JPH05179464A - Method for removing halogen radical in copper halide solution - Google Patents

Method for removing halogen radical in copper halide solution

Info

Publication number
JPH05179464A
JPH05179464A JP3359698A JP35969891A JPH05179464A JP H05179464 A JPH05179464 A JP H05179464A JP 3359698 A JP3359698 A JP 3359698A JP 35969891 A JP35969891 A JP 35969891A JP H05179464 A JPH05179464 A JP H05179464A
Authority
JP
Japan
Prior art keywords
copper
halogen
solution
ion
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359698A
Other languages
Japanese (ja)
Other versions
JP2779562B2 (en
Inventor
Masanori Inoko
正憲 猪子
Sei Terada
聖 寺田
Masahiro Kondo
雅博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP3359698A priority Critical patent/JP2779562B2/en
Publication of JPH05179464A publication Critical patent/JPH05179464A/en
Application granted granted Critical
Publication of JP2779562B2 publication Critical patent/JP2779562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To remove a halogen radical from copper halide solution containing free halogen and a complex of halogen and copper. CONSTITUTION:An anion-exchange membrane 2 is arranged inside a dialysis tank 1 so that the dialysis tank 1 may be divided into a copper halide solution tank 11 and a solvent tank 12 by it. Copper halide solution containing free halogen and a complex of halogen and copper is fed to the copper halide solution tank 11 and simultaneously to the solvent tank 12 is fed, for example, ion exchanged water. Since the free halogen existing in the copper halide solution is passed through the anion-exchange membrane 2 to transfer it to the ion exchanged water side, causing the free halogen on the copper solution side to be decreased, the halogen in the complex is eliminated as the free halogen in order to maintain the equilibrium and the eliminated halogen is similarly transferred to the ion exchanged water side afterwards. Therefore, the halogen radical existing as a free halogen or the complex is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばドライフィルム
のエッチング処理後の塩化第二銅エッチング液中から塩
素根を除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing chlorine radicals from a cupric chloride etching solution after etching a dry film, for example.

【0002】[0002]

【従来の技術】回路画像用のドライフィルムのエッチン
グ処理には、その組成が表1に示すような塩化第二銅エ
ッチング液等が一般に使用されている。
2. Description of the Related Art A cupric chloride etching solution having a composition shown in Table 1 is generally used for etching a dry film for circuit images.

【0003】[0003]

【表1】このエッチング液を用いて被エッチング材であ
る銅をエッチング処理すると、(1)式の反応により塩
化第二銅は還元されて塩化第一銅になる。
[Table 1] When copper, which is the material to be etched, is etched using this etching solution, cupric chloride is reduced to cuprous chloride by the reaction of formula (1).

【0004】Cu+CuCl→2CuCl…(1) そしてエッチング処理後の塩化第二銅エッチング液(以
下「エッチング廃液」という。)に対して塩化第一銅の
生成量に対応した過酸化水素水と塩酸とを添加すること
により(2)式の如く塩化第二銅が再生される。
Cu + CuCl 2 → 2CuCl (1) Then, with respect to the cupric chloride etching solution (hereinafter referred to as "etching waste solution") after the etching treatment, hydrogen peroxide solution and hydrochloric acid corresponding to the amount of cuprous chloride produced. By adding and, cupric chloride is regenerated as in formula (2).

【0005】 2CuCl+H+2HCl→2CuCl+2HO…(2) ここで(1)、(2)式からわかるように、もとのエッ
チング液中のCuClから2CuClが再生される
ため、再生によりエッチング液は増量するが、エッチン
グ廃液中には高価な銅が含まれているので、余剰のエッ
チング廃液から銅を回収することが従来より行なわれて
いる。このような銅の回収方法としては例えば鉄を加え
て(3)式の反応により銅を回収する方法等が採られて
いる。
2CuCl + H 2 O 2 + 2HCl → 2CuCl 2 + 2H 2 O (2) As can be seen from the equations (1) and (2), 2CuCl 2 is regenerated from CuCl 2 in the original etching solution. Although the amount of the etching liquid is increased by the regeneration, since expensive copper is contained in the etching waste liquid, it has been conventionally performed to recover the copper from the excess etching waste liquid. As such a method of recovering copper, for example, a method of recovering copper by adding iron to the reaction of the formula (3) is adopted.

【0006】 CuCl+Fe→FeCl+Cu…(3)CuCl 2 + Fe → FeCl 2 + Cu (3)

【0007】[0007]

【発明が解決しようとする課題】しかしながら塩化第二
銅エッチング液には表1に示すように、もともと塩酸が
可成り多く含まれているため、エッチング処理において
未反応であった塩酸が遊離塩素(Cl)の形態で、更
には銅との錯体の形態でエッチング廃液中に多量に存在
する。従ってエッチング廃液中に鉄を投入して銅を回収
する際に、前記遊離塩素にも鉄が消費されてしまうので
鉄の使用量が多くなってしまうと共に、比較的用途の狭
い塩化鉄溶液が多量に生成されてしまい、銅の回収を効
率的に行なうことができないという問題があった。
However, as shown in Table 1, since the cupric chloride etching solution originally contains a considerable amount of hydrochloric acid, unreacted hydrochloric acid which has not reacted in the etching treatment is free chlorine ( Cl ), and also in the form of a complex with copper, are present in large amounts in the etching waste liquid. Therefore, when iron is added to the etching waste liquid to recover copper, the free chlorine also consumes iron, which increases the amount of iron used, and a large amount of iron chloride solution, which is relatively narrow in application. Therefore, there is a problem that copper cannot be efficiently recovered.

【0008】本発明はこのような事情のもとになされた
ものであり、その目的は、ハロゲン化銅溶液中に含有し
ているハロゲン根の総量を低減することのできる方法を
提供することにある。
The present invention has been made under these circumstances, and an object thereof is to provide a method capable of reducing the total amount of halogen radicals contained in a copper halide solution. is there.

【0009】[0009]

【課題を解決するための手段】本発明は、イオン交換膜
によって仕切られた一方側の槽内に、遊離ハロゲンと、
ハロゲン及び銅の錯体とを含有するハロゲン化銅溶液を
供給すると共に、他方側の槽内に溶媒を供給し、前記ハ
ロゲン銅溶液中のハロゲン根を、イオン交換膜を介して
前記溶媒中に拡散透析させて除去することを特徴とす
る。
According to the present invention, in a tank on one side partitioned by an ion exchange membrane, free halogen and
A copper halide solution containing a halogen and a copper complex is supplied, and a solvent is supplied to the tank on the other side, and the halogen roots in the halogen copper solution are diffused into the solvent through an ion exchange membrane. It is characterized by being dialyzed and removed.

【0010】[0010]

【作用】ハロゲン化銅溶液中に存在している遊離ハロゲ
ンは、イオン交換膜を透過して経時的に溶媒側に移動
し、ハロゲン化銅溶液側の遊離ハロゲンは減少する。こ
の結果、ハロゲン化銅溶液に含まれるハロゲンと銅との
錯体の平衡状態を維持するために「CuCl等の
錯体中のハロゲンが遊離ハロゲンとなって離脱すると共
に、この離脱した遊離ハロゲンは、その後同様にして溶
媒側に移動する。こうしてハロゲン化銅溶液中に遊離ハ
ロゲンや錯体として存在しているハロゲン根の量が減少
する。
The free halogen existing in the copper halide solution permeates the ion exchange membrane and moves to the solvent side with time, and the free halogen on the copper halide solution side decreases. As a result, "CuCl 3] in order to maintain the equilibrium of the complex of silver and copper included in the copper halide solution - together with the halogen in the complex, such as leaves become free halogen, free halogen was the withdrawal Then moves in the same manner to the solvent side, thus reducing the amount of free halogen or halogen radicals present as a complex in the copper halide solution.

【0011】[0011]

【実施例】図1は本発明を実施するための装置の一例を
示す断面図である。図1中1は透析槽であり、この透析
槽1の内部中央付近には、透析槽1をハロゲン化銅溶液
槽11と溶媒槽12とに仕切るように陰イオン交換膜2
が設けられている。
1 is a sectional view showing an example of an apparatus for carrying out the present invention. Reference numeral 1 in FIG. 1 denotes a dialysis tank. Near the center of the inside of the dialysis tank 1, an anion exchange membrane 2 is provided so as to partition the dialysis tank 1 into a copper halide solution tank 11 and a solvent tank 12.
Is provided.

【0012】次に前記装置を用いて実際に本発明に係る
方法により、塩素根と銅とを含む塩銅液中より塩素根の
除去試験を行なった実施例について述べる。先ず試験開
始前に透析槽1を2つ用意すると共に、遊離塩素と、塩
素と銅との錯体とを含有するいわゆる塩銅液の原液(以
下「原液」という。)と、この原液を純水で1/10に
希釈した希釈液(以下「1/10希釈液」という。)と
を用意する。そして前記2つの透析槽1、1のうち、一
方の透析槽1については、ハロゲン化銅溶液槽11及び
溶媒槽12に夫々前記原液及び例えばイオン交換水を供
給すると共に、他方の透析槽1については、ハロゲン化
銅溶液槽11及び溶媒槽12に夫々前記1/10希釈液
及び例えばイオン交換水を供給し、その後いずれの透析
槽1、1についても静置して拡散透析を行なった。
Next, an example in which a chlorine root removal test is carried out from a salt copper solution containing chlorine roots and copper by the method according to the present invention using the above apparatus will be described. First, two dialysis tanks 1 are prepared before starting the test, and a stock solution of a so-called salt copper solution containing free chlorine and a complex of chlorine and copper (hereinafter referred to as "stock solution") and this stock solution are pure water. Prepare a diluted solution (hereinafter referred to as “1/10 diluted solution”) diluted to 1/10 with. Regarding one of the two dialysis tanks 1 and 1, the stock solution and, for example, ion-exchanged water are supplied to the copper halide solution tank 11 and the solvent tank 12, respectively, and the other dialysis tank 1 Was supplied to the copper halide solution tank 11 and the solvent tank 12 with the 1/10 diluted solution and ion-exchanged water, respectively, and then both dialysis tanks 1 and 1 were allowed to stand to perform diffusion dialysis.

【0013】ここで、試験開始時の原液中及び1/10
希釈液中に含まれるイオン種及びその存在比は表2に示
すとおりであり、また、この表2中に示した数字は各イ
オン種のモル濃度(mol/L)の存在比を%で表示し
たものである。
Here, in the stock solution at the start of the test and 1/10
The ionic species contained in the diluting solution and their abundance ratios are as shown in Table 2, and the numbers shown in this Table 2 show the abundance ratio of the molar concentration (mol / L) of each ionic species in%. It was done.

【0014】[0014]

【表2】表2から分かるように原液中及び1/10希釈
液中には、共に、遊離塩素(F−Cl)、銅イオン
(Cu2+)の他、[CuCl]、[CuC
、[CuCl2−のイオン状態及びCuC
の分子状態となっている銅錯体が存在しているが、
これら各イオン等の存在比は原液と1/10希釈液とで
は可成り異なったものとなっている。即ち、遊離塩素の
存在比は原液では50%弱であるのに対し、1/10希
釈液では70%強と可成り高いものとなっている反面、
銅錯体の全存在比は、原液では50%弱であるのに対
し、1/10希釈液では20%強と可成り低いものとな
っている。尚、前記各イオン中、Cl及び見かけ上陰
イオンのような挙動をする[CuCl、[CuC
2−及びイオン半径が極めて小さいHは陰イオ
ン交換膜2を透過してイオン交換水側に移動できるが、
Cu2+及び見かけ上陽イオンのような挙動をする[C
uCl]及び分子状態のCuClは陰イオン交換膜
2を透過しないためイオン交換水側には移動しない。
As can be seen from Table 2, in the undiluted solution and the 1/10 diluted solution, in addition to free chlorine (F-Cl ), copper ion (Cu 2+ ), [CuCl] + , [CuC]
I 3 ] , ionic state of [CuCl 4 ] 2− , and CuC
Although there is a copper complex in the molecular state of l 2 ,
The abundance ratios of these respective ions and the like are considerably different between the stock solution and the 1/10 diluted solution. That is, the abundance ratio of free chlorine is a little less than 50% in the undiluted solution, while it is a little higher than 70% in the 1/10 diluted solution.
The total abundance ratio of the copper complex is a little less than 50% in the undiluted solution, while it is a little less than 20% in the 1/10 diluted solution, which is quite low. In each of the above ions, Cl and [CuCl 3 ] and [CuC 3 ] that behave like apparent anions are used.
l 4 ] 2− and H + having an extremely small ionic radius can pass through the anion exchange membrane 2 and move to the ion exchange water side.
Behaves like Cu 2+ and apparent cations [C
uCl] + and CuCl 2 in a molecular state do not pass through the anion exchange membrane 2 and thus do not move to the ion exchange water side.

【0015】また、試験開始時の原液中及び1/10希
釈液中の銅イオン濃度及び塩素イオン濃度は、夫々表3
に示すとおりである。
Further, the copper ion concentration and the chloride ion concentration in the stock solution and the 1/10 diluted solution at the start of the test are shown in Table 3 respectively.
As shown in.

【0016】[0016]

【表3】表3から分かるように原液中の銅イオン及び塩
素イオン濃度は共に、1/10希釈液中のこれらイオン
の濃度の10倍程度となっている。
As can be seen from Table 3, the concentration of copper ion and chloride ion in the stock solution is about 10 times the concentration of these ions in the 1/10 diluted solution.

【0017】次に試験開始時よりの原液中及び1/10
希釈液中の夫々の塩素イオン及び銅イオンが陰イオン交
換膜2を透過してイオン交換水側へ移動した量を、イオ
ン交換水中の塩素イオン及び銅イオンの夫々の濃度によ
り経時的に測定した結果は表4の通りである。
Next, in the stock solution and 1/10 from the start of the test
The amount of each chlorine ion and copper ion in the diluting liquid that has permeated the anion exchange membrane 2 and moved to the ion exchange water side was measured with time by the respective concentrations of chlorine ion and copper ion in the ion exchange water. The results are shown in Table 4.

【0018】[0018]

【表4】また、この表4の測定結果に基づいて前記原液
側及び1/10希釈液側の夫々のイオン交換水中の塩素
イオン濃度及び銅イオン濃度を縦軸とし、試験開始時を
0とした経過時間を横軸としてグラフ化したところ、図
2及び図3に示す結果が得られた。図2及び図3中、実
線(1)及び(2)は、夫々塩素イオン濃度及び銅イオ
ン濃度の経時的変化を示す。更に、同様に表4の測定結
果に基づいて、原液側及び1/10希釈液側の夫々のイ
オン交換水中の塩素イオン濃度と銅イオン濃度との比
(塩素イオン濃度/銅イオン濃度)を縦軸とし、試験開
始時を0とした経過時間を横軸としてグラフ化したとこ
ろ、図4に示す結果が得られた。図4中実線(1)及び
(2)は夫々原液側及び1/10希釈液側のイオン交換
水中の塩素イオン濃度と銅イオン濃度との比の経時的変
化を示す。
[Table 4] Further, based on the measurement results in Table 4, the chlorine ion concentration and the copper ion concentration in the ion-exchanged water on the side of the stock solution and the concentration of the copper ion on the side of the 1/10 diluted solution are set to the ordinate, and the test start time is set to 0. When the elapsed time was plotted on the horizontal axis, the results shown in FIGS. 2 and 3 were obtained. 2 and 3, solid lines (1) and (2) show changes with time of the chlorine ion concentration and the copper ion concentration, respectively. Further, similarly, based on the measurement results in Table 4, the ratio (chlorine ion concentration / copper ion concentration) between the chlorine ion concentration and the copper ion concentration in the ion-exchanged water on the undiluted solution side and the 1/10 diluted solution side is calculated vertically. When the axis is used and the elapsed time with the start of the test as 0 is plotted as the horizontal axis, the results shown in FIG. 4 were obtained. Solid lines (1) and (2) in FIG. 4 show changes with time of the ratio of the chlorine ion concentration to the copper ion concentration in the ion-exchanged water on the side of the stock solution and on the side of the 1/10 diluted solution, respectively.

【0019】前記表4及び図2〜図4より分かるよう
に、原液側及び1/10希釈液側のイオン交換水中の塩
素イオン濃度及び銅イオン濃度は、共に試験開始時より
144時間経過までは経時的に増加するが、168時間
経過時には144時間経過時に比べて低下している。こ
れは原液側及び1/10希釈液側と夫々のイオン交換水
側との間で陰イオン種の濃度差が逆転したためである。
また、塩素イオン濃度は原液側及び1/10希釈液側で
夫々高いもので銅イオン濃度の10倍強程度(試験開始
後48時間経過後)及び90倍強程度(試験開始後16
8時間経過後)であり、銅イオン濃度に比べて可成り高
い濃度となっている。
As can be seen from Table 4 and FIGS. 2 to 4, the chlorine ion concentration and the copper ion concentration in the ion-exchanged water on the side of the stock solution and on the side of the 1/10 diluted solution are both up to 144 hours from the start of the test. Although it increases with time, it decreases after 168 hours compared to after 144 hours. This is because the anion species concentration difference was reversed between the stock solution side and the 1/10 diluted solution side and the respective ion-exchanged water sides.
The chlorine ion concentration is high on the stock solution side and the 1/10 diluted solution side, and is about 10 times higher than the copper ion concentration (48 hours after the start of the test) and about 90 times higher (16 times after the start of the test).
8 hours later), which is considerably higher than the copper ion concentration.

【0020】このように塩素イオン濃度が高く銅イオン
濃度が低い理由は、錯体の透過によるものであるが、こ
の錯体はイオン半径が大きく塩素イオンに比べて移動速
度が非常に遅いのでイオン交換膜2を透過しにくいため
であると推測される。また、前記の如く1/10希釈液
の方が原液に比べてより選択的に塩素イオンをイオン交
換水側に取り出すことができる理由は、表2に示したよ
うにイオン交換膜を透過しない銅の陽イオン錯体の存在
割合が1/10希釈液のほうが原液に比べて多いのから
である。カチオンが少ないからである。
The reason why the chloride ion concentration is high and the copper ion concentration is low is due to the permeation of the complex. However, since this complex has a large ionic radius and the moving speed is very slow as compared with chloride ion, it is an ion exchange membrane. It is presumed that this is because it is difficult for 2 to pass through. In addition, as described above, the reason why the 1/10 diluted solution can more selectively extract chlorine ions to the ion-exchanged water side than the undiluted solution is that copper that does not permeate the ion-exchange membrane as shown in Table 2. This is because the presence ratio of the cation complex in 1/10 is higher in the diluted solution than in the undiluted solution. This is because there are few cations.

【0021】なお、原液側及び1/10希釈液側のイオ
ン交換水中の塩素イオンの濃度は、図2及び図3から分
かるように試験開始後144時間経過後は、それ以前に
比べて増加傾向が穏やかとなっているが、これは、原液
中あるいは1/10希釈液中に含まれる陰イオン種とイ
オン交換水中の陰イオン種との濃度差が小さくなってき
たためと考察される。そこで試験開始後168時間経過
後に、原液及び1/10希釈液は変えずに、イオン交換
水のみを新しいものに変えて上述と同様に試験した結果
を表5に示す。
As can be seen from FIGS. 2 and 3, the concentration of chlorine ions in the ion-exchanged water on the undiluted side and the 1/10 diluted side tended to increase after 144 hours from the start of the test, compared to before that. It is considered that this is because the concentration difference between the anion species contained in the stock solution or the 1/10 diluted solution and the anion species in the ion-exchanged water has become smaller. Therefore, after 168 hours have passed from the start of the test, the results of the same test as above, except that the stock solution and the 1/10 diluted solution were not changed and only the ion-exchanged water was changed to a new one, are shown in Table 5.

【0022】[0022]

【表5】表5から分かるとおり、イオン交換水を新しい
ものに変えることにより、原液側及び1/10希釈液側
の夫々のイオン交換水中の塩素イオンの経時的な増加傾
向は表4とほぼ同様な傾向となっている。このことより
上述の考察は正しいものと解釈できる。
[Table 5] As can be seen from Table 5, by changing the ion-exchanged water to a new one, the increase tendency of chlorine ions in the ion-exchanged water on the undiluted side and the 1/10 diluted side is almost the same as that in Table 4. The tendency is similar. From this, the above consideration can be interpreted as correct.

【0023】このような実施例によれば、塩銅液中の塩
素イオンが陰イオン交換膜2をイオン交換水側に透過す
るため、塩銅液中の塩素イオン濃度が減少すると共に、
塩素イオン濃度の減少にもとづいて、[CuC
、「CuCl2−及び[CuCl]とい
った錯体が、平衡を維持するために解離し、塩素イオン
が生成されるが、この塩素イオンは陰イオン交換膜2を
透過して同様に解離が起こるので、結局上記の錯体濃度
が減少する。また塩銅液中の陰イオン種とイオン交換水
中の陰イオン種との濃度差が減少してきたときに、イオ
ン交換水を新しいものに交換することにより、より効率
的に塩銅液中の塩素根を除去することができる。
According to such an embodiment, since chlorine ions in the salt copper solution permeate the anion exchange membrane 2 to the ion exchange water side, the concentration of chlorine ions in the salt copper solution is reduced, and
Based on the decrease in chloride ion concentration, [CuC
Complexes such as l 3 ] , “CuCl 4 ] 2− and [CuCl] + dissociate to maintain equilibrium, and chlorine ions are generated. The chlorine ions pass through the anion exchange membrane 2 and Similarly, the above-mentioned complex concentration decreases as a result of dissociation, and when the concentration difference between the anionic species in the salt copper solution and the anionic species in the ion-exchanged water decreases, a new ion-exchanged water is added. The chlorine radicals in the salt copper solution can be more efficiently removed by exchanging the chlorine radicals with.

【0024】従って塩銅液中の遊離塩素が少なくなるた
め、例えば銅と鉄との置換により銅を回収する場合に、
この遊離塩素によって消費される鉄の量を抑えることが
できる上、錯体濃度が低下するので、この錯体との反応
に用いられていた鉄の使用量も減少し、この結果必要と
なる鉄の使用量を減らすことができ、銅を効率的に回収
することができる。
Therefore, since free chlorine in the salt copper solution is reduced, for example, when copper is recovered by replacing copper with iron,
The amount of iron consumed by this free chlorine can be suppressed, and the concentration of the complex decreases, so the amount of iron used in the reaction with this complex also decreases, resulting in the required use of iron. The amount can be reduced and copper can be efficiently recovered.

【0025】更に、塩素イオンを多く含んだイオン交換
水を例えば陰イオン交換樹脂を通すことにより、塩酸と
して回収することもできる。
Furthermore, ion-exchanged water containing a large amount of chlorine ions can be recovered as hydrochloric acid by passing it through, for example, an anion-exchange resin.

【0026】以上において本発明は、塩銅液中の塩素根
の除去に限られるものではなく、塩素以外の遊離ハロゲ
ンと、このハロゲンと銅との錯体とを含有するハロゲン
化銅溶液中のハロゲン根の除去にも適用できる。また、
溶媒槽12に供給する溶媒としては、イオン交換水に限
られるものではなく、例えば純水等であってもよい。更
に、拡散透析を行なうにあたっては、例えばポンプを備
えた循環路を用いてハロゲン化銅溶液を循環させるよう
にしてもよい。
In the above, the present invention is not limited to the removal of chlorine roots in a salt copper solution, but a halogen in a copper halide solution containing a free halogen other than chlorine and a complex of this halogen and copper. It can also be applied to root removal. Also,
The solvent supplied to the solvent tank 12 is not limited to ion-exchanged water, and may be pure water or the like. Further, when performing diffusion dialysis, the copper halide solution may be circulated using a circulation path equipped with a pump, for example.

【0027】[0027]

【発明の効果】本発明によればハロゲン化銅溶液中のハ
ロゲン根は、陰イオン交換膜を透過して経時的にイオン
交換水側に移動するため、ハロゲン化銅溶液中よりハロ
ゲン根を除去することができ、ハロゲン根の総量を低減
することができる。
EFFECTS OF THE INVENTION According to the present invention, since the halogen radicals in the copper halide solution permeate the anion exchange membrane and move to the ion exchange water side with time, the halogen radicals are removed from the copper halide solution. It is possible to reduce the total amount of halogen radicals.

【0028】従って、その後例えば銅と置換する金属の
使用量が少なくてすむので、銅を効率的に回収すること
ができ、またハロゲンイオンを塩酸等として効率的に回
収することができる。
Therefore, for example, the amount of metal used to replace copper thereafter can be small, so that copper can be efficiently recovered, and halogen ions can be efficiently recovered as hydrochloric acid or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法を実施するための装置の一例
を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out the method according to the present invention.

【図2】原液側のイオン交換水中の塩素イオン濃度及び
銅イオン濃度を表わした特性図である。
FIG. 2 is a characteristic diagram showing a chloride ion concentration and a copper ion concentration in ion-exchanged water on the side of the stock solution.

【図3】1/10希釈液側のイオン交換水中の塩素イオ
ン濃度及び銅イオン濃度を表わした特性図である。
FIG. 3 is a characteristic diagram showing the concentration of chlorine ions and the concentration of copper ions in ion-exchanged water on the 1/10 diluted solution side.

【図4】原液側及び1/10希釈液側の夫々のイオン交
換水中の塩素イオン濃度と銅イオン濃度との比を表わし
た特性図である。
FIG. 4 is a characteristic diagram showing a ratio of a chloride ion concentration to a copper ion concentration in ion-exchanged water on each of the stock solution side and the 1/10 diluted solution side.

【符号の説明】[Explanation of symbols]

1 透析槽 11 ハロゲン化銅溶液槽 12 溶媒槽 2 陰イオン交換膜 1 Dialysis tank 11 Copper halide solution tank 12 Solvent tank 2 Anion exchange membrane

【表−1】 [Table-1]

【表−2】 [Table-2]

【表−3】 [Table-3]

【表−4】 [Table-4]

【表−5】 [Table-5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜によって仕切られた一方側
の槽内に、遊離ハロゲンと、ハロゲン及び銅の錯体とを
含有するハロゲン化銅溶液を供給すると共に、他方側の
槽内に溶媒を供給し、 前記ハロゲン銅溶液中のハロゲン根を、イオン交換膜を
介して前記溶媒中に拡散透析させて除去することを特徴
とするハロゲン銅溶液中のハロゲン根の除去方法。
1. A copper halide solution containing free halogen and a complex of halogen and copper is supplied to a tank on one side partitioned by an ion exchange membrane, and a solvent is supplied to a tank on the other side. Then, the halogen root in the halogen copper solution is removed by diffusion dialysis in the solvent through an ion exchange membrane to remove the halogen root in the halogen copper solution.
JP3359698A 1991-12-27 1991-12-27 Method for recovering copper from cupric chloride etching waste liquid Expired - Fee Related JP2779562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359698A JP2779562B2 (en) 1991-12-27 1991-12-27 Method for recovering copper from cupric chloride etching waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359698A JP2779562B2 (en) 1991-12-27 1991-12-27 Method for recovering copper from cupric chloride etching waste liquid

Publications (2)

Publication Number Publication Date
JPH05179464A true JPH05179464A (en) 1993-07-20
JP2779562B2 JP2779562B2 (en) 1998-07-23

Family

ID=18465839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359698A Expired - Fee Related JP2779562B2 (en) 1991-12-27 1991-12-27 Method for recovering copper from cupric chloride etching waste liquid

Country Status (1)

Country Link
JP (1) JP2779562B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167779A (en) * 1984-09-07 1986-04-07 Matsushita Electric Ind Co Ltd Control method for etching solution
JPS6353267A (en) * 1986-08-22 1988-03-07 Nippon Dento Kogyo Kk Plating method
JPH028961A (en) * 1988-06-28 1990-01-12 Mitsubishi Electric Corp Graphic input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167779A (en) * 1984-09-07 1986-04-07 Matsushita Electric Ind Co Ltd Control method for etching solution
JPS6353267A (en) * 1986-08-22 1988-03-07 Nippon Dento Kogyo Kk Plating method
JPH028961A (en) * 1988-06-28 1990-01-12 Mitsubishi Electric Corp Graphic input device

Also Published As

Publication number Publication date
JP2779562B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
EP2165007B1 (en) A method for etching copper and recovery of the spent etching solution
JP3728945B2 (en) Method and apparatus for recovering and reusing developer from photoresist developer waste
JPH09503956A (en) Conversion of metal cation complexes and salts by electrodialysis.
EP0447448B1 (en) Method for purification of acids from materials comprising acid and salt
US4313808A (en) Electrodialyzer and method of regenerating waste photographic processing solution
JPH10235102A (en) Mehtod for extracting metallic element with solvent
EP0247713A1 (en) Method for the purification of zinc sulphate electrolyte
JP3164970B2 (en) Treatment of wastewater containing neutral salts of monovalent ions
JP6545657B2 (en) Separation method of anions
Amara et al. Modified cation exchange resin applied to demineralisation of a liquid industrial waste. Comparison to a classical treatment and electrodialysis
US4256559A (en) Method and apparatus for regenerating spent photographic bleach-fixer solution
JPH05179464A (en) Method for removing halogen radical in copper halide solution
JPS5822528B2 (en) How to recover silver from photographic processing solutions
JP2013133506A (en) Apparatus for regenerating etching solution
JP5072477B2 (en) Method for recovering acid from nitric hydrofluoric acid waste liquid
JP6080070B2 (en) Rare metal recovery method and recovery device
JP2012125723A (en) Apparatus for refining waste liquid of nitrohydrofluoric acid and method therefor
Verbeken et al. Cobalt removal from waste‐water by means of supported liquid membranes
CN109092081B (en) Quaternized polyaniline monovalent selective cation exchange membrane and preparation method thereof
JP2008279417A (en) Electrolyte liquid regeneration method and regeneration apparatus
JPH08100282A (en) Production of nickel hypophosphite
US6984300B2 (en) Method for recovering useful components from electrolytic phosphate chemical treatment bath
Juang et al. Enhanced flux and selectivity of metals through a dialysis membrane by addition of complexing agents to receiving phase
JP3501339B2 (en) Electric deionized water production equipment
JPH09120123A (en) Method and apparatus for selective extraction of halide ions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees