JPH05178634A - Method for deciding effective part of optical fiber preform - Google Patents

Method for deciding effective part of optical fiber preform

Info

Publication number
JPH05178634A
JPH05178634A JP22829791A JP22829791A JPH05178634A JP H05178634 A JPH05178634 A JP H05178634A JP 22829791 A JP22829791 A JP 22829791A JP 22829791 A JP22829791 A JP 22829791A JP H05178634 A JPH05178634 A JP H05178634A
Authority
JP
Japan
Prior art keywords
clad
core
preform
diameter ratio
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22829791A
Other languages
Japanese (ja)
Inventor
Shinichi Nakayama
真一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22829791A priority Critical patent/JPH05178634A/en
Publication of JPH05178634A publication Critical patent/JPH05178634A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating

Abstract

PURPOSE:To improve yield by obtaining the distribution of the diameter ratio of the core to clad in the longitudinal direction of a starting preform by picture processing and using the part within the control values as the effective part. CONSTITUTION:White parallel beams 30 are injected from behind the starting preform 10 of an optical fiber to be measured. The beams are two-dimensionally inputted to an electronic computer 34 by using a TV camera 32 (e.g. CCD camera). The inputted pictures are analyzed by the computer to recognize the preform and as the distribution of brightness in the radial direction of the preform 10. The (a) in the brightness pattern is the boundary point between the clad and air, and the (b) is the boundary point between the core and clad. A certain threshold is imparted to the brightness data by the four points A, B, C and D shown in the figure, and the data are binarized to detect the boundary points (a) and (b) as the edge. The (a-a) and (b-b) distances are then digitized to obtain the diameter ratio of the core to clad at an optional point in the preform. The part within the specified values is found to be the effective part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、出発母材の有効部分
を判定する方法に関し、特に出発母材の長手方向におけ
るコア・クラッド径比の測定を行い、それから母材の有
効部分を判定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining an effective portion of a starting base material, and particularly, for measuring a core-clad diameter ratio in a longitudinal direction of the starting base material, and then determining an effective portion of the base material. It is about the method.

【0002】[0002]

【従来の技術】現在、光ファイバ母材を作る場合は、図
2のように、 コア12とクラッド14の一部を同時に形成する(以
下出発母材10と言う)、 有効部16だけ取り出す、 その後、有効部16に不足しているクラッド18を、
外付け法あるいはジャケット法により、付け足して完成
母材20とする、 という方法をとっている。
2. Description of the Related Art At present, when manufacturing an optical fiber preform, as shown in FIG. 2, a part of a core 12 and a clad 14 are simultaneously formed (hereinafter referred to as a starting preform 10), and only an effective portion 16 is taken out. After that, the clad 18 lacking in the effective portion 16 is replaced by
The finished base material 20 is added by an external attachment method or a jacket method.

【0003】従来、出発母材10の有効部16は、図3
(a)のように、クラッド14の外径の均一な箇所PQ
を、外観により判定していた。
Conventionally, the effective portion 16 of the starting base material 10 is shown in FIG.
As shown in (a), the part PQ where the outer diameter of the clad 14 is uniform
Was judged by the appearance.

【0004】不足分のクラッド量(付け足すクラッド
量)は、プロファイルにも依存するが、支配的なパラメ
ータは、出発母材のコア・クラッド径比である。その不
足クラッド分を、母材中の数点(たとえばA,Bの2
点)の測定により決定し、母材長手方向に、同一厚のク
ラッドを付け足していた。
The clad amount (additional clad amount) for the shortage depends on the profile, but the dominant parameter is the core-clad diameter ratio of the starting base material. The lacking clad is divided into several points in the base metal (for example, 2 for A and B).
(Point), and a clad having the same thickness was added in the longitudinal direction of the base material.

【0005】[0005]

【発明が解決しようとする課題】図3(a)のように、
クラッド14の外径は一定であるが、コア12の径が変
動している場合がある。CおよびDの部分ではコア12
径が大きくなっているので、この部分のコア・クラッド
径比は、図3(b)に示すように小さい。
Problems to be Solved by the Invention As shown in FIG.
The outer diameter of the clad 14 is constant, but the diameter of the core 12 may fluctuate. Core 12 in C and D parts
Since the diameter is large, the core / clad diameter ratio of this portion is small as shown in FIG. 3 (b).

【0006】しかし従来は、コア・クラッド径比が大き
く変動している箇所をも有効部として、完成母材製造工
程に送っていた。そのため、C,Dのように、コア・ク
ラッド径比がプロファイル測定点A,Bと大きく変わっ
ている箇所では、適正なクラッド分が付けられない。す
なわち、図3(b)の鎖線が必要な付足しクラッド18
の量であるのに対して、実際には実線のように一様なク
ラッドが付けられる。そのため、CとDの部分では付足
しクラッドが多すぎることになる。その結果、完成母材
の伝送特性不良が生じ、規格割れしてしまうという事態
が生じていた。
However, conventionally, a portion where the core-clad diameter ratio largely fluctuates is also sent to the completed base material manufacturing process as an effective portion. Therefore, an appropriate clad portion cannot be attached at a portion where the core-clad diameter ratio is largely different from the profile measurement points A and B, such as C and D. That is, the additional clad 18 shown in FIG.
However, in reality, a uniform clad is attached as shown by the solid line. Therefore, the C and D portions are added and the clad is too much. As a result, the transmission characteristic of the completed base material is defective, and the standard is broken.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(1)図1(a)のように、光ファイバの出発母材10
の後方から平行光30を入射し、その透過パターンをT
Vカメラ32により取り込み、その後、画像処理を施す
ことにより、コア・クラッド境界、クラッド径を検出し
(図1(b))、それから出発母材の長手方向における
コア・クラッド径比の分布を求め(図1(c))、
(2)前記コア・クラッド径比が規定値以内の部分だけ
を有効部とする。
(1) As shown in FIG. 1A, the starting base material 10 of the optical fiber
Collimated light 30 is incident from the rear of the
The core / clad boundary and the clad diameter are detected by capturing with the V camera 32 and then performing image processing (FIG. 1B), and then the distribution of the core / clad diameter ratio in the longitudinal direction of the starting base material is obtained. (Fig. 1 (c)),
(2) Only the portion where the core-clad diameter ratio is within the specified value is the effective portion.

【0008】[0008]

【作 用】コア・クラッド径比が規定値以内の部分だけ
を有効部とすることにより、上記のCやDの部分は排除
される。また、図3(a)のQから右の部分はコア・ク
ラッド径比が小さくなり、またPから左の部分はコア・
クラッド径比が大きくなるから、ともに有効部16から
排除される。
[Operation] By using only the part where the core-clad diameter ratio is within the specified value as the effective part, the above C and D parts are eliminated. Further, in FIG. 3A, the core-clad diameter ratio is small in the right part from Q, and the core-clad diameter ratio is small in the left part from P.
Since the cladding diameter ratio becomes large, both are excluded from the effective portion 16.

【0009】[0009]

【コア・クラッド径比の測定方法】測定構成を図1
(a)に示す。被測定出発母材10の後方から白色の平
行光30を入射する。それをTVカメラ32(たとえば
CCDカメラ等)を用いて、2次元的に電算機34に取
り込む。電算機34では、取り込んだ画像を解析し、母
材の径方向の輝度の分布として、比測定母材を捕らえ
る。
[Measurement method of core-clad diameter ratio] Fig. 1 shows the measurement configuration.
It shows in (a). White parallel light 30 is incident from the rear of the measured starting base material 10. The TV camera 32 (for example, CCD camera or the like) is used to two-dimensionally take it in the computer 34. The computer 34 analyzes the captured image and captures the ratio measurement base material as a radial luminance distribution of the base material.

【0010】図1(b)の輝度パターンのaがクラッド
・空気の境界点、bがコア・クラッドの境界点である。
なお、図1(b)では、A,B,C,Dの4点でけを示
したが、実際は、遥かに多数の点の輝度パターンを求め
る。
In the brightness pattern of FIG. 1B, a is a boundary point between the clad and air, and b is a boundary point between the core and the clad.
Note that in FIG. 1B, only four points A, B, C, and D are shown, but in reality, a luminance pattern of a much larger number of points is obtained.

【0011】この輝度データに、ある値のスレッシュホ
ールドを与え、2値化するとクラッド・空気の境界点
a、コア・クラッドの境界点bをエッジとして、検出す
ることが出来る(図1(c))。
If a threshold of a certain value is given to this luminance data and binarized, the clad / air boundary point a and the core / clad boundary point b can be detected as edges (FIG. 1 (c)). ).

【0012】その後、このエッジ間距離a−a,b−b
を数値処理することで、母材中の任意点におけるコア・
クラッド径比を知ることが出来る。画像データを2次元
的に取り込むため、1回の測定で母材長手方向のコア・
クラッド径比の分布を知ることができる(図1(c)左
側)。
Thereafter, the distances between the edges aa, bb
By numerically processing, the core
It is possible to know the clad diameter ratio. Since the image data is captured two-dimensionally, the core in the longitudinal direction of the base material can be
The distribution of the clad diameter ratio can be known (FIG. 1 (c) left side).

【0013】[0013]

【有効部16の判定】上記のように、出発母材の段階
で、その長手手方向におけるコア・クラッド径比を求め
た後、コア・クラッド径比が所定の値以内の部分だけを
有効部とする。これにより、コア・クラッド径比の変動
の大きい箇所を排除することができる。
[Judgment of effective portion 16] As described above, after the core-clad diameter ratio in the longitudinal direction is obtained at the stage of the starting base metal, only the portion where the core-clad diameter ratio is within a predetermined value is effective portion. And This makes it possible to eliminate locations where the core-clad diameter ratio varies greatly.

【0014】[0014]

【発明の効果】画像処理により出発母材の長手方向にお
けるコア・クラッド径比の分布を求め、前記コア・クラ
ッド径比が規定値以内の部分だけを有効部とするので、 (1)出発母材の有効部を正確に判定できるようにな
り、後工程に不良部分を送ることがなくなる。後工程で
の歩留り向上、ひいてはコストダウンに効果がある。 (2)このデータを出発母材製造工程にフィードバック
することで、適正なコア及びクラッドの製造方法を検討
でき、出発母材製造工程の生産量、歩留りを向上させ
る。
The distribution of the core-clad diameter ratio in the longitudinal direction of the starting base material is obtained by image processing, and only the portion where the core-clad diameter ratio is within the specified value is set as the effective portion. The effective portion of the material can be accurately determined, and the defective portion is not sent to the subsequent process. This is effective in improving the yield in the subsequent process and eventually reducing the cost. (2) By feeding back this data to the starting base material manufacturing process, it is possible to study an appropriate core and clad manufacturing method, and improve the production amount and yield of the starting base material manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に関し、(a)はコア・クラッ
ド径比分布の測定構成の説明図、(b)は出発母材とそ
の透過光をTVカメラでとらえた輝度パターンの説明
図、(c)は輝度パターンの画像を二値化したパターン
と、それから得られたコア・クラッド径比の分布の説明
図。
FIG. 1A is an explanatory diagram of a measurement configuration of a core-clad diameter ratio distribution, and FIG. 1B is an explanatory diagram of a luminance pattern obtained by capturing a starting base material and its transmitted light with a TV camera, according to an embodiment of the present invention. , (C) are explanatory diagrams of a binarized pattern of a brightness pattern image and a distribution of core-clad diameter ratios obtained from the pattern.

【図2】従来の、出発母材から有効部を取り出し、さら
にクラッドを付け足して完成母材にする状態の説明図。
FIG. 2 is an explanatory view of a conventional state in which an effective portion is taken out from a starting base material and a clad is added to form a completed base material.

【図3】従来の有効部16の決め方と、その問題点の説
明図。
FIG. 3 is an explanatory view of a conventional method of determining an effective part 16 and its problems.

【符号の説明】[Explanation of symbols]

10 出発母材 12 コア 14 クラッド 16 有効部 18 付足しクラッド 20 完成母材 30 平行光 32 TVカメラ 34 電算機 10 Starting Base Material 12 Core 14 Clad 16 Effective Part 18 Added Clad 20 Completed Base Material 30 Parallel Light 32 TV Camera 34 Computer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月13日[Submission date] November 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図1】 [Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの出発母材の後方から平行光
を入射し、その透過パターンをTVカメラにより取り込
み、その後、画像処理を施すことにより、コア・クラッ
ド境界とクラッド径とを検出し、それから出発母材の長
手方向におけるコア・クラッド径比の分布を求め、前記
コア・クラッド径比が規定値以内の部分だけを有効部と
する、光ファイバ母材の有効部判定方法。
1. A core-clad boundary and a clad diameter are detected by injecting parallel light from behind a starting base material of an optical fiber, capturing a transmission pattern thereof with a TV camera, and then performing image processing. Then, a method of determining the effective portion of the optical fiber preform, in which the distribution of the core-clad diameter ratio in the longitudinal direction of the starting preform is obtained, and only the portion where the core-clad diameter ratio is within a specified value is the effective portion.
JP22829791A 1991-08-13 1991-08-13 Method for deciding effective part of optical fiber preform Pending JPH05178634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22829791A JPH05178634A (en) 1991-08-13 1991-08-13 Method for deciding effective part of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22829791A JPH05178634A (en) 1991-08-13 1991-08-13 Method for deciding effective part of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH05178634A true JPH05178634A (en) 1993-07-20

Family

ID=16874259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22829791A Pending JPH05178634A (en) 1991-08-13 1991-08-13 Method for deciding effective part of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH05178634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030944A1 (en) * 1996-02-23 1997-08-28 Corning Incorporated Method of making dispersion decreasing and dispersion managed optical fiber
FR2809386A1 (en) * 2000-05-25 2001-11-30 Cit Alcatel METHOD FOR MANUFACTURING OPTICAL FIBER WITH CONTROL OF TRANSMISSION CHARACTERISTICS
WO2010108730A1 (en) * 2009-03-26 2010-09-30 Heraeus Quarzglas Gmbh & Co. Kg Drawing method for producing cylinder-shaped components from quartz glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030944A1 (en) * 1996-02-23 1997-08-28 Corning Incorporated Method of making dispersion decreasing and dispersion managed optical fiber
FR2809386A1 (en) * 2000-05-25 2001-11-30 Cit Alcatel METHOD FOR MANUFACTURING OPTICAL FIBER WITH CONTROL OF TRANSMISSION CHARACTERISTICS
EP1160211A1 (en) * 2000-05-25 2001-12-05 Alcatel Method of manufacturing an optical fibre with control of the transmission characteristics
WO2010108730A1 (en) * 2009-03-26 2010-09-30 Heraeus Quarzglas Gmbh & Co. Kg Drawing method for producing cylinder-shaped components from quartz glass
CN102365242A (en) * 2009-03-26 2012-02-29 赫罗伊斯石英玻璃股份有限两合公司 Drawing method for producing cylinder-shaped components from quartz glass
US8584491B2 (en) 2009-03-26 2013-11-19 Heraeus Quarzglas Gmbh & Co. Kg Drawing method for producing cylindrical-shaped components from quartz glass

Similar Documents

Publication Publication Date Title
EP2228769B1 (en) Segmentation of a depth maps of printed circuit boards
EP0501683B1 (en) Technique for enhanced two-dimensional imaging
JP5273196B2 (en) Image processing device
EP1555507A1 (en) Three-dimensional visual sensor
JPH05178634A (en) Method for deciding effective part of optical fiber preform
US20040165181A1 (en) Method and device for detecting flaw of work
CN1510391A (en) Image measuring system and method
JPS6042884B2 (en) IC lead bending inspection device
US20020131633A1 (en) System and method for machine vision inspection through platen
JPH0776754B2 (en) IC lead bending detection method
EP0433013A2 (en) Methods of inputting three-dimensional configuration data
CN114782436B (en) PCB defect detection method, circuit board metering measurement method and manufacturing method
JP3013254B2 (en) Shape measurement method
JPH0613417A (en) Semiconductor chip recognition device
JPH05126545A (en) Shape measuring instrument
JP2879357B2 (en) Shape judgment method
JP3067819B2 (en) Shape measuring device
JPH10326348A (en) Appearance inspection device
CN116735604A (en) Nondestructive detection system and method for internal defects of large-size laser crystal
JPH06235699A (en) Inspection method for mounted component
JP2971793B2 (en) Position detection device
JP3077862B2 (en) In-focus position detection method in image reading device
JPH0791932A (en) Visual inspection of soldered state
JP2002329194A (en) Method for inspecting article
JPH0793562A (en) Image contour extracting method