JPH05179440A - Cathode for magnetron sputtering - Google Patents
Cathode for magnetron sputteringInfo
- Publication number
- JPH05179440A JPH05179440A JP3553792A JP3553792A JPH05179440A JP H05179440 A JPH05179440 A JP H05179440A JP 3553792 A JP3553792 A JP 3553792A JP 3553792 A JP3553792 A JP 3553792A JP H05179440 A JPH05179440 A JP H05179440A
- Authority
- JP
- Japan
- Prior art keywords
- target
- magnetic field
- center
- magnetic
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はマグネトロンスパッタリ
ング技術に係わり、特に成膜物質から成り、薄膜の原料
と言えるターゲット材料の利用効率の高いマグネトロン
型スパッタカソード関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetron sputtering technique, and more particularly to a magnetron type sputter cathode having a high utilization efficiency of a target material which is a raw material of a thin film and which is made of a film forming material.
【0002】[0002]
【従来の技術】マグネトロンスパッタリング技術は、電
場と磁場が直交するいわゆるマグネトロン放電を利用す
るため、低温高速スパッタリングが可能で、以前の2極
スパッタリング等に比べて多くの長所を有する反面、マ
グネトロン磁場の内、特にターゲット上近傍の垂直方向
磁束密度成分のゼロ点近傍に高密度プラズマが集中し、
この部分が著しく侵食され、略V字形状の侵食形態をと
るため、その体積利用率は、およそ20%程度であり、
高価なターゲット材料を用いて成膜する場合、特に問題
と成っていた。2. Description of the Related Art The magnetron sputtering technique uses so-called magnetron discharge in which an electric field and a magnetic field are orthogonal to each other, so that low-temperature and high-speed sputtering is possible and has many advantages over the previous two-pole sputtering and the like. In particular, high-density plasma is concentrated near the zero point of the vertical magnetic flux density component near the target,
Since this portion is significantly eroded and takes a substantially V-shaped erosion form, its volume utilization rate is about 20%,
This has been a particular problem when a film is formed using an expensive target material.
【0003】この点を改善する目的で、ターゲット直上
面近傍の中央から外周に到る範囲の磁束密度分布に於
て、垂直方向の磁束密度成分の傾きが、中央と外周の間
で、略零となる様にした、いわゆるワイドエロージョン
カソードが考案されている。この従来技術のカソードを
図11に示す。In order to improve this point, in the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference, the gradient of the magnetic flux density component in the vertical direction is substantially zero between the center and the outer circumference. A so-called wide erosion cathode has been devised. This prior art cathode is shown in FIG.
【0004】[0004]
【発明が解決しようとする課題】ターゲット前方・上面
近傍のマグネトロン磁場(閉じた漏洩磁界分布)を改良
し、垂直・水平成分の内、垂直方向の磁束密度成分の傾
きが、ターゲット直上面近傍の中央と外周の間で略零と
なる様するために、通常、磁気発生手段の形状・構成・
磁界発生方向等を変更したり、磁気バイパス手段を配置
すると、高密度プラズマはターゲットの半径方向、又
は、ターゲット中央から外周方向の広い範囲で発生す
る。By improving the magnetron magnetic field (closed leakage magnetic field distribution) near the front and the upper surface of the target, the inclination of the magnetic flux density component in the vertical direction of the vertical and horizontal components is close to the direct upper surface of the target. In order to make it almost zero between the center and the outer circumference, usually the shape and configuration of the magnetic generation means
When the magnetic field generation direction is changed or the magnetic bypass means is arranged, the high density plasma is generated in the radial direction of the target or in a wide range from the center of the target to the outer peripheral direction.
【0005】ところが、上記、高密度プラズマの中で
も、最も密度の高いものが発生する位置は、垂直方向の
磁束密度成分のゼロ点(0[Gauss]と交わり正か
ら負、又は、負から正へと変化する点)であるため、タ
ーゲットの他の部分に比べ、この位置での侵食の割合が
増大する傾向にある。However, among the above-mentioned high-density plasmas, the position at which the highest density is generated intersects with the zero point (0 [Gauss]) of the magnetic flux density component in the vertical direction, from positive to negative, or from negative to positive. Therefore, the rate of erosion at this position tends to increase compared to other parts of the target.
【0006】上記、垂直方向の磁束密度成分のゼロ点を
マグネトロン磁場を形成している環状、又は、レースト
ラック状の中心軸(又は、中心面)を含む任意断面に於
て、全て同一の半径(又は、中央からの距離)に保つこ
とは、製作技術面で不可能であるため、該任意断面での
ターゲットの侵食形状・最大侵食深さ・侵食断面積等に
バラツキを生じ、特にターゲット寿命を決定する最大侵
食深さのバラツキは、ターゲット全体の堆積利用率に大
きく影響する。The above-mentioned zero points of the magnetic flux density component in the vertical direction are all the same radius in an arbitrary cross section including the center axis (or center plane) of the ring or race track forming the magnetron magnetic field. Since it is impossible to keep (or distance from the center) from the viewpoint of manufacturing technology, variations occur in the erosion shape, maximum erosion depth, erosion cross-section area, etc. of the target in the arbitrary section, especially the target life. The variation of the maximum erosion depth, which determines the maximum erosion depth, greatly affects the deposition utilization rate of the entire target.
【0007】また、矩形のカソードに於て、レーストラ
ック状のマグネトロン磁界の中心軸(又は、中心面)を
含む任意断面の磁界分布を観測するとリニア部とコーナ
ー部との差異が大きいので、上記バラツキを補正するの
に多大な時間や労力を費やすと言った問題点が有った。In the rectangular cathode, when the magnetic field distribution of an arbitrary cross section including the center axis (or center plane) of the racetrack-shaped magnetron magnetic field is observed, the difference between the linear portion and the corner portion is large. There was a problem that it took a lot of time and effort to correct the variation.
【0008】従来技術の一例として、8×22インチの
矩形ターゲット用のマグネトロン型スパッタカソードを
例にとり、図11〜図15によりその問題点を、以下説
明する。図11〜図15において、1は中央磁極、2は
外周磁極、5は磁気バイパス手段、6は成膜物質より成
るターゲット、7は永久磁石から成る中間磁極、9はバ
ッキングプレート、8は基板、11はトンネル状の磁力
線(マグネトロン磁界)の模式図、14は環状のプラズ
マの断面模式図、15は侵食された部分を表す断面模式
図、22は水配管である。As an example of the prior art, a magnetron type sputtering cathode for an 8 × 22 inch rectangular target is taken as an example, and the problem will be described below with reference to FIGS. 11 to 15. 11 to 15, 1 is a central magnetic pole, 2 is an outer magnetic pole, 5 is a magnetic bypass means, 6 is a target made of a film forming material, 7 is an intermediate magnetic pole made of a permanent magnet, 9 is a backing plate, 8 is a substrate, Reference numeral 11 is a schematic view of a magnetic field line (magnetron magnetic field) in a tunnel shape, 14 is a schematic cross-sectional view of an annular plasma, 15 is a schematic cross-sectional view showing an eroded portion, and 22 is a water pipe.
【0009】図11では、高透磁率体から成り、バッキ
ングプレート9裏面に載置、又は、埋め込み可能な磁気
バイパス手段5を中央磁極1と外周磁極2の間に設け、
ターゲット直上面近傍の中央から外周に到る範囲の磁束
密度分布の垂直方向の磁束密度成分の傾きが中央と外周
のとの間で略零となる様にした従来技術の短辺方向の断
面図を示しているが、ある断面では、ターゲット6の侵
食形態は15の様に成る。In FIG. 11, a magnetic bypass means 5 made of a high magnetic permeability material, which can be placed or embedded on the back surface of the backing plate 9, is provided between the central magnetic pole 1 and the outer magnetic pole 2.
A cross-sectional view in the short side direction of the conventional technology in which the gradient of the vertical magnetic flux density component of the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference is substantially zero between the center and the outer circumference. However, in a certain cross section, the erosion morphology of the target 6 becomes like 15.
【0010】ところが、ターゲット6を図12に示す
〜▲11▼の断面位置で侵食形状を観察すると、図13
〜図15に示す様に、ターゲット使用開始直後の侵食形
状・最大侵食深さ・侵食断面積等のバラツキは小さいも
のの、寿命時点では、これらのバラツキが増大する。However, when observing the erosion shape of the target 6 at the cross-sectional positions shown in FIGS.
As shown in FIG. 15, although variations in the erosion shape, maximum erosion depth, erosion cross-section, etc. immediately after the start of use of the target are small, these variations increase at the end of the life.
【0011】図13〜図15に示す各断面の最大侵食深
さの内、図15に示すの断面位置のものが最も大であ
り、ターゲット6の底部を貫通寸前であるため、他の断
面形状に於ける最大侵食深さに余裕が有っても、これ以
上、ターゲットを使用することが不可能に成り、ターゲ
ット全体の体積利用率を低下させている。Of the maximum erosion depths of the cross sections shown in FIGS. 13 to 15, the one at the cross section position shown in FIG. 15 is the largest, and since the bottom of the target 6 is about to penetrate, another cross section shape is obtained. Even if there is a margin in the maximum erosion depth, it becomes impossible to use the target any more, and the volume utilization rate of the entire target is reduced.
【0012】<発明の目的>従来のワイドエロージョン
タイプと呼ばれるカソードに於て、ターゲット上近傍で
マグネトロン磁場を形成している環状、又はレーストラ
ック状の中心軸(又は、中心面)を含む任意断面でのタ
ーゲットの侵食形状・最大侵食深さ・侵食断面積等のバ
ラツキを減少させ、ターゲット全体の堆積利用率をさら
に向上させたマグネトロン型スパッタカソードを提供す
ることにある。<Object of the Invention> In a conventional cathode called a wide erosion type, an arbitrary cross section including a ring-shaped or racetrack-shaped central axis (or central surface) that forms a magnetron magnetic field near the target. The object of the present invention is to provide a magnetron-type sputter cathode in which variations in target erosion shape, maximum erosion depth, erosion cross-section, etc. are reduced and the deposition utilization rate of the entire target is further improved.
【0013】[0013]
【課題を解決するための手段】上記の目的は、ターゲッ
ト背後の、中央部近傍に配置した磁気発生手段と、その
外周に環状に配置した磁気発生手段を具備し、ターゲッ
ト前方に閉じた漏洩磁界分布(マグネトロン磁場)を得
る様にし、かつ、ターゲット直上面近傍の中央から外周
に到る範囲の磁束密度分布の垂直方向の磁束密度成分の
傾きが、中央と外周の間で、略零となる様にしたのもに
於て、ターゲット上近傍の垂直方向の磁束密度成分のゼ
ロ点を、ターゲット上面の半径方向、又は、ターゲット
中央から外周方向に移動させうる磁界調整手段を具備す
ることによって上記問題点を解決した。The above-described object is to provide a magnetic field generating means disposed behind the target in the vicinity of the central portion and a magnetic field generating means arranged in an annular shape on the outer periphery of the target. A distribution (magnetron magnetic field) is obtained, and the gradient of the magnetic flux density component in the vertical direction of the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference is approximately zero between the center and the outer circumference. According to the above, by providing a magnetic field adjusting means capable of moving the zero point of the magnetic flux density component in the vertical direction in the vicinity of the target on the upper surface of the target in the radial direction or from the center of the target to the outer peripheral direction, Solved the problem.
【0014】[0014]
【作用】従来のワイドエロージョンタイプと呼ばれるカ
ソードに於て、ターゲット上近傍の垂直方向の磁束密度
成分のゼロ点を、ターゲット上面の半径方向、又は、タ
ーゲット中央から外周方向に移勤させうる磁界調整手段
の調整により、該ゼロ点を周期的に中央から外周の間を
移動させると、高密度プラズマの発生位置がこれに追従
移動するため、ターゲット上近傍でマグネトロン磁場を
形成している環状、又は、レーストラック状の中心軸
(又は、中心面)を含む任意断面でのターゲットの最大
侵食位置を周期的に移動させることが可能と成る。[Function] In a conventional cathode called a wide erosion type, a magnetic field is adjusted so that the zero point of the magnetic flux density component in the vertical direction near the top of the target can be moved in the radial direction on the top surface of the target or from the center of the target to the outer circumference. By adjusting the means, when the zero point is moved periodically from the center to the outer circumference, the generation position of the high-density plasma moves following it, so that the magnetron magnetic field is formed in the vicinity of the target, or It is possible to periodically move the maximum erosion position of the target in an arbitrary cross section including the racetrack-shaped central axis (or the central plane).
【0015】このため、該任意断面に於ける侵食形状・
最大侵食深さ・侵食断面積等のバラツキが減少し、ター
ゲット全体の堆積利用率をさらに向上することが出来
る。Therefore, the erosion shape in the arbitrary cross section
Variations such as the maximum erosion depth and erosion cross-sectional area are reduced, and the deposition utilization rate of the entire target can be further improved.
【0016】一方、ワイドエロージョンタイプと呼ばれ
るカソード場合、ターゲット面に対し垂直方向の磁束密
度成分の傾きが、ターゲット直上面近傍の中央と外周の
間で略零と成っているので、高密度プラズマの移動に必
要な磁界調整手段による磁界は僅かで良いため、マグネ
トロン磁場の水平成分の変化が少なく、ターゲット上の
プラズマ密度の変動が小さく、放電インピーダンスや成
膜スピードに与える影響がごく僅かであると同時に、基
板とターゲット間の磁界の変動も小さいので基板近傍の
イオン電流密度(荷電粒子密度)に与える影響も殆ど無
視できる状態である。On the other hand, in the case of a cathode called a wide erosion type, since the gradient of the magnetic flux density component in the direction perpendicular to the target surface is substantially zero between the center and the outer periphery in the vicinity of the direct upper surface of the target, a high density plasma Since the magnetic field by the magnetic field adjusting means necessary for movement is small, the horizontal component of the magnetron magnetic field does not change much, the fluctuation of the plasma density on the target is small, and the influence on the discharge impedance and the film formation speed is negligible. At the same time, since the fluctuation of the magnetic field between the substrate and the target is small, the influence on the ion current density (charged particle density) in the vicinity of the substrate is almost negligible.
【0017】[0017]
【実施例】本発明の実施例として、8×22インチの矩
形ターゲット用のマグネトロン型スパッタカソードを例
にとり、図1〜図10により以下説明する。図1〜図1
0において、1はターゲット裏面の中央部近傍に配置し
た磁気発生手段である永久磁石から成る中央磁極、2は
ターゲット裏面の外周に環状に配置した磁気発生手段で
ある永久磁石から成る外周磁極、4は中央磁極1と外周
磁極2を磁気的に結合する軟磁性体又は高透磁率体から
成るヨーク、5は軟磁性体又は高透磁率体から成り主に
ターゲット直上面近傍の漏洩磁界分布補正用の磁気バイ
パス手段、6は成膜物質より成るターゲット、7は永久
磁石から成る中間磁極、9はターゲット6の裏面に設け
たバッキングプレート、8は基板、11はターゲット6
裏面の各磁気要素により形成されるトンネル状の磁力線
(マグネトロン磁界)の模式図、14はトンネル状の磁
力線11により閉し込められた環状のプラズマの断面模
式図、15はプラズマ14中のスパッタ用ガスイオンの
衝突によりターゲット6が侵食された部分を表す断面模
式図、22はターゲット6およびカソード内部を冷却す
る水配管、67はターゲット上近傍の垂直方向の磁束密
度成分のゼロ点を、ターゲット上面のターゲット中央か
ら外周方向(半径方向)に移動させる磁界調整手段であ
る環状の電磁石(ソレノイドコイル)、60は電磁石6
7に励磁電流を供給する励磁電源、63は電磁石67の
励磁方向を示す模式図である。EXAMPLE As an example of the present invention, a magnetron type sputtering cathode for a rectangular target of 8 × 22 inches will be described as an example with reference to FIGS. 1 to 1
In 0, 1 is a central magnetic pole composed of a permanent magnet which is a magnetic generating means arranged near the center of the back surface of the target, 2 is an outer magnetic pole which is a permanent magnet which is a magnetic generating means arranged annularly on the outer circumference of the back surface of the target, 4 Is a yoke made of a soft magnetic material or a high magnetic permeability material for magnetically coupling the central magnetic pole 1 and the outer magnetic pole 2, and 5 is made of a soft magnetic material or a high magnetic permeability material and is mainly for correcting the leakage magnetic field distribution near the upper surface of the target. Magnetic bypass means, 6 is a target made of a film-forming substance, 7 is an intermediate magnetic pole made of a permanent magnet, 9 is a backing plate provided on the back surface of the target 6, 8 is a substrate, 11 is the target 6
A schematic view of a tunnel-shaped magnetic field line (magnetron magnetic field) formed by each magnetic element on the back surface, 14 is a schematic cross-sectional view of an annular plasma confined by the tunnel-shaped magnetic field line 11, and 15 is for sputtering in the plasma 14. A schematic sectional view showing a portion where the target 6 is eroded by the collision of gas ions, 22 is a water pipe for cooling the inside of the target 6 and the cathode, 67 is a zero point of the magnetic flux density component in the vertical direction near the target, and the upper surface of the target. , An annular electromagnet (solenoid coil) which is a magnetic field adjusting means for moving the target from the center of the target in the outer peripheral direction (radial direction), and 60 is the electromagnet 6.
7 is an excitation power supply for supplying an excitation current to 7, and 63 is a schematic view showing an excitation direction of an electromagnet 67.
【0018】以上の主要構成要素からなる図1〜図6に
示す本発明の第1の実施例は以下のように動作する。The first embodiment of the present invention shown in FIGS. 1 to 6 composed of the above-mentioned main components operates as follows.
【0019】ターゲット6裏面に配置した各磁気発生手
段により、ターゲット6の前方に磁力線11が形成され
る。該マグネトロン型スパッタカソードは、従来品と同
様に真空処理室に基板8と対向して設置され、スパッタ
ガス導入後、ターゲット6へグロー放電用の高圧電源よ
り電力を供給すると、磁力線11に閉じ込められたスパ
ッタリング用の高密度プラズマ14が発生する。Magnetic force lines 11 are formed in front of the target 6 by the respective magnetism generating means arranged on the back surface of the target 6. The magnetron-type sputter cathode is installed in the vacuum processing chamber so as to face the substrate 8 as in the conventional product, and is entrapped in the magnetic field lines 11 when the target 6 is supplied with power from the high voltage power source for glow discharge after the sputtering gas is introduced. The high-density plasma 14 for sputtering is generated.
【0020】この磁力線11の磁束密度分布の中央から
外周に到る範囲において、ターゲット面に対し中央と外
周の間で垂直方向の磁束密度成分の傾きが略零となる、
いわゆるワイドエロージョンタイプと呼ばれるカソード
の様に各磁気要素が構成・配置してある。In the range from the center of the magnetic flux density distribution of the magnetic force lines 11 to the outer circumference, the gradient of the magnetic flux density component in the vertical direction between the center and the outer circumference with respect to the target surface becomes substantially zero.
Each magnetic element is constructed and arranged like a so-called wide erosion type cathode.
【0021】この時、外周磁極2の近傍に配置した磁界
調整手段である電磁石67に供給する励磁電流密度を0
[A/mm2]に設定しておけば、ターゲット6上の漏
洩磁界分布の垂直・水平の各成分は、図2に示す様な形
態になるため、スパッタリングに寄与するターゲット6
直上近傍の高密度プラズマ14の発生位置の中心は、タ
ーゲット短尺方向の中央より58[mm]の所となり、
図1に示す様な断面形態となる。この高密度プラズマ1
4中のアルゴンガスイオンは陰極降下(カソードフォー
ル)により加速されターゲット6の上記、中央から58
[mm]の所が最も多く(プラズマ14中のアルゴンガ
スイオンの密度分布に略比例)衝突し、ターゲット原子
をたたき出す。たたき出されたターゲット原子が基板8
表面に堆積し、スパッタリング成膜機能を果たすと同時
に、ターゲット6の中心から58[mm]の近傍が最も
深く侵食する。At this time, the exciting current density supplied to the electromagnet 67, which is a magnetic field adjusting means arranged near the outer magnetic pole 2, is set to 0.
If [A / mm 2 ] is set, the vertical and horizontal components of the leakage magnetic field distribution on the target 6 have a form as shown in FIG.
The center of the generation position of the high-density plasma 14 immediately above is 58 mm from the center in the short-side direction of the target.
The cross-sectional shape is as shown in FIG. This high-density plasma 1
The argon gas ions in 4 are accelerated by the cathode fall and the target 6 is 58
The area [mm] collides most (substantially proportional to the density distribution of the argon gas ions in the plasma 14) and knocks out the target atoms. Target atoms that have been knocked out are the substrate 8
At the same time as it is deposited on the surface and fulfills the sputtering film forming function, the vicinity of 58 [mm] from the center of the target 6 corrodes deepest.
【0022】同様に、電磁石67に供給する励磁電流密
度を+5[A/mm2](図3に示す励磁方向模式図6
3の矢印方向)に設定しておけば、漏洩磁界分布の垂直
・水平の各成分は、図4に示す様になるため、ターゲッ
ト6の中央から34[mm]の近傍が侵食する。Similarly, the exciting current density supplied to the electromagnet 67 is +5 [A / mm 2 ] (exciting direction schematic diagram 6 shown in FIG. 3).
3), the vertical and horizontal components of the leakage magnetic field distribution are as shown in FIG. 4, so that the vicinity of 34 mm from the center of the target 6 is eroded.
【0023】同様に、電磁石67に供給する励磁電流密
度を−5[A/mm2](図5に示す励磁方向模式図6
3の矢印方向)に設定しておけば、漏洩磁界分布の垂直
・水平の各成分は、図6に示す様になるため、ターゲッ
ト6の中央から77[mm]の近傍が侵食する。Similarly, the excitation current density supplied to the electromagnet 67 is -5 [A / mm 2 ] (excitation direction schematic diagram 6 shown in FIG. 5).
3), the vertical and horizontal components of the leakage magnetic field distribution are as shown in FIG. 6, so that the vicinity of 77 [mm] from the center of the target 6 is eroded.
【0024】従って、本発明の第1の実施例によれば、
高密度プラズマの発生領域の中心の移動幅が43[m
m](ターゲット短尺方向の中心より34[mm]〜7
7[mm]の間)なので、ターゲット上近傍の垂直方向
の磁束密度成分のゼロ点を、ターゲット中央から外周方
向に移動させうる磁界調整手段である電磁石67の励磁
により、高密度プラズマの各位置に滞在する時間調整を
最適化し、ターゲット寿命に到るまで繰り返し周期的に
移動させ制御することで、図13〜図15に示す様な従
来技術を適用したターゲット寿命時の侵食状態の各断面
に於ける侵食形状・最大侵食深さ・侵食断面積等のバラ
ツキが減少するため、成膜物質から成るターゲット材料
の体積利用効率は、40[%]以上とすることが可能で
ある。Therefore, according to the first embodiment of the present invention,
The moving width of the center of the high-density plasma generation region is 43 [m
m] (34 [mm] to 7 from the center of the target in the short direction)
Therefore, the zero point of the magnetic flux density component in the vertical direction in the vicinity of the target is moved from the center of the target to the outer peripheral direction by the excitation of the electromagnet 67, which is the magnetic field adjusting means. By optimizing the adjustment of the staying time and repeatedly moving and controlling until the end of the target life, each cross section of the erosion state during the target life to which the conventional technique as shown in FIGS. 13 to 15 is applied is applied. Since variations in erosion shape, maximum erosion depth, erosion cross-section, etc. in the erosion are reduced, the volume utilization efficiency of the target material composed of the film-forming substance can be set to 40% or more.
【0025】図7は、本発明の第2の実施例で、本発明
の第1の実施例で示したカソードの中央磁極1と外周磁
極2が斜め着磁の永久磁石で構成しているのに比べ、一
般的な磁石を複数用い、その配向を縦横に組合せること
で、同様の磁界分布を得たものに磁界調整手段として電
磁石67を具備し、ターゲット上近傍の垂直方向の磁束
密度成分のゼロ点を、ターゲット中央から外周方向に移
動させることが可能なカソードを示している。FIG. 7 shows a second embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 of the cathode shown in the first embodiment of the present invention are composed of obliquely magnetized permanent magnets. In comparison with the above, a plurality of general magnets are used, and the orientations thereof are combined vertically and horizontally to obtain a similar magnetic field distribution, and an electromagnet 67 is provided as a magnetic field adjusting means, and a magnetic flux density component in the vertical direction near the target is provided. Shows a cathode that can be moved from the center of the target to the outer peripheral direction.
【0026】図8は、本発明の第3の実施例で、中央磁
極1と外周磁極2はターゲット6の面と平行な面に対
し、永久磁石の配向を各々+90度と−90度の角度と
し環状に配置し、高透磁率体から成る磁気バイパス手段
5と中間磁極7を設け、ターゲット直上面近傍の中央か
ら外周に到る範囲の磁束密度分布の垂直方向の磁束密度
成分の傾きが中央と外周のとの間で略零となる様にした
ものに、磁界調整手段として電磁石67を具備し、ター
ゲット上近傍の垂直方向の磁束密度成分のゼロ点を、タ
ーゲット中央から外周方向に移動させることが可能なカ
ソードを示している。FIG. 8 shows a third embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have their permanent magnets oriented at angles of +90 degrees and -90 degrees with respect to a plane parallel to the plane of the target 6, respectively. And the magnetic bypass means 5 made of a high magnetic permeability material and the intermediate magnetic pole 7 are provided, and the gradient of the magnetic flux density component in the vertical direction of the magnetic flux density distribution in the range from the center in the vicinity of the upper surface of the target to the outer periphery is the center. The magnetic field adjusting means is provided with an electromagnet 67 that is substantially zero between the outer circumference and the outer circumference, and the zero point of the vertical magnetic flux density component near the target is moved from the center of the target to the outer circumference. 1 shows a possible cathode.
【0027】図9は、本発明の第4の実施例で、中央磁
極1と外周磁極2はターゲット6の面と平行な面に対
し、永久磁石の配向を各々+90度と−90度の角度と
し環状に配置し、高透磁率体から成る磁気バイパス手段
5を中央磁極1と外周磁極2の間に設け、ターゲット直
上面近傍の中央から外周に到る範囲の磁束密度分布の垂
直方向の磁束密度成分の傾きが中央と外周のとの間で略
零となる様にしたものに、磁界調整手段として電磁石6
7を具備し、ターゲット上近傍の垂直方向の磁束密度成
分のゼロ点を、ターゲット中央から外周方向に移勤させ
ることが可能なカソードを示している。FIG. 9 shows a fourth embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have their permanent magnets oriented at angles of +90 degrees and -90 degrees with respect to the plane parallel to the plane of the target 6, respectively. The magnetic bypass means 5 made of a high magnetic permeability material is provided between the central magnetic pole 1 and the outer magnetic pole 2, and the magnetic flux in the vertical direction of the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference is provided. The electromagnet 6 is used as the magnetic field adjusting means so that the gradient of the density component is substantially zero between the center and the outer circumference.
7 shows a cathode which is provided with 7 and is capable of moving the zero point of the magnetic flux density component in the vertical direction near the top of the target from the center of the target to the outer peripheral direction.
【0028】図10は、本発明の第5の実施例で、中央
磁極1と外周磁極2はターゲット6の面と平行な面に対
し、永久磁石の配向を各々+90度と−90度の角度と
し環状に配置し、高透磁率体から成り、バッキングプレ
ート9裏面に載置、又は、埋め込み可能な磁気バイパス
手段5を中央磁極1と外周磁極2の間に設け、ターゲッ
ト直上面近傍の中央から外周に到る範囲の磁束密度分布
の垂直方向の磁束密度成分の傾きが中央と外周のとの間
で略零となる様にしたものに、磁界調整手段として電磁
石67を具備し、ターゲット上近傍の垂直方向の磁束密
度成分のゼロ点を、ターゲット中央から外周方向に移動
させることが可能なカソードを示している。FIG. 10 shows a fifth embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have their permanent magnets oriented at angles of +90 degrees and -90 degrees with respect to the plane parallel to the plane of the target 6, respectively. Is arranged in an annular shape and is made of a high-permeability material, and is placed on the back surface of the backing plate 9 or can be embedded in the magnetic bypass means 5 between the central magnetic pole 1 and the outer magnetic pole 2 from the center near the upper surface of the target. The vertical magnetic flux density component of the magnetic flux density distribution in the range reaching the outer circumference is made to have a gradient of approximately zero between the center and the outer circumference, and an electromagnet 67 is provided as a magnetic field adjusting means, which is near the target. It shows a cathode capable of moving the zero point of the magnetic flux density component in the vertical direction from the center of the target to the outer peripheral direction.
【0029】本発明の実施例では、ターゲット上近傍の
垂直方向の磁束密度成分のゼロ点を、ターゲット上面の
半径方向、又は、ターゲット中央から外周方向に移動さ
せるための磁界調整手段として電磁石67を外周磁極2
の近傍の外側に配置したものを示したが、該磁界調整手
段は外周磁極2の内側でも良く、又、中央磁極1及び外
周磁極2のそれぞれの近傍に複数配置しても同様の効果
が得られるので、図1、図3、図5、及び、図7〜図1
0に示す本発明の第1〜第5の実施例に限定されるもの
では無い。In the embodiment of the present invention, the electromagnet 67 is used as a magnetic field adjusting means for moving the zero point of the magnetic flux density component in the vertical direction near the target in the radial direction on the upper surface of the target or from the center of the target to the outer peripheral direction. Outer magnetic pole 2
The magnetic field adjusting means may be provided inside the outer magnetic pole 2, or a plurality of magnetic field adjusting means may be provided near the central magnetic pole 1 and the outer magnetic pole 2 to obtain the same effect. 1, FIG. 3, FIG. 5, and FIG. 7 to FIG.
It is not limited to the first to fifth embodiments of the present invention shown in FIG.
【0030】又、本発明の特徴である上記の磁界調整手
段は、ターゲット背後の中央部近傍に配置した磁気発生
手段と、その外周に環状に配置した磁気発生手段によ
り、ターゲット前方に閉じた漏洩磁界分布(マグネトロ
ン磁場)を得る様にし、かつ、ターゲット直上面近傍の
中央から外周に到る範囲の磁束密度分布の垂直方向の磁
束密度成分の傾きが、中央と外周の間で略零となる様に
した、いわゆるワイドエロージョンタイプと呼ばれるカ
ソードの磁気構造、及び、配置であれば、全てに適用が
可能であるため、図1、図3、図5、及び、図7〜図1
0に示す本発明の第1〜第5の実施例に限定されるもの
では無い。Further, the above-mentioned magnetic field adjusting means, which is a feature of the present invention, has a magnetic field generating means arranged near the central portion behind the target and a magnetic field generating means annularly arranged on the outer periphery of the magnetic field adjusting means to close the leakage in front of the target. A magnetic field distribution (magnetron magnetic field) is obtained, and the gradient of the magnetic flux density component in the vertical direction of the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference is approximately zero between the center and the outer circumference. If the magnetic structure and arrangement of the so-called wide erosion type cathode as described above are applicable to all, it is possible to apply them to FIGS. 1, 3, 5, and 7 to 1.
It is not limited to the first to fifth embodiments of the present invention shown in FIG.
【0031】従って、図1、図3、図5、及び、図7〜
図10に示す本発明の第1〜第5の実施例で示した各永
久磁石のN極、S極の極性と電磁石の励磁方向を全く逆
にしても、同様の効果が得られることはもとより、各永
久磁石は環状又は楕円状の一体成形品を着磁したもの、
小片磁石を環状又は楕円状に集積したもののいずれでも
良い。Therefore, FIG. 1, FIG. 3, FIG. 5, and FIG.
Even if the N-pole and S-pole polarities of the permanent magnets and the magnetizing directions of the electromagnets shown in the first to fifth embodiments of the present invention shown in FIG. 10 are completely reversed, the same effect can be obtained. , Each of the permanent magnets is a magnetized ring or elliptical integrally molded product,
It may be either a ring-shaped or ellipsoidally-assembled small piece magnet.
【0032】さらに、図10では、ターゲット直上面近
傍の中央から外周に到る範囲の磁束密度分布の垂直方向
の磁束密度成分の傾きが中央と外周のとの間で略零とな
る様にするため、高透磁率体から成る磁気バイパス手段
5を中央磁極1と外周磁極2の間に設け、これに磁界調
整手段として電磁石67を具備したカソードを示した
が、該磁気バイパス手段5は、バッキングプレート9裏
面に載置、又は、埋め込んでも同等の効果が得られる。Further, in FIG. 10, the inclination of the magnetic flux density component in the vertical direction of the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer circumference is set to be substantially zero between the center and the outer circumference. Therefore, the magnetic bypass means 5 made of a high magnetic permeability material is provided between the central magnetic pole 1 and the outer magnetic pole 2, and the cathode provided with the electromagnet 67 as the magnetic field adjusting means is shown. The same effect can be obtained by mounting or embedding on the back surface of the plate 9.
【0033】[0033]
【発明の効果】本発明によれば、ターゲット前方に閉じ
た漏洩磁界分布(マグネトロン磁場)を得る様にし、か
つ、ターゲット直上面近傍の中央から外周に到る範囲の
磁束密度分布の垂直方向の磁束密度成分の傾きが、中央
と外周の間で、略零となる様にした、いわゆるワイドエ
ロージョンタイプと呼ばれるスパッタカソードに於て、
該垂直方向の磁束密度成分のゼロ点を、ターゲット上面
の半径方向、又は、ターゲット中央から外周方向に移動
させる磁界調整手段を具備することにより、ターゲット
上近傍でマグネトロン磁場を形成している環状、又は、
レーストラック状の中心軸(又は、中心面)を含む任意
断面でのターゲットの侵食形状・最大侵食深さ・侵食断
面積等のバラツキを減少させ、ターゲット全体の堆積利
用率をさらに向上させたマグネトロン型スパッタカソー
ドを提供することが出来る。According to the present invention, the leakage magnetic field distribution (magnetron magnetic field) closed in front of the target is obtained, and the magnetic flux density distribution in the range from the center near the upper surface of the target to the outer periphery in the vertical direction is obtained. In the so-called wide erosion type sputter cathode in which the gradient of the magnetic flux density component is set to be substantially zero between the center and the outer periphery,
The zero point of the magnetic flux density component in the vertical direction, in the radial direction of the target upper surface, or by providing a magnetic field adjusting means for moving from the center of the target to the outer peripheral direction, a ring forming a magnetron magnetic field near the target, Or
A magnetron that reduces variations in target erosion shape, maximum erosion depth, erosion cross-sectional area, etc. in any cross-section including the racetrack-shaped central axis (or center plane) and further improves the deposition utilization rate of the entire target. A type sputter cathode can be provided.
【0034】なお、ワイドエロージョンタイプと呼ばれ
るカソード場合、ターゲット面に対し垂直方向の磁束密
度成分の傾きが、ターゲット直上面近傍の中央と外周の
間で略零と成っているので、高密度プラズマの移動に必
要な磁界調整手段による磁界は僅かで良いため、マグネ
トロン磁場の水平成分の変化が少なく、ターゲット上の
プラズマ密度の変動が小さく、放電インピーダンスや成
膜スピードに与える影響がごく僅かであると同時に、基
板とターゲット間の磁界の変動も小さいので基板近傍の
イオン電流密度(荷電粒子密度)に与える影響も殆ど無
視できる状態であるため、例えば、ITO(インジウム
とスズ合金の酸化物)に代表されるスパッタリング特性
に敏感な(スパッタリングの諸特性が成膜中に変化して
は好ましく無いもの)膜を成膜する際にも、高いターゲ
ット利用率で所望の膜質の成膜を可能としたマグネトロ
ン型スパッタカソードを提供することが出来る。In the case of a cathode called a wide erosion type, since the gradient of the magnetic flux density component in the direction perpendicular to the target surface is substantially zero between the center and the outer periphery in the vicinity of the upper surface of the target, the density of a high density plasma is high. Since the magnetic field by the magnetic field adjusting means necessary for movement is small, the horizontal component of the magnetron magnetic field does not change much, the fluctuation of the plasma density on the target is small, and the influence on the discharge impedance and the film formation speed is negligible. At the same time, since the fluctuation of the magnetic field between the substrate and the target is small, the influence on the ion current density (charged particle density) in the vicinity of the substrate is almost negligible. For example, ITO (oxide of indium and tin alloy) is typical. Sensitive to the sputtered characteristics (It is not desirable if the various sputtering characteristics change during film formation. ) Film even when forming the can to provide a magnetron sputtering cathode which enables deposition of a desired film quality with a high target utilization.
【図1】本発明の第1の実施例で、磁界調整手段である
電磁石を励磁しない状態で、高密度プラズマが移動範囲
の略中間に位置する場合のカソード部の断面構造の概略
と、それにより生成されるプラズマ及びターゲットの侵
食状態を示したカソードの断面概略図である。FIG. 1 is a schematic diagram of a cross-sectional structure of a cathode part in a case where a high-density plasma is located in a substantially middle part of a moving range in a state where an electromagnet that is a magnetic field adjusting means is not excited in the first embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view of the cathode showing the erosion state of the plasma and the target generated by the above.
【図2】本発明の第1の実施例で図1に示した断面構造
を有するカソード部の磁気要素が発生する、漏洩磁界の
ターゲット直上面の中央から外周に到る範囲のターゲッ
ト面に対し水平方向の磁束密度成分と、垂直方向の磁束
密度成分を表す線図である。FIG. 2 is a cross-sectional view of a target portion of a leakage magnetic field generated by a magnetic element of a cathode portion having a sectional structure shown in FIG. It is a diagram showing the magnetic flux density component in the horizontal direction and the magnetic flux density component in the vertical direction.
【図3】本発明の第1の実施例で、磁界調整手段である
電磁石を励磁して、プラズマが移動範囲の最内周に位置
する場合のカソード部の断面構造の概略と、それにより
生成されるプラズマ及びターゲットの侵食状態を示した
カソードの断面概略図である。FIG. 3 is a schematic diagram of a cross-sectional structure of a cathode portion when plasma is located at the innermost circumference of a moving range by exciting an electromagnet that is a magnetic field adjusting means in the first embodiment of the present invention, and generated by it. FIG. 4 is a schematic cross-sectional view of the cathode showing the eroded state of the plasma and the target to be etched.
【図4】本発明の第1の実施例で図3に示した断面構造
を有するカソード部の磁気要素の全てが発生する漏洩磁
界のターゲット直上面の中心から外周に到る範囲のター
ゲット面に対し水平方向の磁束密度成分と、垂直方向の
磁束密度成分を表す線図である。FIG. 4 shows a target surface in a range from the center of the direct upper surface of the target of the leakage magnetic field generated by all the magnetic elements of the cathode part having the cross-sectional structure shown in FIG. 3 in the first embodiment of the present invention to the outer periphery. FIG. 5 is a diagram showing a magnetic flux density component in a horizontal direction and a magnetic flux density component in a vertical direction.
【図5】本発明の第1の実施例で、磁界調整手段である
電磁石を励磁して、プラズマが移動範囲の最外周に位置
する場合のカソード部の断面構造の概略と、それにより
生成されるプラズマ及びターゲットの侵食状態を示した
カソードの断面概略図である。FIG. 5 is a schematic diagram of a cross-sectional structure of a cathode part when plasma is positioned at the outermost periphery of a moving range by exciting an electromagnet which is a magnetic field adjusting means in the first embodiment of the present invention, and the generated cross-sectional structure thereof. FIG. 3 is a schematic cross-sectional view of a cathode showing an eroded state of a plasma and a target.
【図6】本発明の第1の実施例で図5に示した断面構造
を有するカソード部の磁気要素の全てが発生する漏洩磁
界のターゲット直上面の中心から外周に到る範囲のター
ゲット面に対し水平方向の磁束密度成分と、垂直方向の
磁束密度成分を表す線図である。FIG. 6 is a diagram showing a leakage magnetic field generated by all the magnetic elements of the cathode portion having the cross-sectional structure shown in FIG. 5 in the first embodiment of the present invention on the target surface in the range from the center of the surface directly above the target to the outer periphery. FIG. 5 is a diagram showing a magnetic flux density component in a horizontal direction and a magnetic flux density component in a vertical direction.
【図7】本発明の第2の実施例を示したカソードの断面
概略図である。FIG. 7 is a schematic sectional view of a cathode showing a second embodiment of the present invention.
【図8】本発明の第3の実施例を示したカソードの断面
概略図である。FIG. 8 is a schematic sectional view of a cathode showing a third embodiment of the present invention.
【図9】本発明の第4の実施例を示したカソードの断面
概略図である。FIG. 9 is a schematic sectional view of a cathode showing a fourth embodiment of the present invention.
【図10】本発明の第5の実施例を示したカソードの断
面概略図である。FIG. 10 is a schematic sectional view of a cathode showing a fifth embodiment of the present invention.
【図11】従来技術の例を示したカソードの断面概略図
である。FIG. 11 is a schematic cross-sectional view of a cathode showing an example of the prior art.
【図12】従来技術を適用した場合のターゲット侵食形
態の断面を観測した位置を示したターゲット全体斜視図
である。FIG. 12 is an overall perspective view of a target showing a position where a cross section of a target erosion pattern is observed when a conventional technique is applied.
【図13】図12に示すターゲット侵食形態の断面観測
位置に於けるターゲット使用直後、及び、寿命時の断
面概略図である。13A and 13B are schematic cross-sectional views of the target erosion pattern shown in FIG. 12 at the cross-section observation position immediately after the target is used and at the end of its life.
【図14】図12に示すターゲット侵食形態の断面観測
位置に於けるターゲット使用直後、及び、寿命時の断
面概略図である。FIG. 14 is a schematic cross-sectional view of the target erosion pattern shown in FIG. 12 immediately after the target is used and at the end of its life, at the cross-section observation position.
【図15】図12に示すターゲット侵食形態の断面観測
位置、及び、に於けるターゲット使用直後、及び、
寿命時の断面概略図である。15 is a sectional observation position of the target erosion pattern shown in FIG. 12, immediately after the target is used, and
It is a cross-sectional schematic diagram at the time of life.
1 中央磁極 2 外周磁極 4 軟磁性体ヨーク 5 高透磁率体の磁気バイパス手段 6 ターゲット 7 中間磁極 8 基板 9 バッキングプレート 11 磁力線の模式図 14 プラズマの断面模式図 15 ターゲソトの侵食を表す断面模式図 22 水配管 60 励磁電源 63 電磁石の励磁方向を示す模式図 67 電磁石 〜▲11▼ ターゲット侵食形態の断面観測位置 1 Central Magnetic Pole 2 Outer Magnetic Pole 4 Soft Magnetic Material Yoke 5 Magnetic Bypass Means for High Permeability Material 6 Target 7 Intermediate Magnetic Pole 8 Substrate 9 Backing Plate 11 Schematic Diagram of Magnetic Field Lines 14 Schematic Cross Section Diagram 15 Plasma Cross Section Schematic Diagram 22 Water piping 60 Excitation power supply 63 Schematic diagram showing the excitation direction of the electromagnet 67 Electromagnet ~ ▲ 11 ▼ Cross-section observation position of target erosion pattern
Claims (1)
た磁気発生手段と、その外周に環状に配置した磁気発生
手段を設け、ターゲット前方に閉じた漏洩磁界分布のマ
グネトロン磁場を得るうにし、 かつ、ターゲット直上
面近傍の中央から外周に到る範囲の磁束密度分布の垂直
方向の磁束密度成分の傾きが、中央と外周の間で、略零
となる様にしたのもに於て、ターゲット上近傍の垂直方
向の磁束密度成分のゼロ点を、ターゲット上面の半径方
向、又は、ターゲット中央から外周方向に移動させうる
磁界調整手段を具備したことを特徴とするマグネトロン
型スパッタカソード。1. A magnetism generating means arranged behind the target in the vicinity of the central portion and a magnetism generating means arranged in an annular shape on the outer periphery of the target so as to obtain a magnetron magnetic field having a leakage magnetic field distribution closed in front of the target, and , The gradient of the vertical magnetic flux density component of the magnetic flux density distribution in the range from the center near the top surface of the target to the outer circumference is set to be substantially zero between the center and the outer circumference. A magnetron-type sputtering cathode comprising magnetic field adjusting means capable of moving a zero point of a magnetic flux density component in the vertical direction in the vicinity of the target in a radial direction on the upper surface of the target or in the outer peripheral direction from the center of the target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3553792A JPH05179440A (en) | 1992-01-07 | 1992-01-07 | Cathode for magnetron sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3553792A JPH05179440A (en) | 1992-01-07 | 1992-01-07 | Cathode for magnetron sputtering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05179440A true JPH05179440A (en) | 1993-07-20 |
Family
ID=12444488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3553792A Pending JPH05179440A (en) | 1992-01-07 | 1992-01-07 | Cathode for magnetron sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05179440A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007037079A1 (en) * | 2005-09-29 | 2007-04-05 | Shinmaywa Industries, Ltd. | Magnet structure for magnetron sputtering and cathode electrode unit and magnetron sputtering equipment |
WO2007052737A1 (en) | 2005-11-04 | 2007-05-10 | Shinmaywa Industries, Ltd. | Magnet structure for magnetron sputtering system, cathode electrode unit and magnetron sputtering system |
WO2024152498A1 (en) * | 2023-01-16 | 2024-07-25 | 深圳市矩阵多元科技有限公司 | Magnetron tube apparatus for pvd planar target, and magnetron sputtering device |
-
1992
- 1992-01-07 JP JP3553792A patent/JPH05179440A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007037079A1 (en) * | 2005-09-29 | 2007-04-05 | Shinmaywa Industries, Ltd. | Magnet structure for magnetron sputtering and cathode electrode unit and magnetron sputtering equipment |
US20100230282A1 (en) * | 2005-09-29 | 2010-09-16 | Shinmaywa Industries, Ltd. | Magnet Structure and Cathode Electrode Unit for Magnetron Sputtering, and Magnetron Sputtering System |
US8608918B2 (en) | 2005-09-29 | 2013-12-17 | Shinmaywa Industries, Ltd. | Magnet structure and cathode electrode unit for magnetron sputtering, and magnetron sputtering system |
WO2007052737A1 (en) | 2005-11-04 | 2007-05-10 | Shinmaywa Industries, Ltd. | Magnet structure for magnetron sputtering system, cathode electrode unit and magnetron sputtering system |
EP1944388A1 (en) * | 2005-11-04 | 2008-07-16 | Shinmaywa Industries, Ltd. | Magnet structure for magnetron sputtering system, cathode electrode unit and magnetron sputtering system |
EP1944388A4 (en) * | 2005-11-04 | 2011-11-02 | Shinmaywa Ind Ltd | Magnet structure for magnetron sputtering system, cathode electrode unit and magnetron sputtering system |
TWI396762B (en) * | 2005-11-04 | 2013-05-21 | Shinmaywa Ind Ltd | A magnet structure and a cathode electrode unit for magnetron sputtering apparatus, and a magnetron sputtering apparatus |
WO2024152498A1 (en) * | 2023-01-16 | 2024-07-25 | 深圳市矩阵多元科技有限公司 | Magnetron tube apparatus for pvd planar target, and magnetron sputtering device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4892633A (en) | Magnetron sputtering cathode | |
KR100396456B1 (en) | High target utilization magnetic arrangement for a truncated conical sputtering target | |
US4865708A (en) | Magnetron sputtering cathode | |
US5174880A (en) | Magnetron sputter gun target assembly with distributed magnetic field | |
JPH08176817A (en) | Magnetron sputtering device | |
JPH11500490A (en) | Method and apparatus for sputtering magnetic target material | |
EP1144713B1 (en) | High target utilization magnetic arrangement for a truncated conical sputtering target | |
JPH05179440A (en) | Cathode for magnetron sputtering | |
JPH0525625A (en) | Magnetron sputtering cathode | |
JPH0692632B2 (en) | Flat plate magnetron sputtering system | |
JP2769572B2 (en) | Cathode for magnetron sputtering | |
JPH0517869A (en) | Sputtering method and device | |
JP2789251B2 (en) | Sputtering equipment using dipole ring type magnetic circuit | |
JPH0734244A (en) | Magnetron type sputtering cathode | |
US7182843B2 (en) | Rotating sputtering magnetron | |
JPH04276069A (en) | Method and device for sputtering | |
JP3211915B2 (en) | Magnetron sputtering cathode | |
JPH04358064A (en) | Magnetron sputtering cathode | |
JPH03183123A (en) | Sputtering apparatus | |
JPH04318165A (en) | Sputtering method and system therefor | |
JP2002069637A (en) | Magnetron sputtering device | |
JPH076061B2 (en) | Magnetron sputtering equipment | |
JP2514830Y2 (en) | Magnetron sputtering equipment | |
JPH1180943A (en) | Magnetron sputtering cathode | |
JPH0313575A (en) | Opposed targets sputtering device |