JPH05178619A - Production of fine powder perovskite-structure compound - Google Patents

Production of fine powder perovskite-structure compound

Info

Publication number
JPH05178619A
JPH05178619A JP3358893A JP35889391A JPH05178619A JP H05178619 A JPH05178619 A JP H05178619A JP 3358893 A JP3358893 A JP 3358893A JP 35889391 A JP35889391 A JP 35889391A JP H05178619 A JPH05178619 A JP H05178619A
Authority
JP
Japan
Prior art keywords
compound
fine powder
treatment
suspension
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3358893A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
正剛 丸尾
Makoto Ogasawara
誠 小笠原
Yasuhiro Okumura
康弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP3358893A priority Critical patent/JPH05178619A/en
Publication of JPH05178619A publication Critical patent/JPH05178619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a fine powdery perovskite-structure compd. appropriate as the material for the dielectric, piezoelectric, semiconductor, etc. CONSTITUTION:A thermal reaction is conducted in an alkaline suspension contg. a compd of the element selected from Ba, Pb, Sr, Mg and Ca and a compd. of the element selected from Ti, Zr, Hf and Sn in a specified molar ratio, the suspension contg. the perovskite-structure compd. grains as the reactional product is controlled to pH 7 to 11, solid is separated from liq., and the obtained wet cake is dry-heated and treated in an aq. suspension kept at pH 7 to 10 to produce the fine powdery perovskite-structure compd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体、圧電体、半導
体等の材料として好適なペロブスカイト型化合物微粉末
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine powder of perovskite type compound suitable as a material for dielectrics, piezoelectrics, semiconductors and the like.

【0002】[0002]

【発明の技術的背景とその問題点】チタン酸バリウム、
チタン酸ストロンチウム、チタン酸鉛、ジルコン酸鉛、
スズ酸カルシウムなどいわゆるペロブスカイト型化合物
(以下ABO3 化合物と総称する)は、該化合物を成形
した後焼結すると著しく優れた誘電体特性や圧電体特性
さらには半導体特性を有することから、コンデンサー、
電波フィルター、着火素子、サーミスター等いわゆる誘
電体セラミックス素子として、今日、通信機器、コンピ
ューターなど種々の適用分野で大量に使用されている。
ところで、近年エレクトロデバイスの小型化、高集積化
の指向は著しくこれとあいまってそれに適用されるエレ
クトロニクス素子の小型化、チップ化の要求が一段と強
まってきており、例えばセラミックコンデンサーとして
今日その主体をなしている積層コンデンサーの小型高容
量化の場合のように、そこに使用される誘電体材料とし
てのチタン酸バリウムやチタン酸ストロンチウム等のペ
ロブスカイト型化合物を焼結体構成粒子として微小電極
間隙に多数存在させる必要があり、したがって該構成粒
子の粒子径は小さいほど好ましい。
TECHNICAL BACKGROUND AND PROBLEMS OF THE INVENTION Barium titanate,
Strontium titanate, lead titanate, lead zirconate,
So-called perovskite type compounds such as calcium stannate (collectively referred to as ABO 3 compounds) have extremely excellent dielectric properties, piezoelectric properties, and semiconductor properties when the compounds are molded and then sintered.
As a so-called dielectric ceramic element such as a radio wave filter, an ignition element, and a thermistor, it is used in large quantities today in various application fields such as communication equipment and computers.
By the way, in recent years, there has been a marked trend toward miniaturization and high integration of electrodevices, and accordingly, demands for miniaturization and chipping of electronic elements applied to the devices have become stronger. As in the case of miniaturization and high capacity of multilayer capacitors, there are many perovskite type compounds such as barium titanate and strontium titanate as the dielectric material used in the microelectrode gap as sintered body constituent particles. Therefore, the smaller the particle size of the constituent particles, the more preferable.

【0003】ところで、誘電体材料としての前記ぺロブ
スカイト型化合物微粒子の製造方法として、例えばA群
化合物として水酸化バリウムおよびB群化合物として含
水酸化チタンを出発原料として使用し、前記両者を所定
のBa/Tiモル比に混合させた後、所定アルカリ濃度
下、常圧または加圧下で加熱反応処理し、得られた反応
処理スラリーをろ過、洗浄後、該処理ケーキを乾燥、解
砕するいわゆる湿式法がよく知られている。しかして前
記湿式法は、比較的容易に微粒子のABO3 化合物を得
られ易い反面、未反応のB群元素は固体の状態で残存
し、他方未反応のA群元素は一部または全部が水溶性の
状態で残存し、このものがろ過、洗浄過程で除去される
ため、B群元素過剰の組成のものになり易くかつその過
剰度は反応条件等により変動し、いづれにしても所望の
A/Bモル比の組成に一定制御することがきわめて難し
く、その結果該ABO3 化合物をセラミックス化する過
程での緻密化や焼結結晶粒子径の制御に悪影響がさけら
れなかったりする。また前記湿式法においては、強アル
カリ性媒液中で反応処理されるためNaやKなどのアル
カリ金属が得られるABO3 化合物中に残存し易く、そ
の結果そのものを使用するセラミック化過程での焼結結
晶粒子径の制御がきわめて難しかったり、さらにはセラ
ミックスの電気的特性やその経時安定性を著しく損なう
など、解決を要する問題点が少なくない。
By the way, as a method for producing the fine particles of the perovskite type compound as a dielectric material, for example, barium hydroxide as a group A compound and hydrous titanium oxide as a group B compound are used as starting materials, and both of them are mixed with a predetermined Ba. / Ti molar ratio, then heat reaction treatment under a predetermined alkali concentration under normal pressure or pressure, the obtained reaction-treated slurry is filtered and washed, and then the treated cake is dried and crushed. Is well known. In the wet method, however, fine particles of ABO 3 compound can be obtained relatively easily, while unreacted Group B element remains in a solid state, while unreacted Group A element is partially or entirely dissolved in water. Since it remains in a sexual state and is removed in the process of filtration and washing, it tends to have a composition of group B element excess, and the degree of excess varies depending on the reaction conditions and the like. It is extremely difficult to control the composition of the / B molar ratio to a certain degree, and as a result, densification in the process of making the ABO 3 compound into a ceramic and control of the sintered crystal grain size may be adversely affected. Further, in the above-mentioned wet method, since the reaction treatment is carried out in a strong alkaline medium, alkali metals such as Na and K tend to remain in the obtained ABO 3 compound, and the result itself is used for sintering in the ceramization process. There are a number of problems that need to be solved, such as extremely difficult control of the crystal grain size, and significantly impairing the electrical characteristics of ceramics and their temporal stability.

【0004】本発明者等は、かねてより前記問題点を解
決すべく種々検討を進める過程で、所定のA/Bモル比
の被反応液の加熱反応処理後の未反応物を、特定範囲の
pH調整と特定の温度条件下での加熱処理とを特定の順
序で組み合わせて除去することによって、A/Bモル比
を3%以下の精度で正確に制御し得るとともにかつアル
カリ金属不純物を100ppm以下にきわめて効率よく
除去し得ることの知見を得、本発明を完成したものであ
る。
The inventors of the present invention have, in the process of conducting various investigations to solve the above-mentioned problems, unreacted substances after the heating reaction treatment of the liquid to be reacted having a predetermined A / B molar ratio within a specific range. By combining and removing the pH adjustment and the heat treatment under a specific temperature condition in a specific order, the A / B molar ratio can be accurately controlled with an accuracy of 3% or less, and the alkali metal impurity is 100 ppm or less. The present invention has been completed based on the finding that it can be removed extremely efficiently.

【0005】[0005]

【発明の構成】本発明は、以下に示されるペロブスカイ
ト型化合物微粉末の製造方法に関する。 (1)Ba、Pb、Sr、MgおよびCaよりなるA群
元素化合物から選ばれる少なくとも一種の化合物と、T
i、Zr、HfおよびSnよりなるB群元素化合物から
選ばれる少なくとも一種の化合物とをA/Bモル比が1
以上でかつ遊離アルカリ濃度が0.1モル/l以上含有
してなる混合物の水性懸濁液を、80℃以上で加熱反応
処理し、次いで該懸濁液のpHを7〜11に調整した後
固液分離し、得られた湿ケーキを300℃以上で加熱処
理し、しかる後得られた加熱処理物をpHが7〜10の
水性懸濁液とし、次いでこのものを固液分離、乾燥して
なることを特徴とするペロブスカイト型化合物微粉末の
製造方法、(2)A/Bモル比が1.1以上でかつ遊離
アルカリ濃度が0.1モル/l以上であることを特徴と
する前(1)項記載のペロブスカイト型化合物微粉末の
製造方法および(3)懸濁液の加熱反応処理温度が10
0℃以上であることを特徴とする前(1)項記載のペロ
プスカイト型化合物微粉末の製造方法である。
The present invention relates to a method for producing the perovskite type compound fine powder shown below. (1) at least one compound selected from the group A element compounds consisting of Ba, Pb, Sr, Mg and Ca, and T
i / Zr, Hf and at least one compound selected from the group B element compounds consisting of Sn and having an A / B molar ratio of 1
After subjecting the aqueous suspension of the above mixture containing the free alkali concentration of 0.1 mol / l or more to the reaction by heating at 80 ° C. or higher, and then adjusting the pH of the suspension to 7 to 11 Solid-liquid separation is performed, and the obtained wet cake is heat-treated at 300 ° C. or higher, and then the obtained heat-treated product is made into an aqueous suspension having a pH of 7 to 10, and then solid-liquid separated and dried. A method for producing a fine powder of a perovskite-type compound, comprising: (2) A / B molar ratio of 1.1 or more and a free alkali concentration of 0.1 mol / l or more The method for producing the fine powder of perovskite compound according to the item (1), and (3) the heating reaction treatment temperature of the suspension is 10
The method for producing perovskite-type compound fine powder according to item (1) above, wherein the temperature is 0 ° C. or higher.

【0006】本発明において、A群元素化合物として
は、種々のものを使用し得、A群元素の鉱酸塩、有機酸
塩、水酸化物などを用いることができ、例えばバリウム
やストロンチウムにあっては塩化物、硝酸塩、酢酸塩、
水酸化物などを挙げることができる。また、B群元素化
合物としては、種々のものを使用し得、B群元素の鉱酸
塩、有機金属化合物、水酸化物、などを挙げることがで
き、例えばチタニウムやジルコニウムにあっては塩化
物、硝酸塩、有機金属化合物、水和酸化物などを挙げる
ことができる。さらに使用するアルカリ性化合物として
は種々のものを使用し得るが、例えばNaOH、KO
H、LiOHなどの苛性アルカリ、さらにはアルカリ金
属の炭酸塩などを挙げることができ、また前記のものに
例えば炭酸アンモニウムなどのアンモニウム化合物を一
部併用したりすることもできる。本発明において、A/
Bモル比が1以上でかつ遊離アルカリ濃度が0.1モル
/l以上含有してなる混合物の水性懸濁液の調製を行う
には種々の方法が行うことができ、例えばA群元素化合
物とB群元素化合物との混合系に、アルカリ性化合物を
添加したり、あるいはアルカリ性化合物系に、任意の順
序でもしくは並行してA群元素化合物とB群元素化合物
とを添加したりして調製することができる。前記A/B
のモル比は、1以上、望ましくは1.1〜2.0であ
り、該モル比が、前記より低きに過ぎると所望の組成の
ABO3 化合物が得られず、未反応分の水不溶性のB群
元素化合物が生成したABO3 化合物中に過剰に残存し
誘電体材料としての特性を著しく損ない易く、また該モ
ル比が前記より余り多きに過ぎると未反応分のA群元素
化合物が生成したABO3 化合物中に過剰に残存し、ろ
過、洗浄等による除去処理操作が煩雑となるとともに、
所望A/Bモル比の厳格な制御が著しく困難となる。さ
らに前記懸濁液のアルカリ濃度は0.1モル/l以上、
望ましくは0.1〜1.5モル/lであり、該モル比が
前記より余り低きに過ぎると微細な粒度分布の揃ったA
BO3 化合物の結晶粒子を得ることができず、また該ア
ルカリ濃度が余り高きに過ぎると経済的に有利でないば
かりか洗浄除去の処理操作が著しく煩雑となる。
In the present invention, various compounds can be used as the group A element compound, and mineral acid salts, organic acid salts, hydroxides and the like of the group A element can be used. Examples thereof include barium and strontium. Chloride, nitrate, acetate,
A hydroxide etc. can be mentioned. As the group B element compound, various compounds can be used, and examples thereof include mineral salts of group B elements, organometallic compounds, hydroxides, and the like. For example, for titanium and zirconium, chlorides can be used. , Nitrates, organometallic compounds, hydrated oxides and the like. Various alkaline compounds may be used, for example, NaOH and KO.
Examples thereof include caustic alkalis such as H and LiOH, as well as carbonates of alkali metals, and the above-mentioned ones may be partially used with an ammonium compound such as ammonium carbonate. In the present invention, A /
Various methods can be used for preparing an aqueous suspension of a mixture having a B molar ratio of 1 or more and a free alkali concentration of 0.1 mol / l or more. Preparation by adding an alkaline compound to a mixed system with a group B element compound, or by adding a group A element compound and a group B element compound to the alkaline compound system in any order or in parallel. You can A / B
Is 1 or more, preferably 1.1 to 2.0. If the molar ratio is too low, the ABO 3 compound having the desired composition cannot be obtained, and the unreacted water-insoluble component is insoluble. The group B element compound of ( 3 ) is excessively left in the produced ABO 3 compound and the characteristics as a dielectric material are apt to be significantly impaired, and when the molar ratio is too much higher than the above, unreacted group A element compound is formed. Excessively remains in the ABO 3 compound, and the removal treatment operations such as filtration and washing become complicated, and
Strict control of the desired A / B molar ratio becomes extremely difficult. Furthermore, the alkali concentration of the suspension is 0.1 mol / l or more,
Desirably, it is 0.1 to 1.5 mol / l, and when the molar ratio is too low, the fine particle size distribution A is uniform.
Crystal particles of the BO 3 compound cannot be obtained, and when the alkali concentration is too high, it is not economically advantageous, and the treatment operation for washing and removing becomes extremely complicated.

【0007】前記のように調製されたアルカリ性の水性
懸濁液は、常圧もしくは加圧下で加熱反応処理して微細
な粒度分布の揃ったABO3 化合物の結晶粒子を得る。
前記加熱反応処理温度は、被反応液の濃度、遊離アルカ
リ濃度、反応装置の形式などにより異なり一概にいえな
いが、80℃以上、望ましくは100〜200℃程度で
行うのが好ましく、該加熱反応処理温度が前記より低き
に過ぎると微細な粒度分布の揃ったABO3 化合物の結
晶粒子を得ることはできず、また該温度が前記より余り
高きに過ぎると反応装置上からも、熱コスト的にも有利
でないばかりか、反応が局部的に進み易かったりして好
ましくない。次いで前記のようにして加熱反応処理して
得られた水性懸濁液は、pHが7〜11、望ましくは
7.5〜10.5になるように例えば塩酸や硝酸など鉱
酸、水溶性有機酸などで調整し、しかる後デカンテーシ
ョン処理や、ろ過処理やさらに必要に応じ洗浄処理を併
せ行う等の固液分離をして、アルカリ金属不純物や未反
応の可溶性被反応成分の大部分を除去する。該懸濁液の
pHが前記範囲より低きに過ぎるとアルカリ金属不純物
の除去が効率的に行える反面、生成したABO3 化合物
中のとりわけA成分の溶出がさけられず、所望のA/B
モル比組成のABO3 化合物が得られなくなり好ましく
ない。
The alkaline aqueous suspension prepared as described above is subjected to a heat reaction treatment under normal pressure or increased pressure to obtain fine ABO 3 compound crystal particles having a uniform particle size distribution.
The heating reaction temperature varies depending on the concentration of the liquid to be reacted, the concentration of free alkali, the type of reactor, etc. and cannot be generally stated, but it is preferably 80 ° C. or higher, preferably about 100 to 200 ° C. If the treatment temperature is too lower than the above, it is not possible to obtain fine ABO 3 compound crystal particles having a uniform particle size distribution, and if the temperature is too much higher than the above, the thermal cost will be increased from the viewpoint of the reactor. Not only is it unfavorable, but the reaction is likely to proceed locally, which is not preferable. Then, the aqueous suspension obtained by the heat reaction treatment as described above has a pH of 7 to 11, preferably 7.5 to 10.5, such as a mineral acid such as hydrochloric acid or nitric acid, a water-soluble organic substance. Most of the alkali metal impurities and unreacted soluble reacting components are removed by solid-liquid separation such as adjustment with acid etc., followed by decantation, filtration, and washing if necessary. To do. When the pH of the suspension is lower than the above range, the alkali metal impurities can be efficiently removed, but on the other hand, especially the A component in the produced ABO 3 compound is unavoidable and the desired A / B ratio is not increased.
It is not preferable because an ABO 3 compound having a molar ratio composition cannot be obtained.

【0008】前記のようにして固液分離処理して得られ
た処理ケーキは乾燥後300℃以上、望ましくは400
〜700℃で加熱処理した後、pHが7〜10、望まし
くは7.5〜9.5の水性懸濁液とし、次いでこのもの
をデカンテーション処理や、ろ過処理やさらに必要に応
じ洗浄処理を併せ行う等の固液分離処理をしてアルカリ
金属不純物や未反応の可溶性被反応成分の実質的全部を
除去する。該加熱処理温度が前記範囲より低きに過ぎた
り、また該懸濁液のpHが前記範囲より低きに過ぎる
と、生成したABO3 化合物中のとりわけA成分の溶出
がさけられず、さらに該加熱処理温度が余り高きに過ぎ
たり、また該懸濁液のpHが前記範囲より低きに過ぎた
りすると、アルカリ金属不純物の除去が効率的に行える
反面、生成したABO3 化合物中のとりわけA成分の溶
出がさけられず、所望のA/Bモル比組成のABO3
合物が得られなくなったり、さらには生成したABO3
化合物粒子が粗大化するなど好ましくない。前記のよう
にして得られる本発明のABO3 化合物微粉末は、微細
な粒径分布の均一なものであり、成形時のパッキング性
が良くしたがって焼結性が著しく改善され、より低い温
度で緻密強固でかつ優れた誘電体セラミックスとするこ
とができる。
The treated cake obtained by the solid-liquid separation treatment as described above is dried at 300 ° C. or higher, preferably 400
After heat treatment at ~ 700 ° C, an aqueous suspension having a pH of 7 to 10, preferably 7.5 to 9.5, is subjected to decantation treatment, filtration treatment and further washing treatment if necessary. A solid-liquid separation treatment such as simultaneous treatment is carried out to remove substantially all alkali metal impurities and unreacted soluble reacting components. If the heat treatment temperature is lower than the above range or the pH of the suspension is lower than the above range, the A component in the produced ABO 3 compound is not particularly eluted, and If the heat treatment temperature is too high or the pH of the suspension is lower than the above range, the alkali metal impurities can be removed efficiently, but especially the A component in the ABO 3 compound produced. elution can not be avoided in, or no longer be obtained ABO 3 compound having a desired a / B mole ratio composition, ABO 3 which further generated
It is not preferable because the compound particles become coarse. The ABO 3 compound fine powder of the present invention obtained as described above has a uniform fine particle size distribution, has a good packing property at the time of molding and therefore has a significantly improved sinterability, and is dense at a lower temperature. A strong and excellent dielectric ceramic can be obtained.

【0009】[0009]

【実施例】【Example】

実施例1 水840mlと400g/lのNaOH水溶液360m
lとを入れ30℃に保持した3lの四つ口のフラスコ
に、窒素ガスを吹込みながら攪拌下に、0.75モル/
lのBaCl2 と0.625モル/lのTiCl4 との
混合水溶液800mlを30分間で添加した(遊離アル
カリ濃度:0.2モル/l)。同温度で1時間保持した
後、得られた水性スラリーを3lのオートクレーブに入
れ、150℃で1時間水熱反応処理した。該水熱処理後
のスラリーに炭酸アンモニウム(1モル/l)25ml
を添加するとともに、希酢酸水溶液を添加してpH8に
調整し30分間保持した後、ろ過、水洗、乾燥した。次
いで得られた該乾燥状物を電気炉で600℃、大気中2
時間加熱処理した。しかる後得られた加熱処理物を水性
スラリーとし希酢酸水溶液を添加してpHを9に調整し
30分間保持した後、ろ過、水洗、乾燥して目的とする
チタン酸バリウム微粉末を得た(試料A)。
Example 1 840 ml of water and 360 m of 400 g / l NaOH aqueous solution
Into a 3 liter four-necked flask containing 1 liter and maintained at 30 ° C., 0.75 mol /
800 ml of a mixed aqueous solution of 1 BaCl 2 and 0.625 mol / l TiCl 4 was added over 30 minutes (concentration of free alkali: 0.2 mol / l). After holding at the same temperature for 1 hour, the obtained aqueous slurry was put into a 3 l autoclave and subjected to hydrothermal reaction treatment at 150 ° C. for 1 hour. 25 ml of ammonium carbonate (1 mol / l) in the slurry after the hydrothermal treatment
Was added, and a dilute acetic acid aqueous solution was added to adjust the pH to 8 and the mixture was held for 30 minutes, then filtered, washed with water, and dried. Then, the obtained dried product is heated in an electric furnace at 600 ° C. in the atmosphere for 2
Heat treated for hours. Then, the obtained heat-treated product was made into an aqueous slurry, a dilute acetic acid aqueous solution was added to adjust the pH to 9 and held for 30 minutes, followed by filtration, washing with water and drying to obtain the desired barium titanate fine powder ( Sample A).

【0010】実施例2 水1200mlとBa(OH)2 粉末189.2gとを
入れ30℃に保持した3lの4つ口フラスコに窒素ガス
を吹き込みながら攪拌下、400g/lのNaOH水溶
液300mlを添加した後、1.25モル/lのTiC
4 水溶液400mlを30分間で添加した(遊離アル
カリ濃度:0.5モル/l)。同温度で1時間保持した
後、得られた水性スラリーを、以下実施例1の場合と同
様に処理して目的とするチタン酸バリウム微粉末を得た
(試料B)。
Example 2 1200 ml of water and 189.2 g of Ba (OH) 2 powder were placed in a 3 l four-necked flask maintained at 30 ° C., while adding nitrogen gas while stirring, and adding 300 ml of 400 g / l NaOH aqueous solution. And then 1.25 mol / l TiC
l 4 was added in an aqueous solution 400 ml 30 min (free alkali concentration: 0.5 mol / l). After holding at the same temperature for 1 hour, the obtained aqueous slurry was treated in the same manner as in Example 1 below to obtain the desired barium titanate fine powder (Sample B).

【0011】実施例3 実施例2において、炭酸アンモニウムを添加しなかった
ことのほかは、同例の場合と同様に処理して目的とする
チタン酸バリウム微粉末を得た(試料C)。
Example 3 The same procedure as in Example 2 was carried out except that ammonium carbonate was not added to obtain the desired barium titanate fine powder (Sample C).

【0012】実施例4 実施例2において、水熱処理温度を95℃に替えたこと
のほかは、同例の場合と同様に処理して目的とするチタ
ン酸バリウム微粉末を得た(試料D)。
Example 4 The same treatment as in Example 2 was carried out except that the hydrothermal treatment temperature was changed to 95 ° C. to obtain the desired barium titanate fine powder (Sample D). ..

【0013】実施例5 実施例1において、電気炉での加熱処理温度を500℃
に替えたことのほかは、同例の場合と同様に処理して目
的とするチタン酸バリウム微粉末を得た(試料E)。
Example 5 In Example 1, the heat treatment temperature in the electric furnace was set to 500 ° C.
In the same manner as in the case of the same example except that the same was changed to the above, the target barium titanate fine powder was obtained (Sample E).

【0014】実施例6 水880mlと400g/lのNaOH水溶液320m
lとを入れ30℃保持した3lの四つ口のフラスコに、
窒素ガスを吹込みながら攪拌下に、0.75モル/lの
BaCl2 と0.375モル/lのTiCl4 と0.2
5モル/lのZrOCl2 との混合水溶液800mlを
30分間で添加した(遊離アルカリ濃度:0.2モル/
l)。以下実施例1の場合と同様に処理して目的とする
チタンジルコン酸バリウム微粉末を得た(試料F)。
Example 6 880 ml of water and 320 m of 400 g / l NaOH aqueous solution
in a 3 liter four-necked flask containing 1
With stirring while blowing nitrogen gas, 0.75 mol / l BaCl 2 and 0.375 mol / l TiCl 4 and 0.2
800 ml of a mixed aqueous solution of 5 mol / l ZrOCl 2 was added over 30 minutes (free alkali concentration: 0.2 mol / l).
l). Thereafter, the same treatment as in Example 1 was carried out to obtain the desired barium titanium zirconate fine powder (Sample F).

【0015】比較例1 実施例1と同様にして水熱反応処理し、得られたスラリ
ーを炭酸アンモニウム(1モル/l)25mlを添加す
るとともに、酢酸水溶液を添加してpHを5に調整した
後、ろ過、水洗、乾燥してチタン酸バリウム微粉末を得
た(試料G)。
Comparative Example 1 A hydrothermal reaction treatment was carried out in the same manner as in Example 1, and 25 ml of ammonium carbonate (1 mol / l) was added to the resulting slurry, and an aqueous acetic acid solution was added to adjust the pH to 5. Then, it was filtered, washed with water, and dried to obtain barium titanate fine powder (Sample G).

【0016】比較例2 比較例1において、酢酸水溶液の添加によるpH調整を
行わなかったことのほかは、同例の場合と同様に処理し
てチタン酸バリウム微粉末を得た(試料H)。
Comparative Example 2 Barium titanate fine powder was obtained in the same manner as in Comparative Example 1 except that the pH was not adjusted by adding an aqueous acetic acid solution (Sample H).

【0017】比較例3 実施例1において、電気炉での加熱処理を行った後、得
られた処理物を水性スラリー化し、該スラリーに対して
希酢酸水溶液の添加によるpH調整を行わなうことなく
同例の場合と同様に処理してチタン酸バリウム微粉末を
得た(試料I)。
Comparative Example 3 In Example 1, after heat treatment in an electric furnace, the obtained treated product is made into an aqueous slurry, and the pH is not adjusted by adding a dilute acetic acid aqueous solution to the slurry. Without any treatment, fine barium titanate powder was obtained by the same treatment as in the case of the same example (Sample I).

【0018】比較例4 実施例2と同様にして得られた水熱反応処理で得られた
スラリーを、希酢酸水溶液の添加によるpH調整を行う
ことなく、ろ過、水洗、乾燥してチタン酸バリウム微粉
末を得た(試料J)。
Comparative Example 4 Barium titanate was obtained by filtering, washing and drying the slurry obtained by the hydrothermal reaction treatment obtained in the same manner as in Example 2 without adjusting the pH by adding a dilute aqueous acetic acid solution. A fine powder was obtained (Sample J).

【0019】比較例5 実施例2において、電気炉での加熱処理を行った後、得
られた処理物を水性スラリー化し、該スラリーに対して
希酢酸水溶液の添加によるpH調整を行なうことなく同
例の場合と同様に処理してチタン酸バリウム微粉末を得
た(試料K)。
Comparative Example 5 In Example 2, after the heat treatment in the electric furnace, the obtained treated product was made into an aqueous slurry, and the slurry was treated without adding a dilute aqueous acetic acid solution to adjust the pH. The barium titanate fine powder was obtained by the same treatment as in the example (Sample K).

【0020】前記実施例および比較例で得られた試料A
〜Kについて、常法により化学分析、比表面積測定を行
ったこれらの結果を表1に示す。なお前記試料A〜Kに
ついてX線回析を行ったところ、試料A〜EおよびG〜
Kは立方晶系のチタン酸バリウムであり、また試料Fは
立方晶系のチタンジルコン酸バリウムであった。
Sample A obtained in the above Examples and Comparative Examples
Table 1 shows the results obtained by performing chemical analysis and specific surface area measurement for .about.K by conventional methods. When X-ray diffraction was performed on Samples A to K, Samples A to E and G to
K was cubic barium titanate and Sample F was cubic barium titanium zirconate.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明方法は、所望のA/Bモル比に非
常に精度良く制御された微細なABO 3 化合物粒子を容
易に得ることができるとともに、誘電体セラミックス用
材料としてその混入が非常に嫌忌されているアルカリ金
属不純物の残存を大幅に減少することができるものであ
り、甚だ工業的価値の大きいものである。
According to the method of the present invention, the desired A / B molar ratio is not controlled.
Fine ABO always controlled accurately 3Compound particles
Easy to obtain and for dielectric ceramics
Alkali gold, which is highly disliked as a material
It can greatly reduce the residual of metal impurities.
It is of great industrial value.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月9日[Submission date] November 9, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】本発明において、A群元素化合物として
は、種々のものを使用し得、A群元素の鉱酸塩、有機酸
塩、水酸化物などを用いることができ、例えばバリウム
やストロンチウムにあっては塩化物、硝酸塩、酢酸塩、
水酸化物などを挙げることができる。また、B群元素化
合物としては、種々のものを使用し得、B群元素の鉱酸
塩、有機金属化合物、水酸化物、などを挙げることがで
き、例えばチタニウムやジルコニウムにあっては塩化
物、硝酸塩、有機金属化合物、水和酸化物などを挙げる
ことができる。さらに使用するアルカリ性化合物として
は種々のものを使用し得るが、例えばNaOH、KO
H、LiOHなどの苛性アルカリ、さらにはアルカリ金
属の炭酸塩などを挙げることができ、また前記のものに
例えば炭酸アンモニウムなどのアンモニウム化合物を一
部併用したりすることもできる。本発明において、A/
Bモル比が1以上でかつ遊離アルカリ濃度が0.1モル
/1以上含有してなる混合物の水性懸濁液の調製を行う
には種々の方法が行うことができ、例えばA群元素化合
物とB群元素化合物との混合系に、アルカリ性化合物を
添加したり、あるいはアルカリ性化合物系に、任意の順
序でもしくは並行してA群元素化合物とB群元素化合物
とを添加したりして調製することができる。前記A/B
のモル比は、1以上、望ましくは1.1〜2.0であ
り、該モル比が、より低きに過ぎると所望の組成のA
BO化合物が得られず、未反応分の水不溶性のB群元
素化合物が生成したABO化合物中に過剰に残存し
誘電体材料としての特性を著しく損ない易いため望まし
くない。また該モル比が前記の望ましい範囲より余り多
きに過ぎると未反応分のA群元素化合物が、分離した湿
ケーキ中に過剰に残存し、ろ過、洗浄等による除去処理
操作が煩雑となるとともに、所望A/Bモル比の厳格な
制御が困難となったりするため好ましくない。さらに前
記懸濁液のアルカリ濃度は0.1モル/1以上、望まし
くは0.1〜0.5モル/1であり、該アルカリ濃度
0.1モル/1り低きに過ぎると微細な粒度分布の揃
ったABO化合物の結晶粒子を得ることができないた
め望ましくなし。また該アルカリ濃度が前記の望ましい
範囲より余り高きに過ぎると経済的に有利でなかった
り、洗浄除去の処理操作が煩雑となったりするため好ま
しくない。
In the present invention, various compounds can be used as the group A element compound, and mineral acid salts, organic acid salts, hydroxides and the like of the group A element can be used. Examples thereof include barium and strontium. Chloride, nitrate, acetate,
A hydroxide etc. can be mentioned. As the group B element compound, various compounds can be used, and examples thereof include mineral salts of group B elements, organometallic compounds, hydroxides, and the like. For example, for titanium and zirconium, chlorides can be used. , Nitrates, organometallic compounds, hydrated oxides and the like. Various alkaline compounds may be used, for example, NaOH and KO.
Examples thereof include caustic alkalis such as H and LiOH, as well as carbonates of alkali metals, and the above-mentioned ones may be partially used with an ammonium compound such as ammonium carbonate. In the present invention, A /
Various methods can be used to prepare an aqueous suspension of a mixture having a B molar ratio of 1 or more and a free alkali concentration of 0.1 mol / 1 or more. Preparation by adding an alkaline compound to a mixed system with a group B element compound, or by adding a group A element compound and a group B element compound to the alkaline compound system in any order or in parallel. You can A / B
The molar ratio of A is 1 or more, preferably 1.1 to 2.0, and when the molar ratio is less than 1 , A of the desired composition is obtained.
BO 3 compound can not be obtained, B group element compounds of unreacted water-insoluble, easily damaged significantly impair the excess remaining characteristics as a dielectric material in ABO 3 compound generated desirability
I don't. Further, when the molar ratio is too much higher than the above-mentioned desirable range , the unreacted A group element compound is separated into the separated moisture.
Excessively remains in the cake, filtration, with the removal process operation by cleaning or the like becomes complicated, which is not preferable or Tsu Do desired A / tight control of B molar ratio coma difficulty. Further, the alkali concentration of the suspension is 0.1 mol / 1 or more, preferably 0.1 to 0.5 mol / 1, and the alkali concentration is
0.1 mol / 1 good Ri Beyond the can lower the inability to obtain crystal grains of uniform ABO 3 compound having fine particle size distribution
Not desirable. Also, the alkali concentration is the above desirable
If too much on High than the range was not economically advantageous
Ri, preferred for the processing operation of the cleaning removal or Tsu Do Han Miscellaneous
Not good.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】前記のように調製されたアルカリ性の水性
懸濁液は、常圧もしくは加圧下で加熱反応処理して微細
な粒度分布の揃ったABO化合物の結晶粒子を得る。
前記加熱反応処理温度は、被反応液の濃度、遊離アルカ
リ濃度、反応装置の形式などにより異なり一概にいえな
いが、80℃以上、望ましくは100〜200℃程度で
行うのが好ましく、該加熱反応処理温度が80℃より低
きに過ぎると微細な粒度分布の揃ったABO化合物の
結晶粒子が得られないため望ましくない。また該加熱反
応処理温度が前記の望ましい範囲より余り高きに過ぎる
と反応装置上からも、熱コスト的にも有利でなかった
り、反応が局部的に進み易かったりして好ましくない。
次いで前記のようにして加熱反応処理して得られた水性
懸濁液は、pHが7〜11、望ましくは7.5〜10.
5になるように例えば塩酸や硝酸など鉱酸、水溶性有機
酸などで調整し、しかる後デカンテーション処理や、ろ
過処理やさらに必要に応じ洗浄処理を併せ行う等の固液
分離をして、アルカリ金属不純物や未反応の可溶性被反
応成分の大部分を除去する。該懸濁液のpHが前記範囲
より低きに過ぎるとアルカリ金属不純物の除去が効率的
に行える反面、生成したABO化合物中のとりわけA
成分の溶出がさけられず、所望のA/Bモル比組成のA
BO化合物が得られなくなりましくない。
The alkaline aqueous suspension prepared as described above is subjected to a heat reaction treatment under normal pressure or pressure to obtain crystal particles of the ABO 3 compound having a fine particle size distribution.
The heating reaction temperature varies depending on the concentration of the liquid to be reacted, the concentration of free alkali, the type of reactor, etc. and cannot be generally stated, but it is preferably 80 ° C. or higher, preferably about 100 to 200 ° C. If the treatment temperature is lower than 80 ° C., it is not desirable because fine ABO 3 compound crystal particles having a uniform particle size distribution cannot be obtained. In addition the heating anti
From response processing temperature on much too the High and reactor than the desired range of the, was not even a beneficial thermal cost
And the reaction tends to proceed locally, which is not preferable.
Then, the aqueous suspension obtained by the heat reaction treatment as described above has a pH of 7 to 11, preferably 7.5 to 10.
Adjust to 5 with mineral acid such as hydrochloric acid or nitric acid, water-soluble organic acid, etc., and then perform decantation treatment, filtration treatment, and solid-liquid separation such as washing treatment if necessary. Most of alkali metal impurities and unreacted soluble reacting components are removed. When the pH of the suspension is lower than the above range, the alkali metal impurities can be removed efficiently, but on the other hand, especially A in the produced ABO 3 compound can be removed.
Elution of the components is unavoidable, and A with the desired A / B molar ratio composition
BO 3 compound is Mashi Nozomu not be obtained wards.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】前記のようにして固液分離処理して得られ
た処理ケーキは乾燥後300℃以上、望ましくは400
〜700℃で加熱処理した後、pHが7〜10、望まし
くは7.5〜9.5の水性懸濁液とし、次いでこのもの
をデカンテーション処理や、ろ過処理やさらに必要に応
じ洗浄処理を併せ行う等の固液分離処理をしてアルカリ
金属不純物や未反応の可溶性被反応成分の実質的全部を
除去する。該加熱処理湿度が300℃より低きに過ぎ
と、生成したABO化合物中のとりわけA成分の溶出
がさけられないため望ましくない。一方、該加熱処理温
度が前記の望ましい範囲より余り高きに過ぎると、生成
したABO化合物が粗大可したりするため好ましくな
い。また該懸濁液のpHが前記範囲より低きに過ぎる
と、アルカリ金属不純物の除去が効率的に行える反面、
生成したABO化合物中のとりわけA成分の溶出がさ
けられず、所望のA/Bモル比組成のABO化合物が
得られなくなり、一方、該懸濁液のpHが前記範囲より
高きに過ぎると、アルカリ金属不純物の残存量が多くな
るため望ましくない。前記のようにして得られる本発明
のABO化合物微粉末は、微細な粒径分布の均一なも
のであり、成形時のパッキング性が良くしたがって焼結
性が著しく改善され、より低い温度で緻密強固でかつ優
れた誘電体セラミックスとすることができる。
The treated cake obtained by the solid-liquid separation treatment as described above is dried at 300 ° C. or higher, preferably 400
After heat treatment at ~ 700 ° C, an aqueous suspension having a pH of 7 to 10, preferably 7.5 to 9.5, is subjected to decantation treatment, filtration treatment and further washing treatment if necessary. A solid-liquid separation treatment such as simultaneous treatment is carried out to remove substantially all alkali metal impurities and unreacted soluble reacting components. Heat treatment humidity Ru only Hikuki than 300 ℃
In particular, the elution of the component A in the produced ABO 3 compound is unavoidable, which is not desirable. On the other hand, the heat treatment temperature
If the temperature is much higher than the desired range,
The ABO 3 compound described above is not preferable because it becomes coarse.
Yes. Further, the pH of the suspension is too lower than the above range.
And, while alkali metal impurities can be removed efficiently,
In particular, the A component in the ABO 3 compound produced was eluted.
ABO 3 compound having a desired A / B molar ratio composition
On the other hand, the pH of the suspension is below the above range.
If it is too high, the amount of remaining alkali metal impurities will increase.
Because possibly unwanted. The ABO 3 compound fine powder of the present invention obtained as described above has a uniform fine particle size distribution, has good packing properties during molding, and thus has significantly improved sinterability, and is dense at lower temperatures. A strong and excellent dielectric ceramic can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Ba、Pb、Sr、MgおよびCaよりな
るA群元素化合物から選ばれる少なくとも一種の化合物
と、Ti、Zr、HfおよびSnよりなるB群元素化合
物から選ばれる少なくとも一種の化合物とをA/Bモル
比が1以上でかつ遊離アルカリ濃度が0.1モル/l以
上含有してなる混合物の水性懸濁液を、80℃以上で加
熱反応処理し、次いで該懸濁液のpHを7〜11に調整
した後固液分離し、得られた湿ケーキを300℃以上で
加熱処理し、しかる後得られた加熱処理物をpHが7〜
10の水性懸濁液とし、次いでこのものを固液分離、乾
燥してなることを特徴とするペロブスカイト型化合物微
粉末の製造方法。
1. At least one compound selected from the group A element compounds consisting of Ba, Pb, Sr, Mg and Ca, and at least one compound selected from the group B element compounds consisting of Ti, Zr, Hf and Sn. Is heated at 80 ° C. or higher to react it with an aqueous suspension of a mixture comprising A and B in an A / B molar ratio of 1 or more and a free alkali concentration of 0.1 mol / l or more, and then the pH of the suspension. Is adjusted to 7 to 11 and solid-liquid separation is performed, the obtained wet cake is heat-treated at 300 ° C. or higher, and then the heat-treated product obtained has a pH of 7 to 11
10. A method for producing a fine powder of a perovskite compound, which comprises forming an aqueous suspension of 10 and then solid-liquid separating and drying this.
【請求項2】A/Bモル比が1.1以上でかつ遊離アル
カリ濃度が0.1モル/l以上であることを特徴とする
請求項1に記載のペロブスカイト型化合物微粉末の製造
方法。
2. The method for producing fine powder of perovskite type compound according to claim 1, wherein the A / B molar ratio is 1.1 or more and the free alkali concentration is 0.1 mol / l or more.
【請求項3】懸濁液の加熱反応処理温度が100℃以上
であることを特徴とする請求項1に記載のペロブスカイ
ト型化合物微粉末の製造方法。
3. The process for producing fine powder of perovskite type compound according to claim 1, wherein the temperature of the heat reaction treatment of the suspension is 100 ° C. or higher.
JP3358893A 1991-12-27 1991-12-27 Production of fine powder perovskite-structure compound Pending JPH05178619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358893A JPH05178619A (en) 1991-12-27 1991-12-27 Production of fine powder perovskite-structure compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358893A JPH05178619A (en) 1991-12-27 1991-12-27 Production of fine powder perovskite-structure compound

Publications (1)

Publication Number Publication Date
JPH05178619A true JPH05178619A (en) 1993-07-20

Family

ID=18461650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358893A Pending JPH05178619A (en) 1991-12-27 1991-12-27 Production of fine powder perovskite-structure compound

Country Status (1)

Country Link
JP (1) JPH05178619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027971A (en) * 2004-07-20 2006-02-02 Tdk Corp Method of producing barium titanate powder, its powder and laminated ceramic electronic parts using same
KR100620595B1 (en) * 2004-09-30 2006-09-19 (주)케미피아 Process for preparing perovskite-structured compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027971A (en) * 2004-07-20 2006-02-02 Tdk Corp Method of producing barium titanate powder, its powder and laminated ceramic electronic parts using same
KR100620595B1 (en) * 2004-09-30 2006-09-19 (주)케미피아 Process for preparing perovskite-structured compounds

Similar Documents

Publication Publication Date Title
US4643984A (en) Process for producing a composition which includes perovskite compounds
US5453262A (en) Continuous process for production of ceramic powders with controlled morphology
US5112433A (en) Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
EP1415955B1 (en) Barium titanate and its production method
US4810680A (en) Preparation of high purity, homogeneous zirconia mixtures
JP2634210B2 (en) Method for producing powdery barium titanate
JP4057072B2 (en) Metal niobates and / or tantalates, their production and perovskites derived therefrom
JPS627160B2 (en)
KR0137363B1 (en) Process for producing powder material for lead perovskite ceramic
JPH05139744A (en) Easily sinterable barium titanate fine particle powder and production therefor
US5017534A (en) Method for the fabrication of a ceramic material by hybrid chemical process and material obtained thereby
JPH05178619A (en) Production of fine powder perovskite-structure compound
US4668500A (en) Method of producing bismuth titanate fine powders
JP3772354B2 (en) Manufacturing method of ceramic powder
JPH0246531B2 (en)
JP3668985B2 (en) Manufacturing method of ceramic powder
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JP3319795B2 (en) Perovskite-type compound fine particle powder
EP0163739A1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
EP0200176B1 (en) Method for producing fine particles of lead zirconate
JPH0583487B2 (en)
KR20060102928A (en) Manufacturing method of barium titanate powder
JP2865975B2 (en) Method for producing lead perovski type compound