JPH0517991B2 - - Google Patents

Info

Publication number
JPH0517991B2
JPH0517991B2 JP18481183A JP18481183A JPH0517991B2 JP H0517991 B2 JPH0517991 B2 JP H0517991B2 JP 18481183 A JP18481183 A JP 18481183A JP 18481183 A JP18481183 A JP 18481183A JP H0517991 B2 JPH0517991 B2 JP H0517991B2
Authority
JP
Japan
Prior art keywords
metal
piston pin
axis
core
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18481183A
Other languages
Japanese (ja)
Other versions
JPS6078164A (en
Inventor
Tadashi Donomoto
Atsuo Tanaka
Futao Akai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18481183A priority Critical patent/JPS6078164A/en
Publication of JPS6078164A publication Critical patent/JPS6078164A/en
Publication of JPH0517991B2 publication Critical patent/JPH0517991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/10Connection to driving members
    • F16J1/14Connection to driving members with connecting-rods, i.e. pivotal connections
    • F16J1/16Connection to driving members with connecting-rods, i.e. pivotal connections with gudgeon-pin; Gudgeon-pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ピストンピンに係り、更に詳細には
強化繊維にて複合強化された軽金属にて構成され
たピストンピンに係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a piston pin, and more particularly to a piston pin constructed of a light metal composite reinforced with reinforcing fibers.

従来技術 従来の内燃機関用のピストンピンは鋼材にて構
成されているため、比較的重量が大きく内燃機関
の軽量化や高出力化を図ることが困難であること
に鑑み、アルミナ繊維の如き強化繊維にて複合強
化されたアルミニウム合金の如き軽金属にてピス
トンピンを構成する試みが行われており、またか
かるピストンピンに於てはその円筒状外周面の摺
動特性が悪く、ピストンピン自身又は相手部材と
してのコネクテイングロツドのピン孔壁面やピス
トンのピンボス壁面の摩耗が大きくなるため、強
化繊維にて複合強化された軽金属よりなる円柱体
又は円筒体の外側に金属スリーブを嵌込み、該金
属スリーブの円筒状外周面を硬質金属にて被覆す
ることが試みられている(特開昭56−131859号、
実開昭56−132347号)。
Prior Art Conventional piston pins for internal combustion engines are made of steel, which is relatively heavy, making it difficult to reduce the weight and increase the output of internal combustion engines. Attempts have been made to construct piston pins from light metals such as aluminum alloys compositely reinforced with fibers, but such piston pins have poor sliding characteristics on their cylindrical outer circumferential surfaces, and the piston pin itself or Since the pin hole wall surface of the connecting rod and the pin boss wall surface of the piston, which are mating members, are subject to increased wear, a cylindrical body made of a light metal reinforced with reinforcing fibers or a metal sleeve is fitted on the outside of the cylindrical body. Attempts have been made to coat the cylindrical outer circumferential surface of a metal sleeve with a hard metal (Japanese Patent Application Laid-Open No. 131859/1983,
Utility Model No. 56-132347).

しかしかかる従来のピストンピンに於ては、強
化繊維は一般にピストンピンの軸線に沿つて一方
向に配向されるか、ピストンピンの軸線に対し0°
及び90°をなす強化繊維を含むプリプレグシート
をピストンピンの軸線の周りに円筒状に巻くこと
により配向されており、かかる強化繊維の配向に
よつてはピストンピンの剛性や熱膨張等が十分に
は制御されないため、繊維強化金属部と金属スリ
ーブとの間の変形モードの相違に起因してこれら
が剥離したり金属スリーブに亀裂が発生する等の
問題が発生する。このため金属スリーブを三分割
する等の対策が提案されている(特開昭56−
131859号)が、かかるピストンピンは高価であ
り、また長期間に亙り熱サイクルや応力負荷を受
けることに起因する剥離や亀裂の問題を完全に回
避し得る程金属スリーブと繊維強化金属部とを十
分に密着させることは不可能である。
However, in such conventional piston pins, the reinforcing fibers are generally oriented in one direction along the axis of the piston pin or at 0° to the axis of the piston pin.
It is oriented by winding a prepreg sheet containing reinforcing fibers in a cylindrical shape around the axis of the piston pin, and depending on the orientation of the reinforcing fibers, the rigidity and thermal expansion of the piston pin are sufficient. Since this is not controlled, problems such as separation of the fiber-reinforced metal part and the metal sleeve and cracking of the metal sleeve occur due to differences in deformation modes between the fiber-reinforced metal part and the metal sleeve. For this reason, countermeasures such as dividing the metal sleeve into three parts have been proposed (Japanese Unexamined Patent Application Publication No. 1983-1999).
131859), but such piston pins are expensive and require a metal sleeve and fiber-reinforced metal part to completely avoid the problems of delamination and cracking caused by long-term thermal cycling and stress loads. It is impossible to achieve sufficient adhesion.

発明の目的 本願発明者等は、繊維強化金属部の外側に金属
スリーブが嵌込まれた構造を有する従来のピスト
ンピンに於ける上述の如き問題に鑑み、種々のピ
ツチ角にて螺旋状に配向された強化繊維にて複合
強化された軽金属よりなる円筒体の外側に金属ス
リーブを嵌込み、該金属スリーブの円筒状外周面
に種々の硬質金属を被覆してピストンピンを製造
し、それらについて強度試験等を行つた結果、ピ
ツチ角を特定の範囲に設定すれば従来のピストン
ピンに於ける上述の如き種々の問題を解消し得る
ことを見出した。
Purpose of the Invention In view of the above-mentioned problems with conventional piston pins having a structure in which a metal sleeve is fitted on the outside of a fiber-reinforced metal part, the inventors of the present invention have developed a piston pin that is helically oriented at various pitch angles. A metal sleeve is fitted onto the outside of a cylindrical body made of a light metal composite reinforced with reinforced fibers, and the cylindrical outer peripheral surface of the metal sleeve is coated with various hard metals to manufacture piston pins. As a result of tests and the like, it has been found that the various problems described above in conventional piston pins can be solved by setting the pitch angle within a specific range.

本発明の目的は、本願発明者等が行つた実験的
研究の結果得られた知見に基づき、軽量且比較的
低廉であり耐久性に優れた繊維強化金属製のピス
トンピン及びかかるピストンピンを比較的低廉に
且生産性よく製造することのできる方法を提供す
ることである。
The purpose of the present invention is to compare a piston pin made of fiber-reinforced metal, which is lightweight, relatively inexpensive, and has excellent durability, and such a piston pin, based on the knowledge obtained as a result of experimental research conducted by the inventors of the present invention. It is an object of the present invention to provide a method that can be manufactured at low cost and with high productivity.

発明の構成 それらの目的は、本発明によれば、軸線の周り
にピツチ角±65°〜±70°にて螺旋状に配向された
強化繊維にて複合強化された軽金属よりなり前記
軸線に沿つて延在する芯部と、金属よりなり前記
芯部の周りにて前記軸線に沿つて延在する円筒状
の中間層と、該中間層の円筒状外周面を覆う硬質
金属の外層とよりなるピストンピン、及び軸線の
周りにピツチ角±65°〜±70°にて螺旋状に配向さ
れた強化繊維よりなる繊維成形体を形成し、該繊
維成形体を金属スリーブ内に配置し、これを予熱
した後鋳型内に配置し、該鋳型内に軽金属の溶湯
を注湯し、該溶湯を加圧しつつ凝固させ、得られ
た凝固体より実質的に前記軽金属のみよりなる部
分を除去し、前記金属スリーブの円筒状外周面を
硬質金属にて被覆するピストンピンの製造方法に
よつて達成される。
Structure of the Invention According to the present invention, the invention is made of a light metal composite reinforced with reinforcing fibers helically oriented around the axis at a pitch angle of ±65° to ±70°. a cylindrical intermediate layer made of metal and extending along the axis around the core; and an outer layer of hard metal that covers the cylindrical outer peripheral surface of the intermediate layer. A fiber molded body made of reinforcing fibers spirally oriented at a pitch angle of ±65° to ±70° is formed around the piston pin and the axis, and the fiber molded body is placed inside a metal sleeve. After preheating, the mold is placed in a mold, a molten light metal is poured into the mold, the molten metal is solidified while being pressurized, a portion consisting essentially only of the light metal is removed from the resulting solidified body, and the This is achieved by a piston pin manufacturing method in which the cylindrical outer peripheral surface of a metal sleeve is coated with a hard metal.

発明の作用及び効果 本発明によるピストンピンによれば、ピストン
ピンの芯部を構成する軽金属がピツチ角±65°〜
±70°にて螺旋状に配向された強化繊維にて複合
強化され、従つて芯部の剛性及び熱膨張率、特に
径方向の熱膨張率と金属スリーブの剛性及び熱膨
張率とが実質的に一致するので、芯部と金属スリ
ーブとが剥離したりすることがなく、またピスト
ンピン全体に作用する曲げ応力、ピストン及びコ
ネクテイングロツドに挿通された部分に作用する
圧縮応力、及びピストンに挿通された部分とコネ
クテイングロツドに挿通された部分との間の部分
に作用する剪断応力に耐える強度及び耐久性を有
する軽量で比較的低廉なピストンピンを得ること
ができる。
Effects and Effects of the Invention According to the piston pin according to the present invention, the light metal constituting the core of the piston pin has a pitch angle of ±65° to
Compositely reinforced with reinforcing fibers spirally oriented at ±70°, the rigidity and thermal expansion coefficient of the core, especially the radial thermal expansion coefficient, and the rigidity and thermal expansion coefficient of the metal sleeve are substantially the same. This prevents the core and metal sleeve from peeling off, and also prevents bending stress acting on the entire piston pin, compressive stress acting on the piston and the part inserted through the connecting rod, and preventing the piston from peeling off. It is possible to obtain a lightweight and relatively inexpensive piston pin that has the strength and durability to withstand shear stress acting on the portion between the inserted portion and the connecting rod inserted portion.

また本発明のピストンピンの製造方法によれ
ば、所定のピツチ角にて螺旋状に配向された強化
繊維よりなる繊維成形体が金属スリーブ内に配置
された状態にて強化繊維と軽金属との複合化が行
われるので、強化繊維と軽金属との複合化の過程
に於ても強化繊維の配向状態及び体積率が所定の
値に維持され、これにより強化繊維が所定の体積
率及び所定のピツチ角にて螺旋状に配向された芯
部を有するピストンピンを能率よく低廉に製造す
ることができ、また繊維成形体が金属スリーブ内
に配置された状態にて予熱され、軽金属の溶湯が
加圧されるので、繊維成形体の個々の強化繊維間
に軽金属の溶湯が確実に浸透し、また強化繊維と
軽金属とが良好に密着するだけでなく、金属スリ
ーブと芯部との間の界面に於て金属スリーブを構
成する金属と芯部のマトリツクス金属とが合金化
反応し、これにより芯部と金属スリーブとの密着
性にも優れたピストンピンを低廉に且能率よく製
造することができる。
Further, according to the piston pin manufacturing method of the present invention, a fiber molded body made of reinforcing fibers oriented helically at a predetermined pitch angle is placed in a metal sleeve, and a composite of reinforcing fibers and a light metal is formed. Because the reinforcing fibers are fused to a light metal, the orientation and volume ratio of the reinforcing fibers are maintained at predetermined values even during the process of compositing the reinforcing fibers with the light metal. A piston pin having a helically oriented core can be efficiently and inexpensively manufactured using a method in which the fiber molded body is placed in a metal sleeve and preheated, and the molten light metal is pressurized. This not only ensures that the molten light metal penetrates between the individual reinforcing fibers of the fiber molded article, but also ensures good adhesion between the reinforcing fibers and the light metal. The metal constituting the metal sleeve and the matrix metal of the core undergo an alloying reaction, and as a result, a piston pin with excellent adhesion between the core and the metal sleeve can be manufactured at low cost and efficiently.

尚本発明によるピストンピン及びその製造方法
に於ける軽金属はアルミニウム合金、マグネシウ
ム及びそれらを主成分とする合金であつてよく、
強化繊維はこれらの軽金属との両立性に優れ且強
度向上効果等に優れた炭素繊維、アルミナ繊維、
炭化ケイ素繊維、アルミナ−シリカ繊維、ボロン
繊維等であつてよく、強化繊維の体積率は強化繊
維や軽金属の種類、強化繊維の繊維径等に応じて
50〜70%に設定されることが好ましい。また中間
層を構成する金属は芯部を構成するマトリツクス
金属としての軽金属と合金反応する任意の金属で
あつてよいが、特にステンレス鋼の如き鋼である
ことが好ましく、外層を構成する硬質金属はモリ
ブデン、クロムの如き単一金属、ステライトの如
き合金、炭化ケイ素の粒子が分散されたニツケル
の如き複合金属材料等であつてよく、これらの硬
質金属は溶射、めつき、蒸着等の手段により中間
層の円筒状外周面に被覆されてよい。
In addition, the light metal in the piston pin and the manufacturing method thereof according to the present invention may be an aluminum alloy, magnesium, or an alloy containing these as main components.
The reinforcing fibers are carbon fibers, alumina fibers,
It may be silicon carbide fiber, alumina-silica fiber, boron fiber, etc., and the volume percentage of the reinforcing fiber depends on the type of reinforcing fiber or light metal, the fiber diameter of the reinforcing fiber, etc.
It is preferable to set it to 50-70%. Further, the metal constituting the intermediate layer may be any metal that reacts with the light metal as the matrix metal constituting the core, but is particularly preferably steel such as stainless steel, and the hard metal constituting the outer layer is It may be a single metal such as molybdenum or chromium, an alloy such as stellite, or a composite metal material such as nickel in which particles of silicon carbide are dispersed. The cylindrical outer circumferential surface of the layer may be coated.

以下に添付の図を参照しつつ、本発明を実施例
について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例 1 第1図は本発明によるピストンピンの一つの実
施例を一部破断して示す解図的斜視図である。図
に於て、1は軸線2の周りにピツチ角±67.5°に
て螺旋状に配向された炭素繊維3(東レ株式会社
製「トレカ」(登録商標)M40)にて複合強化さ
れたアルミニウム合金4(JIS規格AC7A)より
なり軸線2に沿つて延在する中空孔5を有する円
筒状の芯部を示している。芯部1の外側にはステ
ンレス鋼(JIS規格SUS304)よりなり芯部1の
周りにて軸線2に沿つて延在する円筒状の中間層
6が芯部1と一体的に設けられている。中間層6
の円筒状外周面はモリブデンの被覆層7にて覆わ
れている。
Embodiment 1 FIG. 1 is a partially cutaway illustrative perspective view showing one embodiment of a piston pin according to the present invention. In the figure, 1 is an aluminum alloy composite reinforced with carbon fibers 3 (Torayca (registered trademark) M40 manufactured by Toray Industries, Inc.) oriented spirally around the axis 2 at a pitch angle of ±67.5°. 4 (JIS standard AC7A) and has a hollow hole 5 extending along the axis 2. A cylindrical intermediate layer 6 made of stainless steel (JIS standard SUS304) and extending along the axis 2 around the core 1 is provided integrally with the core 1 on the outside of the core 1 . middle layer 6
The cylindrical outer peripheral surface of is covered with a coating layer 7 of molybdenum.

上述の如く構成されたピストンピンは本発明の
製造方法に従つて以下の如く製造された。
The piston pin constructed as described above was manufactured as follows according to the manufacturing method of the present invention.

先ず外径8mm、内径6mmのステンレス鋼(JIS
規格SUS304)製のパイプ8の周りに炭素繊維3
(東レ株式会社製「トレカ」(登録商標)M40、単
糸径7μm)のストランド(単糸数6000本)をフイ
ラメントワインデイングによつて巻き付けること
によりピツチ角θ=67.5°の円筒状の層とピツチ
角θ=−67.5°の円筒状の層とが径方向に交互に
積層された第2図に示されている如き外径21mm、
長さ1500mmの円筒状の繊維成形体9を形成した。
この繊維成形体9を85mmの長さに切断した後、第
3図に示されている如く、外径23mm、内径21mm、
長さ105mmのステンレス鋼(JIS規格SUS304)製
のパイプ10内の中央に挿入することにより、長
さ85mmの繊維成形体9′とパイプ10とよりなる
円筒体11を形成した。
First, stainless steel (JIS
Carbon fiber 3 around the pipe 8 made of standard SUS304)
By winding strands (6000 single yarns) of Torayka (registered trademark) M40 manufactured by Toray Industries, Inc. (manufactured by Toray Industries, Inc., with a single yarn diameter of 7 μm) using filament winding, a cylindrical layer with a pitch angle θ = 67.5° is formed. cylindrical layers with an angle θ = -67.5° are laminated alternately in the radial direction, with an outer diameter of 21 mm as shown in Fig. 2;
A cylindrical fiber molded body 9 with a length of 1500 mm was formed.
After cutting this fiber molded body 9 into a length of 85 mm, as shown in FIG.
By inserting it into the center of a pipe 10 made of stainless steel (JIS standard SUS304) with a length of 105 mm, a cylindrical body 11 consisting of the fiber molded body 9' and the pipe 10 with a length of 85 mm was formed.

次いで円筒体11を図には示されていないが
750に予熱した後、第4図に示されている如く、
高圧鋳造用の鋳型12内に配置し、該鋳型内に
740℃のアルミニウム合金(JIS規格AC7A)の溶
湯13を注湯し、該溶湯をプランジャ14により
1500Kg/cm2の圧力にて加圧し、その加圧状態を溶
湯13が完全に凝固するまで保持した。溶湯13
が完全に凝固した後、鋳型12よりノツクアウト
ピン15により凝固体を取り出し、該凝固体より
実質的にアルミニウム合金のみよりなる部分を機
械加工によつて除去することにより円柱体を取り
出し、該円柱体に対しドリルによる錘揉みを行つ
てパイプ8及び該パイプ内にて凝固したアルミニ
ウム合金を除去し、パイプ10の円筒状外周面を
0.5mm程度研削し、更にその両端を切断すること
により、第5図に示されている如き外径21.95mm、
内径8mm、長さ75mmの円筒状のピストンピン粗材
を得た。かくして得られた円筒体16のパイプ1
0の円筒状外周面をプラズマ溶射によつてモリブ
デンにて被覆し、該被覆層に対し最終研磨を行う
ことにより第1図に示されている如き外径22mm、
内径8mm、長さ75mmのピストンピンとした。尚こ
のピストンピンに於ける炭素繊維の体積率は65%
であり、モリブデンの外層の厚さは約30μmであ
つた。
Next, although not shown in the figure, the cylindrical body 11 is
After preheating to 750℃, as shown in Figure 4,
placed in a mold 12 for high-pressure casting;
Pour molten metal 13 of aluminum alloy (JIS standard AC7A) at 740°C, and pour the molten metal with plunger 14.
A pressure of 1500 Kg/cm 2 was applied, and the pressurized state was maintained until the molten metal 13 was completely solidified. Molten metal 13
After the solidified body is completely solidified, the solidified body is taken out from the mold 12 using the knock-out pin 15, and a cylindrical body is taken out by removing the part consisting essentially only of aluminum alloy from the solidified body by machining. The pipe 8 and the aluminum alloy solidified inside the pipe were removed by massaging the body with a drill, and the cylindrical outer peripheral surface of the pipe 10 was removed.
By grinding about 0.5mm and cutting both ends, the outer diameter is 21.95mm as shown in Figure 5.
A cylindrical piston pin rough material with an inner diameter of 8 mm and a length of 75 mm was obtained. The pipe 1 of the cylindrical body 16 thus obtained
The cylindrical outer circumferential surface of 0 was coated with molybdenum by plasma spraying, and the coating layer was finally polished to form an outer diameter of 22 mm as shown in Fig. 1.
The piston pin has an inner diameter of 8 mm and a length of 75 mm. The volume percentage of carbon fiber in this piston pin is 65%.
The thickness of the outer layer of molybdenum was approximately 30 μm.

また比較の目的で、炭素繊維がピツチ角θ=±
45°、±55°、±60°、±65°、±70°、±75°にて螺
旋状に
配向された点を除き上述の実施例1と同一の要領
及び同一の条件にて同一寸法のピストンピンを製
造した。
Also, for the purpose of comparison, carbon fiber has a pitch angle θ=±
The same procedure and same conditions as Example 1 above with the same dimensions except that the spiral orientation was 45°, ±55°, ±60°, ±65°, ±70°, ±75°. manufactured piston pins.

これらのピストンピンを用いて第6図に示され
ている如くピストン18とコネクテイングロツド
19とを連結し、コネクテイングロツド19をピ
ストン18の軸線20に沿つてピストンに対し荷
重Pにて押付け、荷重Pが3トンのときの荷重、
即ち実動荷重とそのときのA点、即ち最も大きい
変形が生じることが経験的に解つているピストン
に挿通された部分とコネクテイングロツドに挿通
された部分との間の中間の部分であつてピストン
ヘツド18aの側の外周面の位置に於けるピスト
ンピンの軸線2に平行な方向の変形歪を測定し、
また荷重Pを増大してピストンピンが破断すると
きの荷重、即ち破断荷重を測定する圧縮試験を行
つた。この圧縮試験の結果を第7図に示す。
These piston pins are used to connect the piston 18 and the connecting rod 19 as shown in FIG. Pressing, load when load P is 3 tons,
That is, the actual operating load and the point A at that time, that is, the intermediate part between the part inserted into the piston and the part inserted into the connecting rod, where it is empirically known that the largest deformation occurs. measuring the deformation strain in the direction parallel to the axis 2 of the piston pin at the position of the outer peripheral surface on the side of the piston head 18a,
A compression test was also conducted in which the load P was increased to measure the load at which the piston pin would break, that is, the breaking load. The results of this compression test are shown in FIG.

この第7図より、炭素繊維のピツチ各θが±
65°〜±70°である場合にピストンピンの破断荷重
が最大となり、しかもA点に於ける変形歪が小さ
い値に維持されることが解る。
From this figure 7, each pitch θ of carbon fiber is ±
It can be seen that when the angle is between 65° and ±70°, the breaking load of the piston pin becomes maximum, and the deformation strain at point A is maintained at a small value.

また上述の実施例1に於て製造されたピストン
ピンを4気筒2000ccのガソリン機関に組込み、機
関回転数5200rpm、全負荷にて200時間に亙る耐
久試験を行つたところ、上述の実施例1に於て製
造されたピストンピンには有害な変形や芯部と中
間層との間の界面の剥離や中間層の亀裂等の発生
は一切認められず、このピストンピンは十分な強
度及び耐久性を有するものであることが認められ
た。また上述の実施例1に於て製造されたピスト
ンピンを切断して中間層と芯部との間の界面を光
学顕微鏡にて観察したところ、第8図に示されて
いる如く、中間層を構成するステンレス鋼と芯部
のマトリツクス金属としてのアルミニウム合金と
が互に溶融混合することにより形成された合金層
が存在しており、中間層と芯部とが強固に密着し
ていることが認められた。
Furthermore, when the piston pin manufactured in the above-mentioned Example 1 was assembled into a 4-cylinder 2000cc gasoline engine and a durability test was conducted for 200 hours at an engine speed of 5200 rpm and a full load, it was found that the piston pin manufactured in the above-mentioned Example 1 was No harmful deformation, peeling of the interface between the core and intermediate layer, or cracking of the intermediate layer was observed in the piston pin manufactured in this process, and this piston pin has sufficient strength and durability. It was recognized that the Furthermore, when the piston pin manufactured in Example 1 was cut and the interface between the intermediate layer and the core was observed using an optical microscope, it was found that the intermediate layer was It was confirmed that there is an alloy layer formed by melting and mixing the constituent stainless steel and the aluminum alloy as the matrix metal of the core, and that the intermediate layer and the core are in strong contact with each other. It was done.

更に比較の目的で、ピストンピンの軸線に沿つ
て円筒状に一方向に配向された層とピストンピン
の軸線の周りに周方向に円筒状に配向された層と
が径方向に交互に積層された炭素繊維にて複合強
化されたアルミニウム合金にて芯部が構成されて
いる点を除き、上述の実施例1の場合と同一の要
領及び同一の条件にて製造されたピストンピンを
試作し、これを上述の耐久試験と同一の条件にて
行われた耐久試験に供したところ、試験開始後5
時間経過した時点に於て中間層と芯部との界面に
亀裂が発生していることが認められた。試験後両
者のピストンピンの芯部の径方向の熱膨張率を測
定したところ、実施例1の芯部の熱膨張率は12.5
×10-6であり、実質的に中間層の径方向の熱膨張
率と実質的に同一であることが認められたのに対
し、比較例のピストンピンの芯部の熱膨張率は実
質的に0であり、中間層の径方向の熱膨張率とは
大きく相違しており、このことが要因となつて亀
裂及び剥離が発生したものと推測される。
Furthermore, for comparison purposes, layers oriented cylindrically unidirectionally along the axis of the piston pin and layers oriented cylindrically circumferentially around the axis of the piston pin are stacked radially alternatingly. A prototype piston pin was manufactured in the same manner and under the same conditions as in Example 1 above, except that the core was made of aluminum alloy compositely reinforced with carbon fiber. When this was subjected to a durability test conducted under the same conditions as the durability test described above, it was found that 5.
It was observed that cracks had occurred at the interface between the intermediate layer and the core after a period of time had passed. After the test, the radial coefficient of thermal expansion of the core of both piston pins was measured, and the coefficient of thermal expansion of the core of Example 1 was 12.5.
×10 -6 and was found to be substantially the same as the radial coefficient of thermal expansion of the intermediate layer, whereas the coefficient of thermal expansion of the core of the piston pin in the comparative example was substantially the same as that of the intermediate layer. The coefficient of thermal expansion in the radial direction was 0, which was significantly different from the coefficient of thermal expansion in the radial direction of the intermediate layer, and it is presumed that this was a factor in the occurrence of cracks and peeling.

尚上述の如く製造されたピストンピンの重量は
86gであり、このピストンピンは従来の鋼鍛造製
のピストンピンよりも28%軽量なものであつた。
The weight of the piston pin manufactured as described above is
At 86g, this piston pin was 28% lighter than a conventional forged steel piston pin.

実施例 2 第9図は本発明によるピストンピンの他の一つ
の実施例を一部破断して示す解図的斜視図であ
る。図に於て、21は軸線22の周りにピツチ角
±70°にて螺旋状に配向された炭素繊維(東レ株
式会社製「トレカ」(登録商標)T300)にて複合
強化されたマグネシウム合金(JIS規格MC8)よ
りなり軸線22に沿つて延在する中空孔25を有
する円筒状の芯部を示している。芯部21の外側
にはステンレス鋼(JIS規格SUS304)よりなり
芯部21の周りにて軸線22に沿つて延在する円
筒状の中間層26が芯部21と一体的に設けられ
ている。中間層26の円筒状外周面、芯部21の
中空孔5の表面、芯部21及び中間層6の両端面
はNi−SiC(炭化ケイ素の粒子が分散されたニツ
ケル)のめつき層27にて覆われている。
Embodiment 2 FIG. 9 is a partially cutaway illustrative perspective view showing another embodiment of the piston pin according to the present invention. In the figure, 21 is a magnesium alloy composite reinforced with carbon fibers (Torayca (registered trademark) T300 manufactured by Toray Industries, Inc.) oriented spirally around the axis 22 at a pitch angle of ±70°. It shows a cylindrical core made of JIS standard MC8) and having a hollow hole 25 extending along the axis 22. A cylindrical intermediate layer 26 made of stainless steel (JIS standard SUS304) and extending along the axis 22 around the core 21 is provided integrally with the core 21 on the outside of the core 21 . The cylindrical outer peripheral surface of the intermediate layer 26, the surface of the hollow hole 5 of the core 21, and both end surfaces of the core 21 and the intermediate layer 6 are coated with a plating layer 27 of Ni-SiC (nickel in which silicon carbide particles are dispersed). It's covered.

上述の如く構成されたピストンピンは本発明の
製造方法に従つて上述の実施例1の場合と同様の
要領にて以下の如く製造された。
The piston pin constructed as described above was manufactured as follows according to the manufacturing method of the present invention in the same manner as in Example 1 described above.

先ず図には示されていないが、外径8mm、内径
6mmのステンレス鋼(JIS規格SUS304)製のパ
イプの周りに炭素繊維(東レ株式会社製「トレ
カ」(登録商標)T300、単糸径7μm)のストラン
ド(単糸数6000本)をフイラメントワインデイン
グによつて巻き付けることによりピツチ角θ=
70°の円筒状の層とピツチ角θ=−70°の円筒状の
層とが径方向に交互に積層された外径21mm、長さ
1500mmの円筒状の繊維成形体を形成した。この円
筒体を85mmの長さに切断した後、外径23mm、内径
21mm、長さ105mmのステンレス鋼(JIS規格
SUS304)製のパイプ内に挿入することにより、
85mmの長さに切断された繊維成形体とステンレス
鋼製のパイプとよりなる円筒体を形成した。
First, although it is not shown in the figure, carbon fiber (Torayka (registered trademark) T300 manufactured by Toray Industries, Inc., single fiber diameter 7 μm) is placed around a stainless steel (JIS standard SUS304) pipe with an outer diameter of 8 mm and an inner diameter of 6 mm. ) by winding the strand (6000 single yarns) using filament winding, the pitch angle θ=
Cylindrical layers with a pitch angle of 70° and cylindrical layers with a pitch angle θ = -70° are laminated alternately in the radial direction, with an outer diameter of 21 mm and a length.
A 1500 mm cylindrical fiber molded body was formed. After cutting this cylindrical body into a length of 85 mm, the outer diameter is 23 mm and the inner diameter is
21mm long, 105mm long stainless steel (JIS standard
By inserting it into a pipe made of SUS304),
A cylindrical body was formed from a fiber molded body cut to a length of 85 mm and a stainless steel pipe.

次いで円筒体を700℃に予熱した後、高圧鋳造
用の鋳型内に配置し、該鋳型内に690℃のマグネ
シウム合金(JIS規格MC8)の溶湯を注湯し、該
溶湯をプランジヤにより1500Kg/cm2の圧力にて加
圧し、その加圧状態を溶湯が完全に凝固するまで
保持した。溶湯が完全に凝固した後、鋳型よりノ
ツクアウトピンにより凝固体を取り出し、該凝固
体より実質的にマグネシウム合金のみよりなる部
分を機械加工によつて除去することにより円柱体
を取り出し、該円柱体に対しドリルによる錘揉み
を行つて外径8mmのパイプ及び該パイプ内にて凝
固したマグネシウム合金を除去し、外径23mmのパ
イプの円筒状外周面を0.5mm程度研削し、更にそ
の両端を切断することにより、外径21.95mm、内
径8mm、長さ75mmの円筒状のピストンピン素材を
得た。かくして得られた円筒体をNi−SiCのめつ
き浴中に浸漬し、無電解めつきによつて円筒体の
表面をNi−SiCのめつき層にて被覆し、これによ
り第9図に示されている如き外径22mm、内径8
mm、長さ75mmのピストンピンとした。尚このピス
トンピンに於ける炭素繊維の体積率は65%であ
り、Ni−SiCのめつき層の厚さは約30μmであつ
た。
Next, after preheating the cylindrical body to 700°C, it is placed in a mold for high-pressure casting, and 690°C molten magnesium alloy (JIS standard MC8) is poured into the mold, and the molten metal is heated to 1500 kg/cm by a plunger. The molten metal was pressurized at a pressure of 2 , and the pressurized state was maintained until the molten metal completely solidified. After the molten metal has completely solidified, the solidified body is taken out from the mold using a knock-out pin, and a cylindrical body is taken out by removing the part consisting essentially only of magnesium alloy from the solidified body by machining. The pipe with an outer diameter of 8 mm and the solidified magnesium alloy inside the pipe were removed by massaging with a drill, and the cylindrical outer peripheral surface of the pipe with an outer diameter of 23 mm was ground by about 0.5 mm, and both ends were cut off. As a result, a cylindrical piston pin material having an outer diameter of 21.95 mm, an inner diameter of 8 mm, and a length of 75 mm was obtained. The thus obtained cylindrical body was immersed in a Ni-SiC plating bath, and the surface of the cylindrical body was coated with a Ni-SiC plating layer by electroless plating, as shown in Fig. 9. Outer diameter 22mm, inner diameter 8 as shown
The piston pin was 75 mm in length. The volume fraction of carbon fiber in this piston pin was 65%, and the thickness of the Ni-SiC plating layer was about 30 μm.

上述の如く製造されたピストンピンの重量は79
gであり、このピストンピンは従来の鋼鍛造製の
ピストンピンよりも34%軽量なものであつた。ま
た上述の如く製造されたピストンピンを4気筒
2000ccのガソリン機関に組込み、機関回転数
5200rpm、全負荷にて200時間に亙る耐久試験を
行つたところ、上述のピストンピンは十分な強度
及び耐久性を有するものであることが認められ
た。また上述のピストンピンはその全ての表面が
Ni−SiCのめつき層にて覆われているので、炭素
繊維を強化繊維としマグネシウム合金をマトリツ
クス金属とする複合材料に於て問題となるガルバ
ニツク腐食も発生しなかつた。
The weight of the piston pin manufactured as described above is 79
g, and this piston pin was 34% lighter than a conventional piston pin made of forged steel. In addition, the piston pin manufactured as described above was used for 4 cylinders.
Built into 2000cc gasoline engine, engine speed
When a durability test was conducted for 200 hours at 5200 rpm and full load, it was found that the piston pin described above had sufficient strength and durability. Also, the piston pin mentioned above has all its surfaces
Since it was covered with a Ni-SiC plating layer, galvanic corrosion, which is a problem in composite materials with carbon fiber as reinforcing fiber and magnesium alloy as matrix metal, did not occur.

以上に於ては本発明を二つの実施例について詳
細に説明したが、本発明はこれらの実施例に限定
されるものではなく、本発明の範囲内にて種々の
実施例が可能であることは当業者にとつて明らか
であろう。
Although the present invention has been described in detail with reference to two embodiments above, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるピストンピンの一つの実
施例を一部破断して示す解図的斜視図、第2図は
繊維成形体を示す部分斜視図、第3図は繊維成形
体とステンレス鋼製のパイプとよりなる円筒体を
示す斜視図、第4図は鋳造工程を示す断面図、第
5図はピストンピン粗材を示す斜視図、第6図は
圧縮試験の態様を示す断面図、第7図は圧縮試験
の結果を示すグラフ、第8図は実施例1に於て製
造されたピストンピンの軸線を通る長手方向断面
の組織を示すべく該断面の一部を400倍にて示す
光学顕微鏡写真、第9図は本発明によるピストン
ピンの他の一つの実施例を一部破断して示す解図
的斜視図である。 1……芯部、2……軸線、3……炭素繊維、4
……アルミニウム合金、5……中空孔、6……中
間層、7……モリブデンの被覆層、8……パイ
プ、9……繊維成形体、10……パイプ、11…
…円筒体、12……鋳型、13……アルミニウム
合金の溶湯、14……プランジャ、15……ノツ
クアウトピン、16……ピストンピン粗材、18
……ピストン、18a……ピストンヘツド、19
……コネクテイングロツド、20……軸線、21
……芯部、22……軸線、23……炭素繊維、2
4……マグネシウム合金、25……中空孔、26
……中間層、27……Ni−SiCめつき層。
FIG. 1 is an illustrative perspective view showing a partially cutaway embodiment of a piston pin according to the present invention, FIG. 2 is a partial perspective view showing a fiber molded body, and FIG. 3 is a fiber molded body and stainless steel. Fig. 4 is a cross-sectional view showing the casting process, Fig. 5 is a perspective view showing a piston pin rough material, Fig. 6 is a cross-sectional view showing a compression test mode, Fig. 7 is a graph showing the results of the compression test, and Fig. 8 shows a part of the cross section at 400 times magnification to show the structure of the longitudinal cross section passing through the axis of the piston pin manufactured in Example 1. The optical micrograph, FIG. 9, is an illustrative perspective view, partially cut away, of another embodiment of the piston pin according to the present invention. 1... core, 2... axis, 3... carbon fiber, 4
... Aluminum alloy, 5 ... Hollow hole, 6 ... Intermediate layer, 7 ... Molybdenum coating layer, 8 ... Pipe, 9 ... Fiber molded body, 10 ... Pipe, 11 ...
... Cylindrical body, 12 ... Mold, 13 ... Molten aluminum alloy, 14 ... Plunger, 15 ... Knockout pin, 16 ... Piston pin rough material, 18
... Piston, 18a ... Piston head, 19
... Connecting rod, 20 ... Axis line, 21
... core, 22 ... axis, 23 ... carbon fiber, 2
4... Magnesium alloy, 25... Hollow hole, 26
...Intermediate layer, 27...Ni-SiC plated layer.

Claims (1)

【特許請求の範囲】 1 軸線の周りにピツチ角±65°〜±70°にて螺旋
状に配向された強化繊維にて複合強化された軽金
属よりなり前記軸線に沿つて延在する芯部と、金
属よりなり前記芯部の周りにて前記軸線に沿つて
延在する円筒状の中間層と、該中間層の円筒状外
周面を覆う硬質金属の外層とよりなるピストンピ
ン。 2 軸線の周りにピツチ角±65〜±70°にて螺旋
状に配向された強化繊維よりなる繊維成形体を形
成し、該繊維成形体を金属スリーブ内に配置し、
これを予熱した後鋳型内に配置し、該鋳型内に軽
金属の溶湯を注湯し、該溶湯を加圧しつつ凝固さ
せ、得られた凝固体より実質的に前記軽金属のみ
よりなる部分を除去し、前記金属スリーブの円筒
状外周面を硬質金属にて被覆するピストンピンの
製造方法。
[Scope of Claims] 1. A core portion extending along the axis and made of a light metal composite reinforced with reinforcing fibers spirally oriented around the axis at a pitch angle of ±65° to ±70°; A piston pin comprising a cylindrical intermediate layer made of metal and extending along the axis around the core, and an outer layer of hard metal covering the cylindrical outer peripheral surface of the intermediate layer. 2. Forming a fiber molded body made of reinforcing fibers spirally oriented at a pitch angle of ±65 to ±70° around the axis, and placing the fiber molded body in a metal sleeve,
After preheating this, it is placed in a mold, a molten light metal is poured into the mold, the molten metal is solidified while being pressurized, and a portion consisting essentially only of the light metal is removed from the resulting solidified body. , a method for manufacturing a piston pin in which the cylindrical outer peripheral surface of the metal sleeve is coated with a hard metal.
JP18481183A 1983-10-03 1983-10-03 Fiber reinforced metallic piston and manufacturing method thereof Granted JPS6078164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18481183A JPS6078164A (en) 1983-10-03 1983-10-03 Fiber reinforced metallic piston and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18481183A JPS6078164A (en) 1983-10-03 1983-10-03 Fiber reinforced metallic piston and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6078164A JPS6078164A (en) 1985-05-02
JPH0517991B2 true JPH0517991B2 (en) 1993-03-10

Family

ID=16159697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18481183A Granted JPS6078164A (en) 1983-10-03 1983-10-03 Fiber reinforced metallic piston and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPS6078164A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194039A (en) * 1984-03-14 1985-10-02 Toyota Central Res & Dev Lab Inc Fiber-reinforced aluminum alloy composite material and its production
GB2373562B (en) * 2001-03-23 2004-07-21 Alireza Veshagh Gudgeon pin comprising metallic core reinforced with ceramic and with fused hard outer metal coating
AT501474B8 (en) * 2005-04-20 2007-02-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh BOLTS FOR SWIVELS OF CRANKED DRIVES

Also Published As

Publication number Publication date
JPS6078164A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
EP0110064B1 (en) Heat-resistant light alloy articles and method of manufacturing same
KR950014939B1 (en) Reinforced pistons
JP2866064B2 (en) Cast metal piston for internal combustion engine
US4694735A (en) Piston for internal combustion engine
US4856970A (en) Metal-ceramic combination
US5816211A (en) Fiber reinforced ceramic matrix composite piston and cylinder/sleeve for an internal combustion engine
JPS6362304B2 (en)
JPS6341967B2 (en)
EP0498479A1 (en) Pistons
JPH0517991B2 (en)
JP3705676B2 (en) Manufacturing method of piston for internal combustion engine
EP0242212A1 (en) Composite material including matrix metal and closed loop configuration reinforcing fiber component made of carbon fibers with moderate young's modulus, and method for making the same
US4740428A (en) Fiber-reinforced metallic member
JPH0510527B2 (en)
JP2864497B2 (en) Internal combustion engine piston
EP0196076B1 (en) Light metal alloy piston
JPH0470377B2 (en)
JPS59229033A (en) Piston for internal-combustion engine
JPH0515886B2 (en)
JPS62124311A (en) Fiber reinforced metallic connecting rod
JPH0326294B2 (en)
JPS59120755A (en) Piston for internal-combustion engine
JPS59229034A (en) Piston for internal-combustion engine
JPH04203677A (en) Piston ring and manufacture thereof
US20180292006A1 (en) Bimetallic piston pin