JP3086274B2 - Polyacetal resin composition structure and method for producing the same - Google Patents

Polyacetal resin composition structure and method for producing the same

Info

Publication number
JP3086274B2
JP3086274B2 JP03112308A JP11230891A JP3086274B2 JP 3086274 B2 JP3086274 B2 JP 3086274B2 JP 03112308 A JP03112308 A JP 03112308A JP 11230891 A JP11230891 A JP 11230891A JP 3086274 B2 JP3086274 B2 JP 3086274B2
Authority
JP
Japan
Prior art keywords
resin
vinyl chloride
component
surface tension
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03112308A
Other languages
Japanese (ja)
Other versions
JPH04318052A (en
Inventor
義久 田島
藤井  靖久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP03112308A priority Critical patent/JP3086274B2/en
Publication of JPH04318052A publication Critical patent/JPH04318052A/en
Application granted granted Critical
Publication of JP3086274B2 publication Critical patent/JP3086274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はポリアセタール樹脂をマ
トリックスとし、これに塩化ビニル系樹脂が網目状に分
散した組成物構造体及びその製造法に関し、安価で、簡
易な手法により形成され、成形品として外観が良好でポ
リアセタール樹脂の特長を保持し、特に耐酸性、耐燃性
等の改良された樹脂成形品を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition structure in which a polyacetal resin is used as a matrix, and a vinyl chloride resin is dispersed in a network, and a method for producing the same. The present invention provides a resin molded product having a good appearance and retaining the characteristics of a polyacetal resin, and particularly having improved acid resistance and flame resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリア
セタール樹脂は成形性に優れ、かつバランスのとれた機
械的性質、電気的性質、耐熱性、耐溶剤性、摩擦摩耗特
性等を有し、さらにプラスチック材料としては卓越した
耐疲労性を有するが故に、代表的なエンジニアリング樹
脂として極めて広汎な分野において利用されている。し
かし利用分野の拡大に伴い、コストダウンが望まれ、
又、樹脂に対する要求性能も益々高度化或いは特殊化す
る傾向にあり、かかる要求の例として耐酸性、耐燃性が
ある。即ち、ポリアセタール樹脂の成形品は、その分子
構造に起因して燃えやすさがあり、又、酸に弱く耐酸性
の改善を望まれる場合が多く、そのため自動車部品、電
気・電子部品等の過酷な環境下の用途に問題となる場合
がある。一般にポリアセタール樹脂の斯かる要求に対応
する方法として、塩化ビニル系樹脂の配合はポリアセタ
ール樹脂の耐酸性、耐燃性等の改善には有効な手段と考
えられる。ところが、本発明者らの検討によれば、ポリ
アセタール樹脂に塩化ビニル系樹脂を単に配合した場合
は分散性が悪く、その相構造は塩化ビニル系樹脂相が島
状又は層状に分散しており、そのため耐酸性、耐燃性等
の改良は充分でなく、多量の塩化ビニル系樹脂の配合を
余儀なくされ、そのためポリアセタール樹脂が本来有し
ている機械的性質、電気的性質、耐熱性、摩擦摩耗特性
等を低下させるという問題がある。本発明はポリアセタ
ール樹脂に塩化ビニル系樹脂を配合した場合の両成分の
分散性に基づく上記の欠点を改善し、成形品とした場
合、外観良好で且つ耐酸性、耐燃性に優れた樹脂成形品
を提供することを目的とする。
BACKGROUND OF THE INVENTION Polyacetal resins are excellent in moldability and have well-balanced mechanical properties, electrical properties, heat resistance, solvent resistance, friction and wear properties, and the like. Because of its excellent fatigue resistance as a plastic material, it is used in a very wide field as a typical engineering resin. However, with the expansion of application fields, cost reduction is desired,
In addition, the performance requirements for resins tend to be increasingly sophisticated or specialized, and examples of such requirements include acid resistance and flame resistance. That is, molded products of polyacetal resin are flammable due to their molecular structure, and are often susceptible to acids and are required to have improved acid resistance. Therefore, severe parts such as automobile parts and electric / electronic parts are required. May be problematic for environmental applications. In general, as a method for responding to such a requirement of the polyacetal resin, the incorporation of a vinyl chloride resin is considered to be an effective means for improving the acid resistance, the flame resistance and the like of the polyacetal resin. However, according to the study of the present inventors, when polyvinyl chloride resin is simply blended into the polyacetal resin, the dispersibility is poor, and the phase structure is such that the vinyl chloride resin phase is dispersed in the form of islands or layers, Therefore, the improvement of acid resistance, flame resistance, etc. is not enough, and a large amount of vinyl chloride resin has to be blended. Therefore, the mechanical properties, electrical properties, heat resistance, friction and wear properties of polyacetal resin inherently exist. There is a problem that it decreases. The present invention improves the above-mentioned drawbacks based on the dispersibility of both components when a polyvinyl chloride resin is blended with a polyacetal resin, and when formed into a molded product, has a good appearance and excellent acid resistance and excellent flame resistance. The purpose is to provide.

【0003】[0003]

【課題を解決するための手段】本発明者等は上記問題点
に鑑み、ポリアセタール樹脂と塩化ビニル系樹脂とのポ
リマーブレンドにおけるその分散形態の改善につき鋭意
検討した結果、特定の充填剤を併用し、溶融混練時の各
成分間の相対的表面張力等を調整する事により、ポリア
セタール樹脂中に塩化ビニル系樹脂が網目状に分散した
構造体が形成され、このようにして得た網目構造体は耐
酸性、耐燃性が良く、且つポリアセタール樹脂が本来有
している機械的性質、電気的性質、耐熱性、摩擦摩耗特
性等を維持していることを見い出し、本発明に到ったも
のである。即ち、本発明はポリアセタール樹脂Aをマト
リックスとし、塩化ビニル系樹脂Bを溶融混練するに際
し、溶融混練温度における表面張力が少なくとも成分B
より大であり、且つ平均粒径が0.05〜50μm である充填
剤Cを、下記式(1) 及び(2) を満足する配合量で溶融混
練することを特徴とするA,B成分が相互に侵入して網
目状に分散した組成物構造体の製造法、及び該製造法に
て得たポリアセタール樹脂組成物構造体より成る成形品
に関するものである。 B/(A+B)=0.05〜0.4 (重量比) (1) C/(B+C)=0.1 〜0.7 (重量比) (2) ここで、塩化ビニル系樹脂Bとは、その30重量%以内で
一般に使用されている塩化ビニル用可塑剤を含有する混
合物である場合も含む。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies on the improvement of the dispersion form in a polymer blend of a polyacetal resin and a vinyl chloride resin, and as a result, have found that a specific filler is used in combination. By adjusting the relative surface tension and the like between the components during melt-kneading, a structure in which a vinyl chloride resin is dispersed in a polyacetal resin in a network form is formed, and the network structure thus obtained is It has been found that the acid resistance, the flame resistance are good, and the mechanical properties, the electrical properties, the heat resistance, the friction and wear properties, etc. inherent to the polyacetal resin are maintained, and the present invention has been reached. . That is, in the present invention, when the polyacetal resin A is used as a matrix and the vinyl chloride resin B is melt-kneaded, the surface tension at the melt-kneading temperature is at least the component B.
A and B components are characterized by melt-kneading a filler C having a larger size and an average particle size of 0.05 to 50 μm in a blending amount satisfying the following formulas (1) and (2). TECHNICAL FIELD The present invention relates to a method for producing a composition structure which has penetrated and dispersed in a network, and a molded article comprising a polyacetal resin composition structure obtained by the production method. B / (A + B) = 0.05-0.4 (weight ratio) (1) C / (B + C) = 0.1-0.7 (weight ratio) (2) Here, the vinyl chloride resin B generally means 30% by weight or less. This includes the case where the mixture contains the plasticizer for vinyl chloride used.

【0004】先ず、本発明で言う相互侵入網目構造体の
分散形態について説明すると、図1は従来のポリマーブ
レンド系における分散形態を表す模式図であり、マトリ
ックス樹脂であるポリアセタール樹脂Aに比し比較的含
量の少ない塩化ビニル系樹脂Bは粒子状又は層状に分離
した分散形態を呈している。これに対し、図2は本発明
の相互侵入網目構造形態を示す模式図であり、この構造
では、塩化ビニル系樹脂Bの中に特定の充填剤Cが選択
的に包含され、塩化ビニル系樹脂Bの含量が少ないにも
かかわらず、ポリアセタール樹脂Aと塩化ビニル系樹脂
Bは互いにネットワークを形成し、絡み合った構造とな
って、実質上連続相を形成している。
First, a description will be given of the dispersion form of the interpenetrating network structure referred to in the present invention. FIG. 1 is a schematic view showing the dispersion form in a conventional polymer blend system, which is compared with a polyacetal resin A which is a matrix resin. The vinyl chloride resin B having a small content is in a dispersed form separated into particles or layers. On the other hand, FIG. 2 is a schematic view showing an interpenetrating network structure according to the present invention. In this structure, a specific filler C is selectively included in a vinyl chloride resin B, and Although the content of B is small, the polyacetal resin A and the vinyl chloride resin B form a network with each other and have an entangled structure, thereby forming a substantially continuous phase.

【0005】即ち、本発明ではポリアセタール樹脂Aに
対し塩化ビニル系樹脂Bの少なくとも一部有効量が、一
般には大部分が互いに実質上連続した分散構造を呈し、
かかる分散形態を呈することに本発明の特徴があり、従
来の塩化ビニル系樹脂配合の致命的欠点である分散性不
良に基づく問題点を解決したのである。かかる分散構造
は、形成した構造体、例えば、成形片を適度に粉砕又は
切断し、酸溶液にてマトリックスである成分Aを分解除
去することによって確認することができる。成分Bが網
目状に分散している場合にはマトリックスAを分解除去
した後も、そのままその形態を保持しているのに対し、
粒状又は層状に分離して分散している場合には、形態が
崩れ原形を留めないことでもわかる。又、かかるマトリ
ックスの分解処理後、適当な篩で分離することによって
網目状に存在した部分を略定量的に知ることも出来る。
That is, in the present invention, at least a part of the effective amount of the vinyl chloride resin B relative to the polyacetal resin A generally exhibits a dispersed structure in which most are substantially continuous with each other,
The present invention is characterized by exhibiting such a dispersion form, and solves a problem based on poor dispersibility, which is a fatal drawback of the conventional vinyl chloride resin compound. Such a dispersed structure can be confirmed by appropriately pulverizing or cutting a formed structure, for example, a molded piece, and decomposing and removing the component A as a matrix with an acid solution. In the case where the component B is dispersed in the form of a mesh, after the matrix A is decomposed and removed, the form is maintained as it is,
When the particles are separated and dispersed in the form of particles or layers, it can be understood that the form is broken and the original form is not retained. In addition, after the matrix is decomposed, the portion existing in a network can be known almost quantitatively by separating the matrix with an appropriate sieve.

【0006】次に本発明の成分について説明する。本発
明で用いられる成分Aのポリアセタール樹脂とは、オキ
シメチレン基(−CH2O−)を主たる構成単位とする高分
子化合物で、ポリオキシメチレンホモポリマー、オキシ
メチレン基以外に他の構成単位を少量含有するコポリマ
ー、ターポリマー、ブロックコポリマーの何れにてもよ
く、又、分子が線状のみならず分岐、架橋構造を有する
ものであってもよい。又、その重合度、分岐、架橋度に
関しても特に制限はなく、溶融成形加工性を有するもの
(例えば190 ℃, 2160g 荷重下でのメルトフロー値(MR
F) が1.5 〜70)であればよい。又、成分Aとして2種
以上のポリアセタール樹脂を用いてもよい。
Next, the components of the present invention will be described. The polyacetal resin of the component A used in the present invention is a polymer compound having an oxymethylene group (—CH 2 O—) as a main structural unit, and other structural units other than the polyoxymethylene homopolymer and the oxymethylene group. It may be any of a copolymer, terpolymer or block copolymer containing a small amount, and may be a molecule having not only a linear but also a branched or crosslinked structure. The degree of polymerization, branching and cross-linking are not particularly limited, and those having melt processability (for example, a melt flow value (MR under a load of 2160 g at 190 ° C.)
F) should be 1.5 to 70). Further, two or more kinds of polyacetal resins may be used as the component A.

【0007】次に本発明において用いられる成分Bの塩
化ビニル系樹脂は、塩化ビニル単位を50重量%以上含有
する樹脂であればよく、塩化ビニル又は塩化ビニルと共
重合可能な単量体との共重合樹脂である。塩化ビニルと
共重合可能な単量体としては、例えば、酢酸ビニル、プ
ロピオン酸ビニル等のカルボン酸ビニルエステル;メチ
ルビニルエーテル、イソブチルビニルエーテル、セチル
ビニルエーテル、(メタ)アリルグリシジルエーテル等
の不飽和アルコールのエーテル;塩化ビニリデン、弗化
ビニリデン等のハロゲン化ビニリデン;マレイン酸ジエ
チル、マレイン酸ブチルベンジル、マレイン酸ジ−2−
ヒドロキシエチル、イタコン酸ジメチル、(メタ)アク
リル酸メチル、(メタ)アクリル酸エチル、(メタ)ア
クリル酸ラウリル、(メタ)アクリル酸−2−ヒドロキ
シプロピル、(メタ)アクリル酸グリシジル等の不飽和
カルボン酸エステル;p−ビニル安息香酸グリシジル等
のビニル置換芳香族カルボン酸エステル;ビニルスルホ
ン酸グリシジル、(メタ)アリルスルホン酸グリシジル
等の不飽和スルホン酸エステル;(メタ)アクリロニト
リル等のα,β−不飽和ニトリル;ブタジエンモノオキ
シド、ビニルシクロヘキセンモノオキシド等のエポキシ
ドモノオレフィン;エチレン、プロピレン等のオレフィ
ン;スチレン、α−メチルスチレン、p−メチルスチレ
ン等の芳香族ビニル化合物等を示すことができるが、こ
れらに限定されない。又、斯かる成分Bも2種以上の混
合物であってもよい。
Next, the vinyl chloride resin of the component B used in the present invention may be any resin containing at least 50% by weight of vinyl chloride units, and may be a resin containing vinyl chloride or a monomer copolymerizable with vinyl chloride. It is a copolymer resin. Examples of monomers copolymerizable with vinyl chloride include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; and unsaturated alcohol ethers such as methyl vinyl ether, isobutyl vinyl ether, cetyl vinyl ether, and (meth) allyl glycidyl ether. Vinylidene halides such as vinylidene chloride and vinylidene fluoride; diethyl maleate, butyl benzyl maleate, di-2-maleate
Unsaturated carboxylic acids such as hydroxyethyl, dimethyl itaconate, methyl (meth) acrylate, ethyl (meth) acrylate, lauryl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and glycidyl (meth) acrylate Acid esters; vinyl-substituted aromatic carboxylic esters such as glycidyl p-vinylbenzoate; unsaturated sulfonic esters such as glycidyl vinyl sulfonate and glycidyl (meth) allyl sulfonate; α, β-unsaturated esters such as (meth) acrylonitrile Saturated nitriles; epoxide monoolefins such as butadiene monoxide and vinylcyclohexene monoxide; olefins such as ethylene and propylene; and aromatic vinyl compounds such as styrene, α-methylstyrene, p-methylstyrene, etc. Not limited to Also, such component B may be a mixture of two or more.

【0008】尚、本発明の塩化ビニル系樹脂Bは従来公
知の塩化ビニル系樹脂用可塑剤を含有したものでもよ
い。このような可塑剤としては、例えばフタル酸ジ−2
−エチルヘキシル、フタル酸ジブチル、フタル酸ジイソ
デシル、フタル酸ジイソノニル等のフタル酸エステル;
アジピン酸ジイソデシル、アジピン酸ジ−2−エチルヘ
キシル等の脂肪酸エステル;ジエチレングリコールジベ
ンゾエート等のグリコールエステル;リン酸トリクレジ
ル、リン酸トリキシリル等のリン酸エステル;トリメリ
ット酸トリ−2−エチルヘキシル等のトリメリット酸エ
ステル等があり、塩化ビニル系樹脂と相溶性が良いもの
は何れも使用することができる。可塑剤は、添加量が増
すほど加工性、柔軟性が向上するが、一方、耐熱性、機
械的強度は低下する傾向がある。従って、用途に応じて
可塑剤の量は決まるが、一般に塩化ビニル系樹脂Bのう
ちの0〜30重量%であり、更に好ましくは0〜15重量%
である。斯かる可塑剤は予め塩化ビニル系ポリマーと溶
融混練したものを使用してもよく、又、単に塩化ビニル
系ポリマーに含浸、又は塩化ビニル系ポリマー及び成分
Aとブレンドした状態で使用してもよい。
The vinyl chloride resin B of the present invention may contain a conventionally known plasticizer for vinyl chloride resin. Examples of such a plasticizer include phthalic acid di-2.
Phthalic esters such as ethylhexyl, dibutyl phthalate, diisodecyl phthalate, diisononyl phthalate;
Fatty acid esters such as diisodecyl adipate and di-2-ethylhexyl adipate; glycol esters such as diethylene glycol dibenzoate; phosphate esters such as tricresyl phosphate and trixylyl phosphate; trimellitic acid such as tri-2-ethylhexyl trimellitate Ester and the like, and those having good compatibility with the vinyl chloride resin can be used. As the amount of the plasticizer increases, processability and flexibility improve, but on the other hand, heat resistance and mechanical strength tend to decrease. Therefore, although the amount of the plasticizer is determined depending on the use, it is generally 0 to 30% by weight of the vinyl chloride resin B, more preferably 0 to 15% by weight.
It is. Such a plasticizer may be used in a state of being melt-kneaded with a vinyl chloride-based polymer in advance, or may be used by simply impregnating the vinyl chloride-based polymer or blending with the vinyl chloride-based polymer and the component A. .

【0009】塩化ビニル系樹脂Bの粘度については特に
制限はないが、溶融混練時において成分Aより著しく高
粘度のものは本発明の目的とする網目状の分散形態の形
成が困難になる傾向があり、一般に溶融混練温度におい
て成分Aの粘度(ポイズ)に対し3倍以下のものが好ま
しく、特に成分Bの配合量が比較的少量の場合には低い
ほうが望ましい。
The viscosity of the vinyl chloride resin B is not particularly limited. However, when the viscosity is significantly higher than that of the component A at the time of melt-kneading, it tends to be difficult to form a network-like dispersion form which is the object of the present invention. In general, the viscosity (poise) of the component A is preferably three times or less at the melt-kneading temperature, and particularly preferably lower when the blending amount of the component B is relatively small.

【0010】本発明における成分A、Bの配合比は、成
分Bが成分A及びBの総重量の5〜40重量%、好ましく
は10〜35重量%である。成分Bが過少の場合は本発明の
目的とする網目状の分散形態の発現が困難となり、耐酸
性、耐燃性等の改善に役立たず、又、過大の場合にはポ
リアセタール樹脂本来の特性が失われ好ましくない。
In the present invention, the compounding ratio of the components A and B is such that the component B is 5 to 40% by weight, preferably 10 to 35% by weight of the total weight of the components A and B. If the amount of component B is too small, it becomes difficult to develop a network-like dispersion form which is the object of the present invention, which does not contribute to the improvement of acid resistance and flame resistance, and if it is too large, the original properties of the polyacetal resin are lost. We do not like it.

【0011】次に成分Cは、溶融混練温度における表面
張力が少なくとも同温度における成分Bの表面張力より
大であることが必要で、好ましくはB成分との表面張力
差が2dyn/cm以上大のものである。各成分の表面張力
は、その溶融混練温度での表面張力であって、ポリアセ
タール樹脂Aの場合、一般に熱可塑性樹脂に広く利用さ
れているように、その温度での懸滴法で評価出来る。こ
こで懸滴法とは、管を垂直に立て、その内面に入れた試
料が液滴となって管滴にぶら下がった状態の液滴の形状
挙動から、液体の表面張力を求める方法である。又、ジ
スマンプロット法で算出した接触角法で臨界表面張力を
求めてもよい。成分B、特に成分Cの場合は後者の方が
適当である(詳細は後記の実施例参照)。因みにポリア
セタール樹脂Aの190 ℃における表面張力は約21dyn/c
m、塩化ビニル系樹脂Bの値は一般に27〜35dyn/cm(例
えば可塑剤としてフタル酸ジ−2−エチルヘキシルを10
重量%含む塩化ビニル樹脂は約30dyn/cm)である。従っ
て成分Cの表面張力は190 ℃で混練する場合、上記成分
Bの値以上で、出来るだけ高いほうが好ましいことにな
る。
The component C must have a surface tension at the melt-kneading temperature which is at least higher than the surface tension of the component B at the same temperature. Preferably, the surface tension difference from the component B is 2 dyn / cm or more. Things. The surface tension of each component is the surface tension at the melt-kneading temperature, and in the case of polyacetal resin A, can be evaluated by the hanging drop method at that temperature as generally used widely in thermoplastic resins. Here, the hanging drop method is a method in which a tube is set upright, and the surface tension of a liquid is determined from the shape behavior of a droplet in a state where a sample placed on the inner surface of the tube hangs as a droplet. Alternatively, the critical surface tension may be determined by the contact angle method calculated by the Zisman plot method. In the case of component B, especially component C, the latter is more suitable (for details, see Examples below). Incidentally, the surface tension of polyacetal resin A at 190 ° C. is about 21 dyn / c.
m, the value of the vinyl chloride resin B is generally 27 to 35 dyn / cm (for example, 10-2-dihexyl phthalate is used as a plasticizer.
The weight percentage of vinyl chloride resin is about 30 dyn / cm). Therefore, when the surface tension of the component C is kneaded at 190 ° C., it is preferable that the surface tension is higher than the value of the component B and is as high as possible.

【0012】又、成分Cの充填剤は、平均粒径(又は平
均繊維長)が0.05〜50μm の粉粒状(又は繊維状)のも
のが好ましく、更に好ましくは平均粒径0.1 〜10μm で
ある。粒径は小さい程、細かい網目構造を形成する上で
有利である。成分Cの配合量は、成分B及びCの総量に
対し、10〜70重量%が適当であり、好ましくは20〜60重
量%である。過少であると本発明の効果を発揮し難く、
過大であると物性に影響し好ましくない。
The filler of the component C is preferably in the form of powder (or fiber) having an average particle size (or average fiber length) of 0.05 to 50 μm, more preferably 0.1 to 10 μm. The smaller the particle size, the more advantageous in forming a fine network structure. The amount of component C is suitably from 10 to 70% by weight, and preferably from 20 to 60% by weight, based on the total amount of components B and C. If it is too small, it is difficult to exert the effect of the present invention,
If it is too large, it affects the physical properties, which is not preferable.

【0013】本発明の網目状分散形態の発現は、かかる
条件を満足する成分Cが溶融混練時に存在することによ
り、その相対的表面張力の影響で、粒子状の成分Cが選
択的に成分Bによって包含され、成分Cを多数包含した
成分Bは、成分Cの混練による移動分散に連動して枝状
に延び、接合して網目構造を形成するものと解される。
The development of the network-like dispersion form of the present invention is based on the fact that the component C satisfying the above conditions is present at the time of melt-kneading. It is understood that the component B containing a large number of the components C extends in a branch shape in conjunction with the movement and dispersion by the kneading of the component C, and joins to form a network structure.

【0014】成分Cの充填剤としては、前記の条件を満
足し、特に表面張力値が前記の如く溶融混練温度におい
て成分Bの値より大であれば、無機充填剤でも有機充填
剤でも良く、形状も繊維状、粉粒状、板状等その他目的
により任意の形状のものが用いられる。例えば無機充填
剤Cとしては、ガラス繊維、アスベスト繊維、シリカ繊
維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア
繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン
酸カリウム繊維等の平均繊維長50μm 以下の無機質繊維
状物質、或いはカーボンブラック、黒鉛、シリカ、石英
粉末、ガラスビーズ、ミルドガラスファイバー、ガラス
バルーン、ガラス粉、珪酸カルシウム、珪酸アルミニウ
ム、カオリン、タルク、クレー、硅藻土、ウォラストナ
イトの如き珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、三
酸化アンチモン、アルミナの如き金属の酸化物、炭酸カ
ルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸
カルシウム、硫酸バリウムの如き金属の硫酸塩、その他
フェライト、炭化珪素、窒化珪素、窒化硼素等、或いは
マイカ、ガラスフレーク等の平均径50μm 以下の粉粒状
又は板状充填剤等が、使用する成分Bとの相対的表面張
力を考慮して成分Cとしての選択の対象となる。又、有
機充填剤Cとしては、前記の条件を満足するものであれ
ば、耐熱性、高融点の熱可塑性樹脂、熱硬化性樹脂等か
らなる充填剤が使用可能であり、その例を挙げれば、芳
香族ポリエステル系樹脂、芳香族ポリアミド系樹脂、芳
香族ポリイミド系樹脂、ポリスチレン系樹脂、アクリル
系樹脂、MBS系樹脂、メラミン系樹脂、フェノール系
樹脂、エポキシ系樹脂等が、上記条件を満足する限り成
分Cとしての選択の対象として挙げられる。これらの充
填剤は一種又は二種以上併用することもできる。又、こ
れらの充填剤は要すれば適当な表面処理剤等により表面
処理を行うことにより表面張力を調整して成分Cとして
用いることができる。
The filler of component C satisfies the above conditions, and may be an inorganic filler or an organic filler as long as the surface tension value is greater than the value of component B at the melt-kneading temperature as described above. Any shape such as a fiber shape, a powder shape, a plate shape or the like may be used depending on the purpose. For example, as the inorganic filler C, an average fiber length of 50 μm or less such as glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, etc. Inorganic fibrous substances, or carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, wollastonite Metal oxides such as silicates, iron oxides, titanium oxides, zinc oxides, antimony trioxides, aluminas, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, etc. Ferrite, silicon carbide, silicon nitride, boron nitride, etc. , Average diameter 50μm following particulate or plate-like fillers such as glass flakes and the like, subject to selection as component C in consideration of the relative surface tension of the component B to be used. Further, as the organic filler C, a filler composed of a heat-resistant, high-melting thermoplastic resin, a thermosetting resin, or the like can be used as long as the above-mentioned conditions are satisfied. , Aromatic polyester resin, aromatic polyamide resin, aromatic polyimide resin, polystyrene resin, acrylic resin, MBS resin, melamine resin, phenol resin, epoxy resin, etc., satisfy the above conditions. As long as it is selected as the component C. These fillers can be used alone or in combination of two or more. If necessary, these fillers can be used as Component C by adjusting the surface tension by performing a surface treatment with an appropriate surface treatment agent or the like.

【0015】尚、本発明のポリアセタール樹脂組成物構
造体には更にその目的を損なわない範囲で所望の特性を
付与するため、従来公知の添加物、例えば潤滑剤、滑
剤、核剤、染顔料、離型剤、酸化防止剤、熱安定剤、耐
候(光)安定剤、加水分解安定剤、成分A,B以外の熱
可塑性樹脂、成分C以外の強化剤、充填剤等の添加剤を
配合してもよい。
In order to further impart desired properties to the polyacetal resin composition structure of the present invention without impairing its purpose, conventionally known additives such as lubricants, lubricants, nucleating agents, dyes and pigments, Additives such as release agents, antioxidants, heat stabilizers, weather (light) stabilizers, hydrolysis stabilizers, thermoplastic resins other than components A and B, reinforcing agents other than component C, fillers, etc. You may.

【0016】本発明の組成物構造体の調製法は種々の公
知の方法で可能であるが、少なくとも、A,B,Cの3
成分の共存下で加熱溶融し、30秒以上混練処理すること
が必要であり、その他の成分も同時に併用配合してもよ
く、又、別に加えてもよい。具体的には、例えばA,
B,Cを予めタンブラー又はヘンシェルミキサーのよう
な混合機て均一に混合した後、1軸又は2軸の押出機に
供給して溶融混練し、ペレットとした後成形に供しても
よく、直接成形してもよい。尚、ここで言う溶融混練は
溶融温度において40sec-1以上の剪断速度下で行うのが
望ましい。特に好ましくは剪断速度100 〜500sec-1
ある。処理温度は、樹脂成分が溶融する温度より5℃乃
至100 ℃高い温度であり、特に好ましくは融点より10℃
乃至60℃高い温度である。高温に過ぎると分解や異常反
応を生じ好ましくない。又、溶融混練処理時間は、30秒
以上15分以内、好ましくは1〜10分である。
The composition structure of the present invention can be prepared by various known methods, and at least three of A, B and C can be prepared.
It is necessary to heat and melt in the coexistence of the components, and to perform a kneading treatment for 30 seconds or more. Other components may be simultaneously used together, or may be added separately. Specifically, for example, A,
B and C may be uniformly mixed in advance by a mixer such as a tumbler or a Henschel mixer, and then supplied to a single- or twin-screw extruder to be melt-kneaded to form pellets, which may then be subjected to molding, or directly molded. May be. The melt kneading here is desirably performed at a melting temperature under a shear rate of 40 sec -1 or more. Particularly preferably, the shear rate is 100 to 500 sec- 1 . The processing temperature is 5 ° C to 100 ° C higher than the temperature at which the resin component melts, and particularly preferably 10 ° C from the melting point.
Up to 60 ° C higher. If the temperature is too high, decomposition or abnormal reaction occurs, which is not preferable. The melt-kneading time is 30 seconds or more and 15 minutes or less, preferably 1 to 10 minutes.

【0017】[0017]

【発明の効果】本発明のポリアセタール樹脂組成物構造
体はポリアセタール樹脂に塩化ビニル系樹脂が網目状に
分散した構造を有し、簡易な方法で形成することが出
来、従来の単に両成分を配合した組成物成形品(粒子状
分離分散)に比し表面状態が良好でポリアセタール樹脂
に近い物性を保持し、且つ耐酸性、耐燃性等が改善さ
れ、多くの用途が期待される。
The structure of the polyacetal resin composition of the present invention has a structure in which a polyvinyl chloride resin is dispersed in a network in a polyacetal resin, and can be formed by a simple method. The surface condition is better than that of the molded article (particulate separation and dispersion), and the properties close to those of a polyacetal resin are maintained, and the acid resistance, the flame resistance and the like are improved, so that many applications are expected.

【0018】[0018]

【実施例】以下実施例により本発明を更に具体的に説明
するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0019】実施例1〜2 表1に示す表面張力値(190 ℃)の(A)ポリアセター
ル樹脂(ポリプラスチックス(株)製、ジュラコン)、
(B)フタル酸ジ−2−エチルヘキシル(DOP)を10重量
%含浸させた塩化ビニル(PVC) 系樹脂、(C)タルク粒
子(富士タルク工業(株)製、平均粒径2μm 又は20μ
m )を表1に示す割合で混合し、30mm二軸押出機を用
い、設定温度190 ℃にてスクリュー回転数80rpm (剪断
速度約100sec-1)で混練し、ペレット化した。次いで、
該ペレットより射出成形機により試験片を作成し、下記
の特性評価を行った。結果は表1に示す。
Examples 1 and 2 (A) Polyacetal resin (manufactured by Polyplastics Co., Ltd., Duracon) having a surface tension value (190 ° C.) shown in Table 1
(B) a vinyl chloride (PVC) -based resin impregnated with 10% by weight of di-2-ethylhexyl phthalate (DOP), (C) talc particles (manufactured by Fuji Talc Kogyo KK, average particle size 2 μm or 20 μm)
m) were mixed in the proportions shown in Table 1, and kneaded at a set temperature of 190 ° C. at a screw rotation speed of 80 rpm (shear speed: about 100 sec −1 ) using a 30 mm twin-screw extruder to form pellets. Then
Test pieces were prepared from the pellets using an injection molding machine, and the following characteristics were evaluated. The results are shown in Table 1.

【0020】表面張力の測定法(以下の例もこれに準ず
る) ポリアセタール樹脂については、協和界面科学(株)
製、自動界面張力計PD−Z型を使用し、懸滴法(丸善
(株)新実験科学講座18巻「界面とコロイド」(1977)の
78〜79頁記載の方法)で190 ℃の雰囲気で測定した。ポ
リアセタール樹脂の表面張力は21dyn/cmであった。又、
塩化ビニル系樹脂Bについては、約150 ℃でプレス機に
よりフィルム状に加工し、協和界面科学(株)製、自動
接触角計CA−Zを使用し、接触角法(丸善(株)新実
験科学講座18巻「界面とコロイド」(1977)の93〜106 頁
記載の方法)にて各温度における臨界表面張力を測定
し、温度係数を求めた。測定結果は次の通りであり、19
0 ℃での塩化ビニル系樹脂の表面張力に換算すると約30
dyn/cmであった。 25℃ 表面張力 42dyn/cm 60℃ 表面張力 40dyn/cm 80℃ 表面張力 39dyn/cm 温度勾配(−dr/dT)=0.05 dyn/cm 又、タルク粒子の表面張力も原料石について同様に測定
し、190 ℃での表面張力に換算すると約63dyn/cmであっ
た。
Measurement method of surface tension (the following examples are also based on this method ) For polyacetal resin, Kyowa Interface Science Co., Ltd.
Using the automatic interfacial tensiometer PD-Z type, the hanging drop method (Maruzen Co., Ltd.
78-79) in an atmosphere of 190 ° C. The surface tension of the polyacetal resin was 21 dyn / cm. or,
The vinyl chloride resin B was processed into a film by a press at about 150 ° C, and the contact angle method (Maruzen Co., Ltd. new experiment) was carried out using an automatic contact angle meter CA-Z manufactured by Kyowa Interface Science Co., Ltd. The critical surface tension at each temperature was measured in accordance with the method described in Science Course, Vol. 18, “Interface and Colloid” (1977), pp. 93-106, and the temperature coefficient was determined. The measurement results are as follows, 19
Approximately 30 when converted to the surface tension of vinyl chloride resin at 0 ° C.
dyn / cm. 25 ° C Surface tension 42dyn / cm 60 ° C Surface tension 40dyn / cm 80 ° C Surface tension 39dyn / cm Temperature gradient (−dr / dT) = 0.05 dyn / cm It was about 63 dyn / cm in terms of surface tension at 190 ° C.

【0021】網目構造の確認法(以下の例もこれに準ず
る) 10×10×3mmに切断した成形片を塩酸エタノール液(32
N塩酸:エタノール=1:3(vol))に入れ、室温にて24
時間処理し、マトリックス樹脂であるポリアセタール樹
脂Aを分解除去した後、この条件では分解しない塩化ビ
ニル系樹脂Bの分散形態を調べた。ここで、塩化ビニル
系樹脂Bが従来のように粒子分散であれば、成形片の形
態をとどめず、粒子状の塩化ビニル系樹脂Bの沈積物が
肉眼又は光学顕微鏡で観察されるのみである。これに対
し、本発明の如く、塩化ビニル系樹脂Bが網目構造をと
っている場合、マトリックス樹脂であるポリアセタール
樹脂Aを分解除去後も成形片の形態をとどめており、こ
れは肉眼又は光学顕微鏡で観察され、耐酸性に優れてい
ることを示唆している。更に走査型電子顕微鏡で拡大し
て観察すると相互侵入網目構造の形成が確認できる。因
みに実施例1の組成物構造体の分解処理後の粒子構造
(網目構造)を表す電子顕微鏡写真を図3に示す。又、
網目構造部分の定量的評価方法として、前記方法で酸処
理した後、12メッシュの篩で分離し、残重量を調べた。
粒子状分散部分は篩を通過し残らないが、網目構造部分
は残るため、残重量%は網目構造部分の(B+C)の重
量を意味する。
Confirmation method of network structure (the following example is also based on this) A molded piece cut into a size of 10 × 10 × 3 mm was subjected to a hydrochloric acid ethanol solution (32
N hydrochloric acid: ethanol = 1: 3 (vol)) at room temperature for 24 hours.
After a time treatment to decompose and remove the polyacetal resin A as a matrix resin, the dispersion form of the vinyl chloride resin B that does not decompose under these conditions was examined. Here, if the vinyl chloride resin B is a particle dispersion as in the prior art, the form of the molded piece does not remain, and the deposit of the particulate vinyl chloride resin B is only observed with the naked eye or an optical microscope. . On the other hand, when the vinyl chloride resin B has a network structure as in the present invention, the polyacetal resin A as the matrix resin remains in the form of a molded piece even after being decomposed and removed. And suggests that it is excellent in acid resistance. Furthermore, formation of an interpenetrating network structure can be confirmed by observation under a scanning electron microscope. Incidentally, an electron micrograph showing the particle structure (network structure) of the composition structure of Example 1 after the decomposition treatment is shown in FIG. or,
As a quantitative evaluation method of the network structure portion, after the acid treatment by the above method, the mesh structure portion was separated by a 12-mesh sieve, and the remaining weight was examined.
Although the particulate dispersion portion does not pass through the sieve but remains in the network structure portion, the remaining weight% means the weight of (B + C) in the network structure portion.

【0022】引張強伸度:ASTM D-638の方法に準拠して
測定した。耐燃性 :JIS K 6911に規定された方法で試験片に10秒間
着火し、その後、炎を取り去り、炎または樹脂が滴下す
るまでの時間(秒)で評価した。
Tensile elongation : Measured according to the method of ASTM D-638. Flame resistance : The test piece was ignited for 10 seconds by the method specified in JIS K 6911, and thereafter, the flame was removed and the time (second) until the flame or the resin dropped was evaluated.

【0023】比較例1〜4 比較のため、ポリアセタール樹脂A単独、DOP 含浸PVC
系樹脂B単独、及び両者の配合において成分Cを含まな
い場合、成分Cの粒径が本発明の範囲外である場合につ
いて、実施例1と同様の方法で組成物を調製し、成形し
て評価した。結果は表1に示す。
Comparative Examples 1-4 For comparison, polyacetal resin A alone, DOP impregnated PVC
When the particle size of the component C is out of the range of the present invention when the particle diameter of the component C is out of the range of the present invention, the composition is prepared in the same manner as in Example 1, and the resin is molded. evaluated. The results are shown in Table 1.

【0024】実施例3〜6、比較例5〜8 成分A,B,Cの配合量を表2のように変えた他は前例
と同様の方法で組成物を調製し、成形して評価した。結
果は表2に示す。
Examples 3 to 6 and Comparative Examples 5 to 8 Compositions were prepared in the same manner as in the previous example except that the amounts of components A, B and C were changed as shown in Table 2, molded and evaluated. . The results are shown in Table 2.

【0025】実施例7〜8、比較例9 充填剤Cとしてポリアミド粒子(東レ(株)製、平均粒
径5μm)、炭酸カルシウム(白石工業(株)製、平均粒
径1μm)、及び比較のためシリコーンゴム粒子(トーレ
シリコーン(株)製、平均粒径1μm)を使用した以外は
前例と同様の方法で組成物を調製し、成形して評価し
た。結果は表3に示す。
Examples 7 to 8, Comparative Example 9 Polyamide particles (manufactured by Toray Industries, Inc., average particle size: 5 μm), calcium carbonate (manufactured by Shiraishi Industry Co., Ltd., average particle size: 1 μm) were used as the filler C. For this reason, a composition was prepared in the same manner as in the previous example except that silicone rubber particles (manufactured by Toray Silicone Co., Ltd., average particle size 1 μm) were used, molded and evaluated. The results are shown in Table 3.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のポリマーブレンド系による構造体の分散
状態を示す模式図である。
FIG. 1 is a schematic view showing a state of dispersion of a structure by a conventional polymer blend system.

【図2】本発明による構造体の分散状態を示す模式図で
ある。
FIG. 2 is a schematic diagram showing a dispersion state of a structure according to the present invention.

【図3】本発明(実施例1)による構造体の塩酸溶液処
理後の粒子構造(網目構造)を示す電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph showing a particle structure (network structure) of a structure according to the present invention (Example 1) after treatment with a hydrochloric acid solution.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリアセタール樹脂Aをマトリックスと
し、塩化ビニル系樹脂Bを溶融混練するに際し、溶融混
練温度における表面張力が少なくとも成分Bより大であ
り、且つ平均粒径が0.05〜50μm である充填剤Cを、下
記式(1) 及び(2) を満足する配合量で溶融混練すること
を特徴とするA,B成分が相互に侵入して網目状に分散
した組成物構造体の製造法。 B/(A+B)=0.05〜0.4 (重量比) (1) C/(B+C)=0.1 〜0.7 (重量比) (2)
1. A filler comprising a polyacetal resin A as a matrix and a vinyl chloride resin B melt-kneaded, wherein the filler has a surface tension at a melt-kneading temperature at least higher than that of the component B and an average particle size of 0.05 to 50 μm. A method for producing a composition structure in which components A and B penetrate into each other and are dispersed in a network, wherein C is melt-kneaded in a compounding amount satisfying the following formulas (1) and (2). B / (A + B) = 0.05-0.4 (weight ratio) (1) C / (B + C) = 0.1-0.7 (weight ratio) (2)
【請求項2】 溶融混練温度における充填剤Cの表面張
力が塩化ビニル系樹脂Bの表面張力より2dyn/cm以上大
である請求項1記載の組成物構造体の製造法。
2. The method for producing a composition structure according to claim 1, wherein the surface tension of the filler C at the melt-kneading temperature is at least 2 dyn / cm higher than the surface tension of the vinyl chloride resin B.
【請求項3】 塩化ビニル系樹脂Bが塩化ビニル用可塑
剤0〜30重量%を含む混合物である請求項1又は2記載
の樹脂組成物構造体の製造法。
3. The method for producing a resin composition structure according to claim 1, wherein the vinyl chloride resin B is a mixture containing 0 to 30% by weight of a plasticizer for vinyl chloride.
【請求項4】 請求項1〜3の何れか1項記載の方法に
より製造した樹脂組成物構造体より成る成形品。
4. A molded article comprising a resin composition structure produced by the method according to claim 1.
JP03112308A 1991-04-17 1991-04-17 Polyacetal resin composition structure and method for producing the same Expired - Fee Related JP3086274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03112308A JP3086274B2 (en) 1991-04-17 1991-04-17 Polyacetal resin composition structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03112308A JP3086274B2 (en) 1991-04-17 1991-04-17 Polyacetal resin composition structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04318052A JPH04318052A (en) 1992-11-09
JP3086274B2 true JP3086274B2 (en) 2000-09-11

Family

ID=14583424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03112308A Expired - Fee Related JP3086274B2 (en) 1991-04-17 1991-04-17 Polyacetal resin composition structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP3086274B2 (en)

Also Published As

Publication number Publication date
JPH04318052A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
KR100995718B1 (en) Halogen-free flame retardant polycarbonate compositions
JP3409141B2 (en) Filled carbonate polymer blend composition
US20080269401A1 (en) Polymer Alloy Composition
CN101072829A (en) Resinous composition with improved resistance to plate-out formation, and method
JP2001181463A (en) Thermomeltable fluororesin composite
KR102018714B1 (en) Thermoplastic resin composition and molded article using the same
KR100788736B1 (en) Composition of acrylic polymer for facing materials
JPS62143957A (en) Styrenic resin composition
JP3086274B2 (en) Polyacetal resin composition structure and method for producing the same
JP2854150B2 (en) Polyacetal resin composition structure and method for producing the same
JP3720604B2 (en) Polyester resin composition
JP3474251B2 (en) Fiber reinforced thermoplastic resin composition
JPH1129707A (en) High-impact strength polysulfone
JP3144813B2 (en) Method for producing polyacetal resin composition structure
JP3130322B2 (en) Polyacetal resin composition structure and method for forming the same
JP2843158B2 (en) Thermoplastic styrenic resin composition structure and method for producing the same
JP2905295B2 (en) Styrene resin composition structure and method for producing the same
JP2863020B2 (en) Method for producing polyalkylene phthalate-based resin composition structure
JP3115438B2 (en) Polyacetal resin composition
JP3067837B2 (en) Polyalkylene phthalate-based resin composition structure and method for producing the same
JP2995684B2 (en) Thermoplastic blend containing ethylene terpolymer and method for producing the same
JP3135398B2 (en) Resin composition
JP2017036370A (en) Vinyl chloride resin composition
JPH11199733A (en) Vinyl chloride resin composition
JPH04136061A (en) Thermoplastic interpenetrating network structure and its formation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees