a hydraulic cylinder, the effect of load control is great especially at high wind speeds, and it is extremely compact compared to the current full span pitch control wind turbines. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による過負荷防止装置を備えた風車を示
す正面図である。
FIG. 1 is a front view showing a wind turbine provided with an overload prevention device according to the present invention.

【図2】本発明による過負荷防止装置の詳細を示した図
1のA部拡大図である。
FIG. 2 is an enlarged view of part A of FIG. 1 showing the details of the overload prevention device according to the present invention.

【図3】油圧シリンダの制御系統を示す回路図である。FIG. 3 is a circuit diagram showing a control system of a hydraulic cylinder.

【図4】図3の制御系統の制御フローを示すフローチャ
ートである。
4 is a flowchart showing a control flow of the control system of FIG.

【図5】本発明の第2の実施例の過負荷防止装置を備え
た風車を示す正面図である。
FIG. 5 is a front view showing a wind turbine provided with an overload prevention device according to a second embodiment of the present invention.

【図6】本発明の第2の実施例の過負荷防止装置の詳細
を示した図5のB部拡大図である。
FIG. 6 is an enlarged view of part B of FIG. 5 showing the details of the overload prevention device of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 タワー 2 ナセル 3 ロータヘッド 4 翼 5 エアブレーキ 6 油圧シリンダ 10 減算器 11 演算器 13 ディジタル/アナログ変換器 14 サーボ弁 15 ポテンショメータ 16 抵抗/電流変換器 17 油圧ポンプ 18 逆止弁 19 アキュムレータ 20 油タンク 1 Tower 2 Nacelle 3 Rotor Head 4 Wing 5 Air Brake 6 Hydraulic Cylinder 10 Subtractor 11 Calculator 13 Digital / Analog Converter 14 Servo Valve 15 Potentiometer 16 Resistance / Current Converter 17 Hydraulic Pump 18 Check Valve 19 Accumulator 20 Oil Tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】風車の翼内に設けられた油圧シリンダと、
前記翼の表面に設けられ過負荷時に前記油圧シリンダに
より駆動制御されるエアブレーキとを備えてなる風車過
負荷防止装置。
1. A hydraulic cylinder provided in a blade of a wind turbine,
A wind turbine overload prevention device, comprising: an air brake provided on the surface of the blade and driven and controlled by the hydraulic cylinder when overloaded.
JP3358103A 1991-12-27 1991-12-27 Windmill overload preventive device Withdrawn JPH05180146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358103A JPH05180146A (en) 1991-12-27 1991-12-27 Windmill overload preventive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358103A JPH05180146A (en) 1991-12-27 1991-12-27 Windmill overload preventive device

Publications (1)

Publication Number Publication Date
JPH05180146A true JPH05180146A (en) 1993-07-20

Family

ID=18457560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358103A Withdrawn JPH05180146A (en) 1991-12-27 1991-12-27 Windmill overload preventive device

Country Status (1)

Country Link
JP (1) JPH05180146A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204674B2 (en) 2000-12-23 2007-04-17 Aloys Wobben Rotor blade for a wind power installation
US7708530B2 (en) 2002-06-05 2010-05-04 Aloys Wobben Rotor blade for a wind power plant
KR101242766B1 (en) * 2011-01-31 2013-03-12 한국에너지기술연구원 wind-driven generator with Apparatus of reducing rotor load and method of reducing rotor load for wind-driven generator with Apparatus of reducing rotor load
EP3293392A1 (en) * 2016-09-08 2018-03-14 Vestas Wind Systems A/S Wind turbine blade comprising an edgewise stabilizer
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204674B2 (en) 2000-12-23 2007-04-17 Aloys Wobben Rotor blade for a wind power installation
US7708530B2 (en) 2002-06-05 2010-05-04 Aloys Wobben Rotor blade for a wind power plant
US7914261B2 (en) 2002-06-05 2011-03-29 Aloys Wobben Rotor blade for a wind power plant
US8100663B2 (en) 2002-06-05 2012-01-24 Aloys Wobben Rotor blade for a wind power plant
KR101242766B1 (en) * 2011-01-31 2013-03-12 한국에너지기술연구원 wind-driven generator with Apparatus of reducing rotor load and method of reducing rotor load for wind-driven generator with Apparatus of reducing rotor load
EP3293392A1 (en) * 2016-09-08 2018-03-14 Vestas Wind Systems A/S Wind turbine blade comprising an edgewise stabilizer
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Similar Documents

Publication Publication Date Title
EP2284391B1 (en) Method and control system of controlling a wind turbine blade during the stopping process of the rotor
ES2380637T3 (en) Procedure and system for the regulation of the speed of rotation of a rotor of a wind power installation
KR101114814B1 (en) Wind turbine generator and blade pitch angle control method thereof
KR940002927B1 (en) Variable speed wind turbine
EP1612412B1 (en) Storm control for horizontal axis wind turbine
US7704043B2 (en) Method for torque and pitch control for a wind power plant according to the rotation speed
EP0350425B1 (en) Wind turbine shutdown system
US4656362A (en) Blade pitch angle control for large wind turbines
MXPA06011552A (en) Active flow control for wind turbine blades.
EP3250820B1 (en) Partial and full load controllers of a wind turbine
EP3032095A1 (en) Methods of operating a wind turbine and wind turbines
WO2018033191A1 (en) Reserving power during low-power operation of a wind turbine
US11530683B2 (en) Velocity feedfoward control of a hydraulic pitch system
JP2001221145A (en) Passive active pitch flap mechanism
JPH05180146A (en) Windmill overload preventive device
CN113167240A (en) Control device for a wind turbine and control method
US9249779B2 (en) Method for controlling a wind turbine
US20090196752A1 (en) Method for stopping a wind turbine
TW201602456A (en) Downwind type windturbine and method of stopping such windturbine
JPS58187587A (en) High-speed vertical shaft wind mill with auxiliary wind mill
EP3987173B1 (en) Power boost for a wind turbine
CN112512923B (en) Method for adjusting propulsion parameters of aircraft and related computer program
CN210290290U (en) Hydraulic system for emergent feathering of fan and fan variable pitch execution system
US20180245567A1 (en) Method for controlling a torque performance of an electrical pitch motor, an electrical pitch-control system and use thereof
JPS6314196B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311