JPH05179113A - Resin composition structure based on polyalkylene phthalate and manufacture thereof - Google Patents

Resin composition structure based on polyalkylene phthalate and manufacture thereof

Info

Publication number
JPH05179113A
JPH05179113A JP4611091A JP4611091A JPH05179113A JP H05179113 A JPH05179113 A JP H05179113A JP 4611091 A JP4611091 A JP 4611091A JP 4611091 A JP4611091 A JP 4611091A JP H05179113 A JPH05179113 A JP H05179113A
Authority
JP
Japan
Prior art keywords
resin
component
melt
surface tension
polyalkylene phthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4611091A
Other languages
Japanese (ja)
Other versions
JP2863020B2 (en
Inventor
Yoshihisa Tajima
義久 田島
Keiichi Miyawaki
恵一 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP4611091A priority Critical patent/JP2863020B2/en
Publication of JPH05179113A publication Critical patent/JPH05179113A/en
Application granted granted Critical
Publication of JP2863020B2 publication Critical patent/JP2863020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a resin composition structure which solves the defects due to dispersibility by forming an interpenetrating network structure in a composition comprising a polyalkylene phthalate resin and a thermoplastic polystyrene resin, maintains the characteristics of the polyalkylene phthalate resin including mechanical properties, gives a reduced shrinkage rate when formed into moldings to improve the dimensional accuracy, and has an improved fusibility with other resins. CONSTITUTION:In the melt-kneading of a thermoplastic polystyrene resin B with a matrix of a polyalkylene phthalate resin A, a filler C, which has a lower surface tension at the melt-kneading temperature than the component B and an average particle size of 0.5-50mum, is added in amounts satisfying the relationship: B/(A+B)=0.05-0.40 (by weight) and C/(B+C)=0.1-0.7 (by weight).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリアルキレンフタレー
ト系樹脂をマトリックスとし、これに熱可塑性ポリスチ
レン系樹脂が網目状に分散した構造体及びその製造法に
関し、安価で、簡易な方法により形成され、成形品とし
てポリアルキレンフタレート系樹脂の物性を保持し、特
に耐薬品性、寸法精度、スチレン系樹脂等との融着性、
機械的物性等の改良された樹脂成形品を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure in which a polyalkylene phthalate resin is used as a matrix, and a thermoplastic polystyrene resin is dispersed in a network in the matrix, and a method for producing the structure, which is formed by an inexpensive and simple method. It retains the physical properties of polyalkylene phthalate resin as a molded product, especially chemical resistance, dimensional accuracy, and fusion property with styrene resin,
A resin molded product having improved mechanical properties and the like is provided.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリエ
チレンテレフタレート或いはポリブチレンテレフタレー
トに代表されるポリアルキレンフタレート系樹脂は成形
性に優れ、且つバランスのとれた機械的性質、低吸水
性、耐薬品性、ガスバリヤー性等を有し、更に高温下で
の熱劣化特性が他の熱可塑性樹脂に比較して優れており
高い熱変形温度を有するが故に、代表的なエンジニアリ
ング樹脂として極めて広汎な分野で利用されている。し
かし、利用分野の拡大に伴い、樹脂に対する要求性能が
益々高度化、特殊化する傾向にあり、斯かる要求の例と
して成形収縮による寸法精度、他の樹脂との融着性等の
改善がある。即ち、例えばポリアルキレンテレフタレー
ト系樹脂はその高い結晶化度による成形収縮及びそれに
起因する成形品のソリ・変形が発生しやすく、大型部品
や精密電子部品等の分野での使用には問題があった。
又、他の樹脂、特にスチレン系樹脂との接着性、融着性
の悪さもあり、スチレン系樹脂等との積層フィルム、ブ
ロー成形用途等の複合成形品とする場合にも問題となる
ことがある。
BACKGROUND OF THE INVENTION Polyalkylene phthalate resins represented by polyethylene terephthalate or polybutylene terephthalate are excellent in moldability and have well-balanced mechanical properties, low water absorption and chemical resistance. It has gas barrier properties, etc., and is superior in heat deterioration characteristics at high temperatures compared to other thermoplastic resins and has a high heat distortion temperature. It's being used. However, with the expansion of fields of use, the performance requirements for resins tend to become more sophisticated and specialized, and examples of such requirements include improvements in dimensional accuracy due to molding shrinkage, fusion resistance with other resins, and the like. .. That is, for example, a polyalkylene terephthalate resin is liable to cause mold shrinkage due to its high crystallinity and warp / deformation of a molded product due to the shrinkage, resulting in a problem in use in fields such as large-sized parts and precision electronic parts. ..
Further, it has poor adhesiveness and fusion property with other resins, especially styrene resin, which may cause a problem when it is used as a laminated film with styrene resin or the like, or as a composite molded product for blow molding. is there.

【0003】かかる問題点を解決する方法として、他の
樹脂の配合が試みられている。熱可塑性ポリスチレン系
樹脂の配合もその一つであり、特にポリアルキレンフタ
レート系樹脂の成形収縮の改善、ポリスチレン系樹脂等
との融着性の改良には有効な手段と考えられる。ところ
が、本発明者らの検討によれば、単にポリアルキレンフ
タレート系樹脂を主成分としこれに熱可塑性ポリスチレ
ン系樹脂を配合した場合、その分散構造は熱可塑性ポリ
スチレン系樹脂相が島状に分離して分散しており、その
ため成形収縮又はスチレン系樹脂等との融着性の改良は
尚充分でなく、多量の熱可塑性ポリスチレン系樹脂の配
合を余儀なくされ、そのためポリアルキレンフタレート
系樹脂が本来有している機械的物性、耐薬品性、耐熱性
を低下させるという問題がある。
As a method for solving such a problem, blending of other resins has been attempted. One of them is the blending of thermoplastic polystyrene-based resins, and it is considered to be an effective means for improving the molding shrinkage of polyalkylene phthalate-based resins and the fusion property with polystyrene-based resins. However, according to the studies by the present inventors, when a thermoplastic polystyrene-based resin is simply added to a polyalkylene phthalate-based resin as a main component, the dispersion structure of the thermoplastic polystyrene-based resin phase is separated into islands. Therefore, the molding shrinkage or the improvement of the fusion property with the styrene resin or the like is not yet sufficient, and a large amount of the thermoplastic polystyrene resin is blended, and therefore the polyalkylene phthalate resin originally has There is a problem that the mechanical properties, chemical resistance, and heat resistance are deteriorated.

【0004】本発明はかかる欠点を改善するため、ポリ
アルキレンフタレート系樹脂に熱可塑性ポリスチレン系
樹脂を配合した場合の両成分の分散性を改善し、機械的
物性等のポリアルキレンフタレート系樹脂の特長を維持
し、成形時の収縮率を減少させて寸法精度を向上し、
又、ポリスチレン系樹脂との融着性を向上することを目
的とする。
In order to ameliorate such drawbacks, the present invention improves the dispersibility of both components when a thermoplastic polystyrene resin is blended with the polyalkylene phthalate resin, and features of the polyalkylene phthalate resin such as mechanical properties. To improve the dimensional accuracy by reducing the shrinkage rate during molding.
Moreover, it aims at improving the fusion-bonding property with a polystyrene resin.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記問題点
に鑑み、ポリアルキレンフタレート系樹脂を主成分と
し、熱可塑性ポリスチレン系樹脂を配合したポリマーブ
レンドにおける両成分の分散形態の改善につき鋭意検討
した結果、特定の充填剤を併用し、溶融混練時の各成分
間の相対的表面張力等を調整する事により、ポリアルキ
レンフタレート系樹脂中に熱可塑性ポリスチレン系樹脂
が網目状に分散した組成物構造体が形成され、このよう
にして得た網目構造体は成形時の収縮率が低く寸法精度
に優れ、スチレン系樹脂等との融着性も良く、且つポリ
アルキレンフタレート系樹脂が本来有している機械的物
性を維持している事を見出し、本発明に到ったものであ
る。即ち、本発明はポリアルキレンフタレート系樹脂A
をマトリックスとし、熱可塑性ポリスチレン系樹脂Bを
溶融混練するに際し、溶融混練温度における表面張力が
成分Bより小であり、且つ平均粒子径が0.05〜50μm で
ある充填剤Cを、下記式(1) 及び(2) を満足する配合量
で溶融混練することを特徴とするA,B成分が相互に侵
入して網目状に分散した組成物構造体の製造法及び該製
造法にて得た組成物構造体より成る成形品に関するもの
である。 B/(A+B)=0.05〜0.40(重量比) (1) C/(B+C)=0.1 〜0.7 (重量比) (2) 先ず、本発明で言う相互侵入網目構造体の分散形態につ
いて説明すると、図1は従来のポリマーブレンド系にお
ける粒子分散形態を表す模式図であり、マトリックス樹
脂であるポリアルキレンフタレート系樹脂Aに比し比較
的含量の少ない熱可塑性ポリスチレン系樹脂Bは粒子状
に分離した分散形態を呈している。これに対し、図2は
本発明の相互侵入網目構造形態を示す模式図であり、こ
の構造では、熱可塑性ポリスチレン系樹脂Bの中に特定
の充填剤Cが包含され、熱可塑性ポリスチレン系樹脂B
の含量が少ないにもかかわらず、ポリアルキレンフタレ
ート系樹脂Aと熱可塑性ポリスチレン系樹脂Bは互いに
ネットワークを形成し、絡み合った構造となって連続相
を形成している。即ち、本発明ではポリアルキレンフタ
レート系樹脂Aに対し熱可塑性ポリスチレン系樹脂Bの
少なくとも一部有効量が、一般には大部分が互いに実質
上連続した分散構造を呈し、かかる分散形態を呈するこ
とに本発明の特徴があり、単に熱可塑性ポリスチレン系
樹脂を配合した場合(粒子状分散)に比べて、機械的物
性、成形時の収縮率、他の樹脂との融着性等を一層改良
したものである。
SUMMARY OF THE INVENTION In view of the above problems, the present inventors have been keen to improve the dispersion form of both components in a polymer blend containing a polyalkylene phthalate resin as a main component and a thermoplastic polystyrene resin. As a result of examination, a composition in which a thermoplastic polystyrene resin is dispersed in a polyalkylene phthalate resin in a network by adjusting the relative surface tension between each component during melt-kneading in combination with a specific filler The resulting structure has a low shrinkage rate during molding, is excellent in dimensional accuracy, has a good fusion property with a styrene resin, etc., and has a polyalkylene phthalate resin originally. The present invention has been completed by finding out that the mechanical properties that are maintained are maintained. That is, the present invention relates to the polyalkylene phthalate resin A
When the thermoplastic polystyrene resin B is melt-kneaded by using as a matrix, a filler C having a surface tension at the melt-kneading temperature lower than that of the component B and an average particle diameter of 0.05 to 50 μm is prepared by the following formula (1). And a composition obtained by melt-kneading in a blending amount satisfying (2), wherein components A and B intrude into each other and are dispersed in a mesh shape, and a composition obtained by the method. The present invention relates to a molded article composed of a structure. B / (A + B) = 0.05 to 0.40 (weight ratio) (1) C / (B + C) = 0.1 to 0.7 (weight ratio) (2) First, the dispersion form of the interpenetrating network structure referred to in the present invention will be described. FIG. 1 is a schematic diagram showing a particle dispersion morphology in a conventional polymer blend system, in which a thermoplastic polystyrene resin B having a relatively small amount as compared with a polyalkylene phthalate resin A which is a matrix resin is separated into particles. It has a morphology. On the other hand, FIG. 2 is a schematic diagram showing the form of the interpenetrating network structure of the present invention. In this structure, the thermoplastic polystyrene resin B contains a specific filler C, and the thermoplastic polystyrene resin B
Despite the low content of polyalkylene phthalate-based resin A and thermoplastic polystyrene-based resin B, they form a network with each other to form an intertwined structure to form a continuous phase. That is, in the present invention, at least a partial effective amount of the thermoplastic polystyrene-based resin B with respect to the polyalkylene phthalate-based resin A generally exhibits a dispersed structure in which most of them are substantially continuous with each other, and the present invention is to exhibit such a dispersed form. It has the characteristics of the invention, and has further improved mechanical properties, shrinkage ratio at the time of molding, fusion property with other resins, etc., as compared with the case of simply blending a thermoplastic polystyrene resin (particulate dispersion). is there.

【0006】かかる分散構造は、形成した構造体、例え
ば、成形片を適度に粉砕又は切断し、適当なアルカリ溶
液にてマトリックスである成分Aを選択的に分解除去す
ることによって確認することができる。成分Bが網目状
に分散している場合にはマトリックスAを分解除去した
後も、そのままその形態を保持しているのに対し、粒状
又は層状に分離して分散している場合には、形態が崩れ
原形をとどめないことでもわかる。また、かかるマトリ
ックスを分解処理後、適当な篩で分離することによって
網目状に存在した部分をほぼ定量的に知る事も出来る。
Such a dispersed structure can be confirmed by appropriately crushing or cutting the formed structure, for example, a molded piece, and selectively decomposing and removing the component A which is a matrix with an appropriate alkaline solution. .. When the component B is dispersed in the form of a mesh, the form is retained as it is even after the matrix A is decomposed and removed, whereas when the component B is separated and dispersed in the form of particles or layers, the form is You can also understand that the original shape does not stay. In addition, after the matrix is decomposed and separated by an appropriate sieve, it is possible to almost quantitatively determine the meshed portion.

【0007】次に、本発明に用いられる成分について説
明する。本発明で用いられる成分Aのポリアルキレンフ
タレート系樹脂とは、各種フタル酸と各種アルキレンジ
オールとを主成分として縮重合によって得られる飽和ア
ルキレンフタレート重合体又は共重合体である。中で
も、テレフタル酸又はそのエステル形成性誘導体と炭素
数2〜8 のアルキレンジオールとを主成分とするポリア
ルキレンテレフタレート重合体又は共重合体が好まし
く、共重合成分としてはイソフタル酸、シクロヘキサン
ジメタノール、ビスフェノールA、2,2 −ビス(β−ヒ
ドロキシエトキシフェニル)プロパン及びそのハロゲン
置換体及びこれらのエステル形成性誘導体等が好ましい
ものとして挙げられる。又、トリメチロールプロパン、
ペンタエリスリトール、トリメリット酸、ピロメリット
酸、トリメシン酸及びこれらのエステル形成性誘導体等
の如き多官能性モノマーを少量併用した分岐構造を有す
るポリアルキレンフタレート樹脂であってもよい。又、
その重合度に関しても特に制限はなく、成形加工性を有
するものであればよい。具体的には、例えばポリブチレ
ンテレフタレート、ポリブチレンテレフタレートイソフ
タレート共重合体、ポリエチレンテレフタレート、ポリ
エチレンテレフタレートイソフタレート共重合体、ポリ
ブチレン−シクロヘキサンジメチレンテレフタレート共
重合体、ポリシクロヘキサンジメタノールテレフタレー
ト、ポリシクロヘキサンジメタノールテレフタレートイ
ソフタレート共重合体等のポリアルキレンテレフタレー
トホモポリマー、コポリマー等が特に好ましい例として
挙げられる。かかる成分Aとしては二種以上の混合物で
あってもよい。
Next, the components used in the present invention will be described. The polyalkylene phthalate resin as the component A used in the present invention is a saturated alkylene phthalate polymer or copolymer obtained by condensation polymerization using various phthalic acids and various alkylene diols as main components. Among them, a polyalkylene terephthalate polymer or copolymer containing terephthalic acid or its ester-forming derivative and an alkylene diol having 2 to 8 carbon atoms as main components is preferable, and isophthalic acid, cyclohexanedimethanol and bisphenol are used as the copolymerization component. Preferred examples include A, 2,2-bis (β-hydroxyethoxyphenyl) propane, halogen-substituted compounds thereof, and ester-forming derivatives thereof. Also, trimethylol propane,
It may be a polyalkylene phthalate resin having a branched structure in which a small amount of a polyfunctional monomer such as pentaerythritol, trimellitic acid, pyromellitic acid, trimesic acid and their ester-forming derivatives are used together. or,
The degree of polymerization is not particularly limited as long as it has molding processability. Specifically, for example, polybutylene terephthalate, polybutylene terephthalate isophthalate copolymer, polyethylene terephthalate, polyethylene terephthalate isophthalate copolymer, polybutylene-cyclohexane dimethylene terephthalate copolymer, polycyclohexane dimethanol terephthalate, polycyclohexane dimethanol Particularly preferred examples include polyalkylene terephthalate homopolymers and copolymers such as terephthalate isophthalate copolymers. The component A may be a mixture of two or more kinds.

【0008】次に本発明で用いられる成分Bの熱可塑性
スチレン系樹脂とは、スチレンを主体としラジカル重合
反応、或いはイオン重合反応により得られるものであ
り、工業的には塊状重合、溶液重合、懸濁重合、乳化重
合等により得られるものがいずれも使用できる。また本
発明の熱可塑性ポリスチレン系樹脂Bは、ポリスチレン
の他、その性質を大幅に損なわない範囲で、スチレンを
主体とし、その他のビニル化合物、ジエン系化合物等の
反応性モノマーを共重合するか、ゴム成分を導入したも
のであってもよい。特にポリスチレン、ポリαメチルス
チレン或いはこれらを主体とし、アクリル酸、メタクリ
ル酸、又はそれらのエステル、アクリロニトリル、ブタ
ジエン、塩素化エチレン等との共重合体も好ましく用い
られる。又、その重合度に関しても特に制限はなく、熱
可塑性で成形加工性を有するものであれば何れにてもよ
いが、比較的低粘度、例えば溶融混練温度において成分
Aよりも低粘度のものが本発明の目的には好ましい。
The thermoplastic styrene resin as the component B used in the present invention is mainly styrene and is obtained by a radical polymerization reaction or an ionic polymerization reaction. Industrially, it is bulk polymerization, solution polymerization, Any of those obtained by suspension polymerization, emulsion polymerization and the like can be used. In addition to polystyrene, the thermoplastic polystyrene resin B of the present invention contains styrene as a main component and copolymerizes with other reactive monomers such as vinyl compounds and diene compounds, as long as the properties thereof are not significantly impaired. A rubber component may be introduced. In particular, polystyrene, poly-α-methylstyrene, or a copolymer containing them as a main component and acrylic acid, methacrylic acid, or an ester thereof, acrylonitrile, butadiene, chlorinated ethylene, or the like is also preferably used. The degree of polymerization is also not particularly limited, and may be any as long as it is thermoplastic and has moldability, but one having a relatively low viscosity, for example, one having a lower viscosity than the component A at the melt-kneading temperature. Preferred for the purposes of the present invention.

【0009】本発明における成分A,Bの配合比は、成
分Bが成分A及びBの総重量の5〜40重量%、好ましく
は10〜35重量%である。成分Bが過少の場合は本発明の
目的とする網目状分散形態が得難く、収縮率や他の樹脂
との融着性の改善等の効果が得られない。又、過大の場
合にはポリアルキレンフタレート系樹脂本来の特長が失
われ、好ましくない。
The mixing ratio of the components A and B in the present invention is such that the component B is 5 to 40% by weight, preferably 10 to 35% by weight based on the total weight of the components A and B. When the amount of the component B is too small, it is difficult to obtain the network-like dispersed form which is the object of the present invention, and the effects such as the improvement of the shrinkage ratio and the fusion property with other resins cannot be obtained. On the other hand, if it is too large, the original features of the polyalkylene phthalate resin are lost, which is not preferable.

【0010】次に成分Cは、溶融混練温度における表面
張力が少なくとも同温度における成分Bの表面張力より
小であることが必要で、好ましくは成分Bとの表面張力
差が2dyn/cm以上小のものである。各成分の表面張力
は、その溶融混練温度での表面張力を知る必要があり、
熱可塑性樹脂の場合、一般に広く利用されているよう
に、その温度での懸滴法で評価出来る。ここで懸滴法と
は、管を垂直に立て、その内部に入れた試料が液滴とな
って管端にぶら下がった状態の液滴の形状挙動から、液
体の表面張力を求める方法である。尚、溶融しないもの
(成分C)に対しては、ジスマンプロット法で算出した
接触角法で臨界表面張力を求め評価することができる
(詳細は後記の実施例参照)。
Next, the component C must have a surface tension at the melt-kneading temperature which is at least smaller than the surface tension of the component B at the same temperature, and preferably the surface tension difference from the component B is 2 dyn / cm or less. It is a thing. For the surface tension of each component, it is necessary to know the surface tension at the melt-kneading temperature,
In the case of a thermoplastic resin, it can be evaluated by the hanging drop method at that temperature, as is generally used. Here, the hanging drop method is a method in which the surface tension of the liquid is determined from the shape behavior of the droplet in a state in which the tube is set up vertically and the sample contained therein forms droplets and hangs at the tube end. For those that do not melt (Component C), the critical surface tension can be obtained and evaluated by the contact angle method calculated by the Zisman plotting method (for details, see Examples below).

【0011】成分Aと成分Bとの表面張力の関係は、溶
融混練温度において成分Bの表面張力は成分Aのそれよ
り小であることが必要であるが、一般に熱可塑性スチレ
ン系樹脂Bの溶融混練温度おける表面張力はポリアルキ
レンテレフタレート系樹脂Aのそれより小であり、この
相対的関係は満足される。因みにポリアルキレンテレフ
タレート系樹脂Aの 245℃における表面張力の値は30〜
38dyn/cm(例えばポリブチレンテレフタレートは36dyn/
cm、ポリエチレンテレフタレートは30dyn/cm)、熱可塑
性ポリスチレン系樹脂Bの値は24〜30dyn/cm(例えばポ
リスチレンは約25dyn/cm、スチレン−アクリロニトリル
共重合体は約29dyn/cm)である。従って成分Cの表面張
力は 245℃で混練する場合、更に上記成分Bの値以下で
あることを必要とし、出来るだけ低い方が好ましいこと
になる。
Regarding the surface tension relationship between the component A and the component B, it is necessary that the surface tension of the component B is smaller than that of the component A at the melt-kneading temperature, but generally, the melting of the thermoplastic styrene resin B is performed. The surface tension at the kneading temperature is smaller than that of the polyalkylene terephthalate resin A, and this relative relationship is satisfied. By the way, the value of the surface tension of the polyalkylene terephthalate resin A at 245 ° C is 30-
38 dyn / cm (For example, polybutylene terephthalate has 36 dyn / cm
cm, polyethylene terephthalate is 30 dyn / cm), and the value of the thermoplastic polystyrene resin B is 24 to 30 dyn / cm (for example, polystyrene is about 25 dyn / cm, and styrene-acrylonitrile copolymer is about 29 dyn / cm). Therefore, when kneading at 245 ° C., the surface tension of the component C needs to be equal to or lower than the value of the component B, and it is preferable that the surface tension is as low as possible.

【0012】また、成分Cの充填剤は、平均粒径(又は
平均繊維長)が0.05〜50μm の粉粒状(又は繊維状)の
ものが好ましく、更に好ましくは平均粒径 0.1〜10μm
である。粒径は小さい程、細かい網目構造を形成する上
で有利である。成分Cの配合量は、成分B及びCの総重
量に対し、10〜70重量%が適当であり、好ましくは20〜
60重量%である。過少であると本発明の効果を発揮し難
く、過大であると物性に影響し好ましくない。
The filler of the component C is preferably powdery or granular (or fibrous) having an average particle size (or average fiber length) of 0.05 to 50 μm, more preferably 0.1 to 10 μm.
Is. The smaller the particle size, the more advantageous it is in forming a fine mesh structure. The content of the component C is appropriately 10 to 70% by weight, preferably 20 to 70% by weight based on the total weight of the components B and C.
60% by weight. If it is too small, the effect of the present invention is difficult to be exhibited, and if it is too large, the physical properties are affected, which is not preferable.

【0013】本発明の網目状分散形態の発現は、かかる
条件を満足する成分Cが溶融混練時に存在することによ
り、その相対的表面張力の影響で、粒子状の成分Cが選
択的に成分Bによって包含され、成分Cを多数包含した
成分Bは、成分Cの混練による移動分散に連動して枝状
に延び、接合して網目構造を形成するものと解される。
In the development of the network-like dispersed form of the present invention, since the component C satisfying the above conditions is present at the time of melt-kneading, the particulate component C selectively selects the component B due to the influence of the relative surface tension. It is understood that the component B, which is included by the above-mentioned, and which contains a large number of the component C, extends in a branch shape in association with the movement and dispersion of the component C due to the kneading, and is joined to form a network structure.

【0014】成分Cの充填剤としては、前記の条件を満
足し、特に表面張力値が前記の如く溶融混練温度におい
て成分Bの値より小であれば、無機充填剤でも有機充填
剤でも良く、形状も繊維状、粉粒状、板状等その他目的
により任意の形状のものが用いられる。例えば、フッ素
系の樹脂又はゴム、シリコーン系の樹脂又はゴム等が挙
げられる。又、一般に広く用いられている粉粒状の無機
質充填剤に上記フッ素系樹脂、シリコーン系樹脂その他
適当な表面処理剤により表面処理を行って表面張力を調
整することにより成分Cとして有効に用いることができ
る。
The filler of the component C may be an inorganic filler or an organic filler as long as the above conditions are satisfied and the surface tension value is smaller than the value of the component B at the melt-kneading temperature as described above. As for the shape, an arbitrary shape such as fibrous, powdery, plate-shaped or the like is used. For example, a fluorine-based resin or rubber, a silicone-based resin or rubber, etc. may be mentioned. Further, it can be effectively used as the component C by subjecting a widely used powdery or granular inorganic filler to a surface treatment with the above-mentioned fluorine-based resin, silicone-based resin or other suitable surface-treating agent to adjust the surface tension. it can.

【0015】尚、本発明の組成物構造体には更にその目
的を損なわない範囲で所望の特性を付与するため従来公
知の添加物、例えば潤滑剤、滑剤、核剤、染顔料、離型
剤、酸化防止剤、熱安定剤、耐候(光)安定剤、加水分
解安定剤、その他成分A,B以外の熱可塑性樹脂、成分
C以外の繊維状強化剤、粉粒状、板状充填剤等の添加剤
を配合してもよい。本発明組成物構造体の調製法は種々
の公知の方法で可能であるが、少なくともA,B,Cの
3成分の共存下で加熱溶融し、30秒以上混練処理するこ
とが好ましく、その他の成分も同時に併用配合してもよ
く、また、別に加えても良い。具体的には、例えば成分
A,B,Cを予めタンブラー又はヘンシェルミキサーの
ような混練機で均一に混合した後、1軸又は2軸の押出
機に供給して溶融混練し、ペレットとした後成形に供し
てもよく、直接成形してもよい。尚、ここで言う溶融混
練は溶融温度において40sec-1以上の剪断速度下で行う
のが望ましい。特に好ましい剪断速度は 100〜500sec-1
である。処理温度は、樹脂成分が溶融する温度より5℃
乃至 100℃高い温度であり、特に好ましくは融点より10
℃乃至60℃高い温度である。高温に過ぎると分解や異常
反応を生じ好ましくない。また、溶融混練処理時間は、
30秒以上15分以内、好ましくは1〜10分である。
The composition structure of the present invention may further have conventionally known additives such as a lubricant, a lubricant, a nucleating agent, a dye / pigment, and a release agent in order to impart desired properties to the composition structure without impairing its purpose. , Antioxidants, heat stabilizers, weathering (light) stabilizers, hydrolysis stabilizers, thermoplastic resins other than components A and B, fibrous reinforcing agents other than component C, powdery granules, plate-like fillers, etc. You may mix an additive. The composition structure of the present invention can be prepared by various known methods, but it is preferable that the composition is heated and melted in the coexistence of at least three components A, B and C, and kneaded for 30 seconds or longer. Ingredients may be used in combination at the same time or may be added separately. Specifically, for example, the components A, B, and C are uniformly mixed in advance with a kneader such as a tumbler or a Henschel mixer, and then supplied to a single-screw or twin-screw extruder to be melt-kneaded into pellets. It may be subjected to molding or may be molded directly. The melt-kneading referred to here is preferably carried out at a melting temperature under a shear rate of 40 sec -1 or more. Particularly preferred shear rate is 100 to 500 sec -1
Is. The processing temperature is 5 ° C above the melting temperature of the resin component
To 100 ° C. higher, particularly preferably 10 above the melting point.
The temperature is higher by 60 ° C to 60 ° C. If the temperature is too high, decomposition or abnormal reaction occurs, which is not preferable. The melt-kneading time is
It is 30 seconds or more and 15 minutes or less, preferably 1 to 10 minutes.

【0016】[0016]

【発明の効果】本発明のポリアルキレンフタレート系樹
脂組成物構造体はポリアルキレンフタレート系樹脂に熱
可塑性ポリスチレン系樹脂が網目状に分散した構造を有
し、簡易な方法で形成することが出来、従来の単に両成
分を配合した組成物(粒子状分離分散)に比しポリアル
キレンフタレート系樹脂に近い物性を保持し、機械的物
性に優れ、成形収縮率即ち寸法精度や、スチレン系樹脂
等他の樹脂との融着性が一層改善され、多くの用途が期
待される。
The polyalkylene phthalate resin composition structure of the present invention has a structure in which a thermoplastic polystyrene resin is dispersed in a polyalkylene phthalate resin in a mesh form, and can be formed by a simple method. Compared to the conventional composition (particulate separation / dispersion) that simply combines both components, it retains physical properties close to those of polyalkylene phthalate resin, has excellent mechanical properties, molding shrinkage or dimensional accuracy, styrene resin, etc. The fusion property with other resins is further improved, and many applications are expected.

【0017】[0017]

【実施例】以下実施例により本発明を更に具体的に説明
するが、本発明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0018】実施例1〜2 表1に示す表面張力値(245 ℃)の、ポリブチレンテレ
フタレート樹脂A(PBT)(ポリプラスチックス
(株)製、ジュラネックス)、熱可塑性ポリスチレン樹
脂B(住友化学工業(株)製)、シリコーンゴム粒子C
(SP)(トーレ・シリコーン(株)製、平均粒径1μ
m 又は20μm )を表1に示す割合で混合し、設定温度 2
45℃にて内径30mm二軸押出機を用い、スクリュー回転数
80rpm(剪断速度約100sec-1) で溶融混練し、ペレット化
した。次いで、該ペレットより射出成形機により試験片
を作成し、下記の如く特性評価を行った。結果は表1に
示す。
Examples 1 and 2 Polybutylene terephthalate resin A (PBT) (Duranex, manufactured by Polyplastics Co., Ltd.) having a surface tension value (245 ° C.) shown in Table 1 and thermoplastic polystyrene resin B (Sumitomo Chemical Co., Ltd.) Industrial Co., Ltd.), silicone rubber particles C
(SP) (Tore Silicone Co., Ltd., average particle size 1μ
m or 20 μm) at the ratio shown in Table 1, and set the temperature to 2
Screw rotation speed using a twin screw extruder with an inner diameter of 30 mm at 45 ° C
The mixture was melt-kneaded at 80 rpm (shear rate of about 100 sec -1 ) and pelletized. Then, a test piece was prepared from the pellet by an injection molding machine, and the characteristics were evaluated as follows. The results are shown in Table 1.

【0019】表面張力の測定法 ポリブチレンテレフタレート樹脂及び熱可塑性スチレン
樹脂については、協和界面科学(株)製、自動界面張力
計PD−Z型を使用し、懸滴法(丸善(株)新実験科学
講座18巻「界面とコロイド」(1977)の 78-79頁記載の方
法)で 245℃の雰囲気で測定した。ポリブチレンテレフ
タレート樹脂は36dyn/cm、熱可塑性ポリスチレン樹脂は
25dyn/cmであった。また、シリコーンゴム粒子について
は、約300 ℃でプレス機でフィルム状に加工し、協和界
面科学(株)製、自動接触角計CA−Zを使用し、接触
角法(丸善(株)新実験科学講座18巻「界面とコロイ
ド」(1977)の93-106頁記載の方法)にて臨界表面張力と
温度係数を測定した。 245℃でのシリコーンゴム粒子の
表面張力に換算すると約9dyn/cmであった。 25℃ 表面張力 19dyn/cm 60℃ 表面張力 17dyn/cm 80℃ 表面張力 16dyn/cm 温度勾配(−dr/dT) =0.05網目構造の確認法 10×10×3mmに切断した成形片を1N水酸化ナトリウム
水溶液に入れ、60℃にて12時間還流し、マトリックス樹
脂であるポリブチレンテレフタレート樹脂を分解、溶出
させた後、肉眼及び光学顕微鏡、電子顕微鏡により形態
変化を観察し、この条件では分解しない熱可塑性ポリス
チレン樹脂の分散形態を調べた。ここで、熱可塑性ポリ
スチレン樹脂が従来のように粒子分散であれば、成形片
の形態をとどめず、粒子状の熱可塑性ポリスチレン樹脂
の沈積物が観察されるのみである。これに対し、本発明
の如く、熱可塑性ポリスチレン樹脂が網目構造をとって
いる場合、成形片は形態を留めており、これは肉眼又は
光学顕微鏡で観察される。更に走査型電子顕微鏡で拡大
して観察すると網目構造がより明確に確認できる。因み
に実施例1の組成物構造体の分解処理後の粒子構造(網
目構造)を示す電子顕微鏡写真を図3に示す。また、こ
の網目構造の定量的評価方法として、前記方法でマトリ
ックス樹脂Aを溶出除去した後、12メッシュの篩で分離
し、残重量を調べた。粒子状分散部分は篩を通過し残ら
ないが、網目構造部分は残るため、残重量%は網目構造
部分の(B+C)の重量を意味する。引張強伸度 :ASTM D638 の方法に準拠して測定した。融着性 :プレス機にて1mm厚の試験片を作成し、同様に
作成したポリスチレンの試験片と重ね、245 ℃、2分
間、50kg/cm2でプレス機で融着させた後、急冷した1mm
厚の試料について、JIS C6481 の方法に準拠して融着強
度を測定した。成形収縮率 :ASTM引張試験片を成形し、成形品の一定箇
所の寸法を正確に測定し、対応する金型の寸法に対する
差を%で示した。
Measuring method of surface tension For polybutylene terephthalate resin and thermoplastic styrene resin, an automatic interfacial tension meter PD-Z type manufactured by Kyowa Interface Science Co., Ltd. was used and a hanging drop method (Maruzen Co., Ltd. new experiment) was used. It was measured in an atmosphere of 245 ° C. according to the method described in pages 78-79 of Science Course Vol. 18, “Interface and Colloid” (1977)). Polybutylene terephthalate resin is 36 dyn / cm, thermoplastic polystyrene resin is
It was 25 dyn / cm. Silicone rubber particles are processed into a film with a press machine at about 300 ° C, and an automatic contact angle meter CA-Z manufactured by Kyowa Interface Science Co., Ltd. is used. The critical surface tension and temperature coefficient were measured according to the method described in Pages 93-106 of Science Course Vol. 18, "Interface and Colloid" (1977). The surface tension of the silicone rubber particles at 245 ° C. was about 9 dyn / cm. 25 ℃ Surface tension 19dyn / cm 60 ℃ Surface tension 17dyn / cm 80 ℃ Surface tension 16dyn / cm Temperature gradient (-dr / dT) = 0.05 Confirmation method of network structure 1N hydroxylated molded piece cut into 10 × 10 × 3mm Put in an aqueous solution of sodium and reflux at 60 ° C for 12 hours to decompose and elute the matrix resin, polybutylene terephthalate resin, and then observe the morphological changes with the naked eye, optical microscope and electron microscope. The dispersion morphology of the plastic polystyrene resin was investigated. Here, if the thermoplastic polystyrene resin is particle-dispersed as in the conventional case, the form of the molded piece is not retained, and only a deposit of the particulate thermoplastic polystyrene resin is observed. On the other hand, when the thermoplastic polystyrene resin has a network structure as in the present invention, the molded piece retains its shape, and this is observed with the naked eye or an optical microscope. Furthermore, the network structure can be more clearly confirmed by enlarging and observing with a scanning electron microscope. Incidentally, the electron micrograph showing the particle structure (mesh structure) of the composition structure of Example 1 after the decomposition treatment is shown in FIG. Further, as a quantitative evaluation method of this network structure, after the matrix resin A was eluted and removed by the above-mentioned method, it was separated with a 12-mesh sieve and the residual weight was examined. The particulate dispersion portion does not pass through the sieve and remains, but the network structure portion remains, so the residual weight% means the weight of (B + C) of the network structure portion. Tensile strength and elongation : Measured according to the method of ASTM D638. Fusing property : A 1 mm-thick test piece was prepared with a press machine, was overlaid with a polystyrene test piece prepared in the same manner, was fused with a press machine at 245 ° C. for 2 minutes at 50 kg / cm 2 , and was then rapidly cooled. 1 mm
The fusion strength of the thick sample was measured according to the method of JIS C6481. Molding shrinkage rate : ASTM tensile test pieces were molded, the dimensions of certain parts of the molded products were measured accurately, and the difference with respect to the dimensions of the corresponding mold was shown in%.

【0020】比較例1〜4 ポリブチレンテレフタレート樹脂A単独、ポリスチレン
樹脂B単独、成分A,Bの配合において充填剤Cを含ま
ないような組み合わせとした場合、又はシリコーンゴム
粒子Cの粒子径が本発明の範囲外となる様な組み合わせ
とした場合について、実施例1と同様の方法で組成物を
調製し、成形して評価した。結果は表1に併せて示す。
Comparative Examples 1 to 4 Polybutylene terephthalate resin A alone, polystyrene resin B alone, a combination of components A and B containing no filler C, or the silicone rubber particles C have the same particle size. When the combination was out of the scope of the invention, the composition was prepared in the same manner as in Example 1, molded and evaluated. The results are also shown in Table 1.

【0021】実施例3〜6、比較例5〜8 成分A,B,Cの配合量を表2のように変えた他は実施
例1と同様に成形片を作成し評価した。評価結果は表2
に示す。
Examples 3 to 6 and Comparative Examples 5 to 8 Molded pieces were prepared and evaluated in the same manner as in Example 1 except that the compounding amounts of the components A, B and C were changed as shown in Table 2. Table 2 shows the evaluation results
Shown in.

【0022】実施例7、比較例9〜10 充填剤Cとしてフッ素ゴム粒子(ダイキン工業(株)
製、平均粒径0.3 μm)、炭酸カルシウム(白石工業
(株)製、平均粒径1μm)、及びタルク粒子(平均粒径
2μm )を使用した以外は実施例1と同様の方法で組成
物を調製し、成形して評価した。結果は表3に示す。
Example 7, Comparative Examples 9 to 10 Fluorine rubber particles as a filler C (Daikin Industry Co., Ltd.)
Manufactured by Shiraishi Industry Co., Ltd. (average particle size 1 μm) and talc particles (average particle size 2 μm) were used to prepare a composition in the same manner as in Example 1. It was prepared, molded and evaluated. The results are shown in Table 3.

【0023】実施例8〜9、比較例11〜12 成分Aとしてポリブチレンテレフタレート樹脂をポリエ
チレンテレフタレート樹脂(PET)(鐘紡(株)製、
ベルペット)に変えた場合、また成分Bとしてポリスチ
レン樹脂をスチレン−アクリロニトリル共重合体(A
S)(日本合成ゴム(株)製、AS230)に変えた場
合について実施例1と同様の方法で組成物を調製し、成
形して評価した。結果は表4に示す。
Examples 8 to 9 and Comparative Examples 11 to 12 Polybutylene terephthalate resin as component A was polyethylene terephthalate resin (PET) (Kanebo Co., Ltd.,
When it is changed to velpet), polystyrene resin is used as the component B, and the styrene-acrylonitrile copolymer (A
S) (AS230, manufactured by Nippon Synthetic Rubber Co., Ltd.) was used to prepare a composition in the same manner as in Example 1, and the composition was molded and evaluated. The results are shown in Table 4.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のポリマーブレンド系による構造体の分散
状態を示す模式図である。
FIG. 1 is a schematic diagram showing a dispersed state of a structure according to a conventional polymer blend system.

【図2】本発明による構造体の分散状態を示す模式図で
ある。
FIG. 2 is a schematic diagram showing a dispersed state of a structure according to the present invention.

【図3】本発明(実施例1)による構造体のアルカリ水
溶液分解処理後の粒子構造(網目構造)を示す電子顕微
鏡写真である。
FIG. 3 is an electron micrograph showing a particle structure (mesh structure) after the alkaline aqueous solution decomposition treatment of the structure according to the present invention (Example 1).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリアルキレンフタレート系樹脂Aをマ
トリックスとし、熱可塑性ポリスチレン系樹脂Bを溶融
混練するに際し、溶融混練温度における表面張力が成分
Bより小であり、且つ平均粒子径が0.05〜50μm である
充填剤Cを、下記式(1) 及び(2) を満足する配合量で溶
融混練することを特徴とするA,B成分が相互に侵入し
て網目状に分散した組成物構造体の製造法。 B/(A+B)=0.05〜0.40(重量比) (1) C/(B+C)=0.1 〜0.7 (重量比) (2)
1. When melt-kneading a thermoplastic polystyrene resin B using a polyalkylene phthalate resin A as a matrix, the surface tension at the melt-kneading temperature is smaller than that of the component B, and the average particle diameter is 0.05 to 50 μm. Production of a composition structure in which a certain filler C is melt-kneaded in a blending amount satisfying the following formulas (1) and (2) and components A and B intrude into each other and are dispersed in a mesh form. Law. B / (A + B) = 0.05 to 0.40 (weight ratio) (1) C / (B + C) = 0.1 to 0.7 (weight ratio) (2)
【請求項2】 溶融混練温度における成分Cの表面張力
が成分Bのそれより2dyn/cm以上小である請求項1記載
の組成物構造体の製造法。
2. The method for producing a composition structure according to claim 1, wherein the surface tension of the component C at the melt-kneading temperature is smaller than that of the component B by 2 dyn / cm or more.
【請求項3】 熱可塑性ポリスチレン系樹脂Bがポリス
チレン又はスチレンを主成分とする共重合樹脂であり、
溶融混練温度における表面張力が成分Aより小である請
求項1又は2記載の組成物構造体の製造法。
3. The thermoplastic polystyrene resin B is polystyrene or a copolymer resin containing styrene as a main component,
The method for producing a composition structure according to claim 1 or 2, wherein the surface tension at the melt-kneading temperature is lower than that of the component A.
【請求項4】 請求項1〜3の何れか1項記載の方法に
より製造した組成物構造体より成る成形品。
4. A molded article comprising a composition structure produced by the method according to claim 1.
JP4611091A 1991-02-18 1991-02-18 Method for producing polyalkylene phthalate-based resin composition structure Expired - Fee Related JP2863020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4611091A JP2863020B2 (en) 1991-02-18 1991-02-18 Method for producing polyalkylene phthalate-based resin composition structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4611091A JP2863020B2 (en) 1991-02-18 1991-02-18 Method for producing polyalkylene phthalate-based resin composition structure

Publications (2)

Publication Number Publication Date
JPH05179113A true JPH05179113A (en) 1993-07-20
JP2863020B2 JP2863020B2 (en) 1999-03-03

Family

ID=12737858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4611091A Expired - Fee Related JP2863020B2 (en) 1991-02-18 1991-02-18 Method for producing polyalkylene phthalate-based resin composition structure

Country Status (1)

Country Link
JP (1) JP2863020B2 (en)

Also Published As

Publication number Publication date
JP2863020B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP4829304B2 (en) Highly flowable polyester composition
JP4923775B2 (en) Resin composition and molded article comprising the same
JP3605956B2 (en) Reinforced polyester resin composition and molded article thereof
JP3274933B2 (en) Method for producing polyolefin resin composition
JPH08176339A (en) Thermoplastic resin composition and molding
JP3720604B2 (en) Polyester resin composition
JP2854150B2 (en) Polyacetal resin composition structure and method for producing the same
JP2960149B2 (en) Polyester molding
JPH05179113A (en) Resin composition structure based on polyalkylene phthalate and manufacture thereof
JP2843158B2 (en) Thermoplastic styrenic resin composition structure and method for producing the same
JP3067837B2 (en) Polyalkylene phthalate-based resin composition structure and method for producing the same
JP3086271B2 (en) Polyalkylene phthalate-based resin composition structure and method for producing the same
JP3137347B2 (en) Polyolefin resin composition structure and method for producing the same
JP3130322B2 (en) Polyacetal resin composition structure and method for forming the same
JP3672759B2 (en) Resin composition
JPH0124051B2 (en)
JP2583231B2 (en) Impact resistant polyester resin composition
JPH04136061A (en) Thermoplastic interpenetrating network structure and its formation
JP2597668B2 (en) Flame retardant polyester composition
JPH08165409A (en) Metallic part-inserted molded product
JPS60215052A (en) Resin composition
JPH0428768A (en) Thermoplastic resin composition
JP2995684B2 (en) Thermoplastic blend containing ethylene terpolymer and method for producing the same
JP3086274B2 (en) Polyacetal resin composition structure and method for producing the same
JPH04211448A (en) Polyacetal resin composition structure material and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees