JPH05178606A - Production of hydrated silicic acid for paper making - Google Patents

Production of hydrated silicic acid for paper making

Info

Publication number
JPH05178606A
JPH05178606A JP35804691A JP35804691A JPH05178606A JP H05178606 A JPH05178606 A JP H05178606A JP 35804691 A JP35804691 A JP 35804691A JP 35804691 A JP35804691 A JP 35804691A JP H05178606 A JPH05178606 A JP H05178606A
Authority
JP
Japan
Prior art keywords
silicic acid
hydrated silicic
sulfuric acid
slurry
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35804691A
Other languages
Japanese (ja)
Other versions
JP2666638B2 (en
Inventor
Shigeru Eimaeda
茂 栄前田
Takao Suzuki
隆夫 鈴木
Seiichi Yamaguchi
精一 山口
Shigeru Yamakawa
茂 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP3358046A priority Critical patent/JP2666638B2/en
Publication of JPH05178606A publication Critical patent/JPH05178606A/en
Application granted granted Critical
Publication of JP2666638B2 publication Critical patent/JP2666638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • C01B33/128Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To attain stable operations on production because of low viscosity of slurry of hydrated silicic acid, to prevent the obtained hydrated silicic acid from dropping down from paper on paper making and to improve oppacity of printed paper as well as white paper and whiteness. CONSTITUTION:The amount of sulfuric acid corresponding to 35-45% of the total one required to neutralize sodium silicate is added in the 1st stage to obtain a water solution by neutralization. At that time, sodium sulfate is previously replenished to make adjustment so that the obtained water solution may have a silicon dioxide concentration of 6.8-8.0g/100ml and a sodiun sulfate concentration of 3.5-4.1g/100ml. Then the water solution is heated to a temp. of 85-95 deg.C while stirring and the balance sulfuric is added to complete neutralization. Hydrated silicic acid is deposited and separated from the water solution to form slurry again. The slurry is wet-crushed and/or wet-classified to make it include particles of 3-10mum average particle diameter of hydrated silicic acid and also include particles of 1-300mum particle diameter by at least 80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製紙に際し紙の填料と
して添加して用いられる水和ケイ酸の製造方法に関す
る。さらに詳しく述べるならば、本発明は、製紙のため
に填料として添加して用いられた時に紙への歩留が良
く、且つ印刷後並びに白紙の不透明度及び白色度の向上
に効果のある水和ケイ酸の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrated silicic acid used as a filler for paper during papermaking. More specifically, the present invention provides a hydrated material which, when used as a filler for papermaking, has a good yield on paper and is effective for improving the opacity and whiteness of printed paper and of white paper. The present invention relates to a method for producing silicic acid.

【0002】[0002]

【従来の技術】近年、紙は軽量化される傾向にあるが、
紙を軽量化すると、紙に印刷した場合紙の印刷後の不透
明度が低下し好ましくないので、この紙の印刷後の不透
明度の低下を防止するために紙に填料を添加することが
一般に行なわれている。
2. Description of the Related Art In recent years, the weight of paper tends to be reduced,
When the paper is made lighter, the opacity of the paper after printing is lowered when printed on the paper, which is not preferable.Therefore, a filler is generally added to the paper in order to prevent the opacity of the paper after printing from being lowered. Has been.

【0003】この目的のために無機及び有機系の各種の
填料の研究開発が行なわれているが、現在、なお安価で
十分に効果のあるものは開発されるに至っていない。ま
た、最近は、更に軽量化の傾向が強いので、印刷の際の
インク中の油成分の浸透を抑制することによる印刷後の
不透明度を向上させる能力に加えて積極的に白紙不透明
度を向上させる能力のある填料が望まれている。
For this purpose, various inorganic and organic fillers have been researched and developed, but at present, inexpensive and sufficiently effective fillers have not yet been developed. In addition, recently, there is a strong tendency toward further weight reduction, so in addition to the ability to improve the opacity after printing by suppressing the permeation of the oil component in the ink during printing, the opacity of blank paper is also positively improved. A filler that has the ability to do so is desired.

【0004】前記各種填料の中で、二酸化チタンのよう
に、白紙不透明度を上げるがインキの浸透を抑制する能
力が劣るもの、或いは有機系の尿素−ホルマリン樹脂の
ように前記の二つの能力を合わせ持ってはいるが、夫々
の能力が不足しているものは一般に知られている。これ
に対して填料としての水和ケイ酸は他の種類のものより
価格も安く、また紙への印刷後不透明度の付与の効果が
大きいが、未だその効果において、或いは白紙不透明度
に対する効果において十分満足すべきものが提供されて
いない。
Among the above-mentioned various fillers, those having the ability to increase the opacity of white paper but have a poor ability to suppress the penetration of ink, such as titanium dioxide, or those having the above two capabilities, such as an organic urea-formalin resin, are used. It is generally known that they have a combination but lack the ability of each. On the other hand, hydrated silicic acid as a filler is cheaper than other types and has a great effect of imparting opacity after printing on paper, but in that effect, or in the effect on white paper opacity. Not enough to provide.

【0005】水和ケイ酸の製造方法については、例えば
特公昭38-17651号公報においてケイ酸ソーダを酸で中和
する際に第一段目の酸添加を50%以下にし、次いで昇温
した後第二段目の酸添加を行なうことが記載されてお
り、特公昭49-36877号公報には紙用充填剤としての水和
ケイ酸の製造方法が記載されており、特公昭52-28754号
公報及び特公昭52-28755号公報にはケイ酸アルカリのシ
リカに換算した濃度が2〜9.5g/cc で酸濃度が2 〜40g/1
00ml の鉱酸を添加する時の鉱酸の添加速度をシリカの
生成速度の関数値で示して適正な範囲内に納めるという
製造方法が記載されている。
Regarding the method for producing hydrated silicic acid, for example, in Japanese Examined Patent Publication (Kokoku) No. 38-17651, the acid addition in the first step is 50% or less when neutralizing sodium silicate with acid, and then the temperature is raised. After that, it is described that the acid addition in the second step is performed, and Japanese Patent Publication No. 49-36877 describes a method for producing hydrated silicic acid as a filler for paper. JP-B-52-28755 and JP-B-52-28755 disclose that the concentration of alkali silicate converted to silica is 2 to 9.5 g / cc and the acid concentration is 2 to 40 g / 1.
A production method is described in which the addition rate of mineral acid when 00 ml of mineral acid is added is expressed as a function value of the formation rate of silica and is kept within an appropriate range.

【0006】さらに、特開昭53-80397号公報には微粉状
珪酸を製造する技術として、アルカリ金属塩の存在下に
珪酸アルカリと鉱酸を反応させること、しかもそのアル
カリ金属塩としては、微粉状珪酸を析出させ終った後ろ
過、分別した時の母液を利用することが記載されてい
る。また、特開昭55-113611 号公報には、前記の技術を
総集して、第一段目の酸の添加割合(A) が20〜50%、第
二段目の酸の添加の際のシリカ濃度(C) が2 〜6g/100ml
及び反応温度(T) が70〜100 ℃の範囲内で、且つ、これ
らA,C,T の関係式から得られる値X を特定の範囲内に限
定すると良いことが記載されている。ただし、これは水
和珪酸粉末の吸油速度を早くするための技術であり、即
ち細孔半径50〜150 の細孔容積を0.5 〜0.9cm3/gとす
ればボイル油の吸油速度を早くできることを記載したも
のであって、製紙用填料として利用可能かについては触
れられていない。
Further, as a technique for producing finely powdered silicic acid, Japanese Patent Application Laid-Open No. 53-80397 discloses reacting an alkali silicate with a mineral acid in the presence of an alkali metal salt. It is described that the mother liquor obtained when the silicic acid is deposited and then filtered and separated is used. Further, Japanese Patent Laid-Open No. 55-113611 discloses that the above-mentioned techniques are collected and the addition ratio (A) of the first stage acid is 20 to 50%, and Silica concentration (C) of 2 ~ 6g / 100ml
And that the reaction temperature (T) is within the range of 70 to 100 ° C. and the value X obtained from the relational expression of these A, C and T is limited within a specific range. However, this is a technique for increasing the oil absorption rate of hydrated silicic acid powder, that is, it is possible to increase the oil absorption rate of boil oil by setting the pore volume with a pore radius of 50 to 150 to 0.5 to 0.9 cm3 / g. It is described, and it is not mentioned whether it can be used as a filler for papermaking.

【0007】しかしながら、前記した製造方法による水
和珪酸を紙に添加した場合、白紙不透明度の向上能力が
極めて小さく、また、印刷後の不透明度の向上能力も充
分でなく、しかも前記の製造条件の範囲であっても条件
が変動することによって得られる水和珪酸の前記性能が
著しく大きく変動し、安定した品質の製品を得ることが
困難である。その上、これらの製造方法によって造られ
た製品を添加して抄紙する場合、抄紙時に填料が脱落し
て抄紙機の水分計、厚み計等の計器に付着し、また抄紙
した紙製品を印刷すると印刷中に填料が離脱して印刷機
の版に付着し、版の寿命を低下させるという重大な欠点
がある。
However, when the hydrated silicic acid produced by the above-mentioned production method is added to the paper, the ability to improve the opacity of white paper is extremely small, and the ability to improve the opacity after printing is not sufficient, and the production conditions described above are used. Even in the range of 10, the above-mentioned performance of the hydrated silicic acid obtained by varying the conditions remarkably fluctuates, and it is difficult to obtain a product of stable quality. Furthermore, when adding products made by these manufacturing methods to make paper, the filler falls off during paper making and adheres to instruments such as the moisture meter and thickness meter of the paper machine, and when the paper product made from paper is printed. There is a serious drawback that the filler comes off during printing and adheres to the plate of the printing machine, which shortens the life of the plate.

【0008】その後の改良技術として、水和ケイ酸を湿
式粉砕するという操作を加えた技術が特開昭61-17415号
公報に記載されており、さらに本発明者等が提案した特
開昭61-141767 号公報には、湿式粉砕と分級を行ない水
和ケイ酸の平均粒径及び粒度分布を特定の割り合いにす
ることによってインキ着肉性の向上及び印刷後の不透明
度の向上を達成できる方法が開示されている。
As an improved technique thereafter, a technique in which an operation of wet-milling hydrated silicic acid is added is described in JP-A-61-17415, and further, JP-A-61-41415 proposed by the present inventors. -141767, it is possible to improve the ink receptivity and the opacity after printing by adjusting the average particle size and particle size distribution of hydrated silicic acid to a specific ratio by performing wet grinding and classification. A method is disclosed.

【0009】しかしながら、前記の湿式粉砕に関する改
良技術は、製紙用水和ケイ酸の製造技術のうちの填料の
紙表面からの脱落という欠点を改良することはできた
が、印刷後不透明度の向上効果、とりわけ白紙不透明度
の向上効果を充分に改良するものではなかった。その後
の追試結果では、填料の脱落トラブルは、大幅な改善効
果は見られたものの、時として軽度の脱落トラブルは依
然として発生しており、未だに完全には解決されていな
い。
[0009] However, the above-mentioned improved technique relating to wet pulverization has been able to improve the drawback of the dropping of the filler from the surface of the paper among the techniques for producing hydrated silicic acid for papermaking, but has the effect of improving the opacity after printing. In particular, the effect of improving white paper opacity was not sufficiently improved. In the additional test results after that, although the loss problem of the filler was significantly improved, sometimes the slight loss problem still occurred and it was not completely solved yet.

【0010】一方、印刷後の不透明度を改善させる方法
として、本発明者等は、既に特開昭60-65713号公報にお
いて、充分な攪拌及び/または分散を行ないながら、第
一段目の硫酸の使用比率を45〜50%の如く高くして印刷
後の不透明度を最大に改善できることを提案したが、こ
の方法も部分的に中和した水溶液を昇温して水和ケイ酸
を析出させる工程での粘度及び得られた水和ケイ酸スラ
リーの粘度が高くなるため、大規模な装置で製造する場
合には均一な反応を行なわしめること、さらには製品ス
ラリーの移送、取り扱い等に重大な欠陥を有している。
On the other hand, as a method for improving the opacity after printing, the present inventors have already disclosed in JP-A-60-65713 that the sulfuric acid in the first step while performing sufficient stirring and / or dispersion. It was proposed that the opacity after printing could be improved to the maximum by increasing the usage ratio of 45 to 50%, but this method also raises the temperature of the partially neutralized aqueous solution to precipitate hydrated silicic acid. Since the viscosity in the process and the viscosity of the obtained hydrated silicic acid slurry become high, it is important to carry out a uniform reaction when manufacturing with a large-scale apparatus, and to transfer and handle the product slurry. It has a defect.

【0011】[0011]

【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑み、印刷後の不透明度により優れた改善効果を
有する水和ケイ酸を安定的に且つ容易に製造できる方法
について鋭意研究した結果、水和ケイ酸の細孔径分布に
着眼し、印刷後不透明度に対する効果に対して細孔直径
11〜50nm( ナノメーター)の範囲で得られる細孔容積が
印刷後の不透明度の付与に関して最も重要であること、
即ち水和ケイ酸の細孔直径11〜50nmの範囲の細孔容積が
大きい程印刷後の不透明度は顕著に向上し、驚くべきこ
とに、白紙不透明度及び白色度の向上にも優れた効果の
あることを見出し本発明を完成させるに至った。
In view of the above situation, the inventors of the present invention have earnestly studied a method for stably and easily producing hydrated silicic acid having an excellent improving effect on opacity after printing. As a result, we focused on the pore size distribution of hydrated silicic acid, and compared the effect on opacity after printing with the pore diameter.
Pore volume obtained in the range of 11-50 nm (nanometers) is most important for imparting opacity after printing,
That is, the larger the pore volume of the hydrated silicic acid in the pore diameter range of 11 to 50 nm, the more significantly the opacity after printing is significantly improved. Surprisingly, it is also excellent in improving the opacity and whiteness of white paper. Therefore, the present invention has been completed and the present invention has been completed.

【0012】更に、本発明者等は、細孔容積を大きく
し、且つ部分的に中和された水溶液を昇温して水和ケイ
酸を析出させる工程での粘度及び得られる水和ケイ酸の
スラリーの粘度を低く抑えるための条件として、硫酸ナ
トリウムの存在下にケイ酸ソーダを硫酸で中和する際
に、第一段目の硫酸の使用比率を特定すること及び第一
段目の部分中和反応が終了した水溶液中の硫酸ナトリウ
ム(Na2SO4)の濃度並びに二酸化ケイ素(SiO2) の濃度
を特定された範囲に維持すれば良いことを見出した。
Further, the present inventors have found that the viscosity and the hydrated silicic acid obtained in the step of increasing the pore volume and heating the partially neutralized aqueous solution to precipitate hydrated silicic acid. As a condition for suppressing the viscosity of the slurry of low, when neutralizing sodium silicate with sulfuric acid in the presence of sodium sulfate, to specify the use ratio of the first stage sulfuric acid and the first stage part It was found that the concentration of sodium sulfate (Na2SO4) and the concentration of silicon dioxide (SiO2) in the aqueous solution after the neutralization reaction should be kept within the specified range.

【0013】従って、本発明の目的は、従来技術の欠点
を解消し、印刷後の不透明度を改善し、とりわけ白紙不
透明度及び白色度の向上に優れた効果を有する水和ケイ
酸を安定的に、且つ、容易に製造する方法を提供するこ
とにある。
Therefore, an object of the present invention is to eliminate the drawbacks of the prior art, improve the opacity after printing, and especially stabilize hydrated silicic acid which has an excellent effect in improving the opacity and whiteness of white paper. Another object of the present invention is to provide a method of easily manufacturing.

【0014】[0014]

【課題を解決するための手段】本発明の第一は、硫酸ナ
トリウムの存在下で、ケイ酸ソーダ水溶液に硫酸を二段
に分けて添加し中和して製紙用水和ケイ酸を製造する方
法において、該ケイ酸ソーダを中和するのに必要な硫酸
の全量の35〜45%に相当する硫酸の量を第一段目の硫酸
として添加して、部分的に中和反応せしめた後の水溶液
が二酸化ケイ素(SiO2)濃度6.0 〜8.0g/100ml及び硫酸
ナトリウム(Na2SO4)濃度3.5 〜4.1g/100mlとなる様に
硫酸ナトリウムを補充して調整し、次いで該水溶液を攪
拌しながら85〜95℃に昇温し、残部の硫酸を第二段目の
硫酸として連続的に添加して中和を完了させて水和ケイ
酸を析出せしめ、得られた水和ケイ酸をろ過して分離
し、次いで該水和ケイ酸を水に再分散して得られるスラ
リーを用いて湿式粉砕及び/又は湿式分級することによ
って、水和ケイ酸の平均粒径が3 〜10μm であり、且つ
粒径1 〜30μm の粒子を少なくとも80%以上含有するこ
とを特徴とする製紙用水和ケイ酸の製造方法である。
The first aspect of the present invention is a method for producing hydrated silicic acid for papermaking by adding sulfuric acid to an aqueous solution of sodium silicate in two stages in the presence of sodium sulfate and neutralizing the solution. In, the amount of sulfuric acid corresponding to 35 to 45% of the total amount of sulfuric acid necessary for neutralizing the sodium silicate was added as the first-stage sulfuric acid to partially neutralize it. Sodium sulfate (SiO2) concentration of 6.0-8.0g / 100ml and sodium sulfate (Na2SO4) concentration of 3.5-4.1g / 100ml were adjusted by supplementing with sodium sulfate, and then 85-95 while stirring the aqueous solution. The temperature was raised to ℃, the remaining sulfuric acid was continuously added as the second stage sulfuric acid to complete the neutralization to precipitate hydrated silicic acid, and the obtained hydrated silicic acid was filtered and separated. Then, wet pulverization and / or wet pulverization using a slurry obtained by redispersing the hydrated silicic acid in water. A method for producing hydrated silicic acid for papermaking, characterized in that hydrated silicic acid has an average particle size of 3 to 10 μm and contains at least 80% of particles having a particle size of 1 to 30 μm by classification. ..

【0015】本発明の第二は、部分的に中和反応せしめ
た後の水溶液の温度が70℃を越えてからの該水溶液の温
度(T℃) と予め添加された全ケイ酸ソーダの量の85%が
中和されるまでの時間(tc分) に関し式1で計算される
積分値X が500 〜1000であることを特徴とする請求項1
に記載の方法である。
The second aspect of the present invention is the temperature (T ° C.) of the aqueous solution after the temperature of the aqueous solution after the partial neutralization reaction exceeds 70 ° C. and the total amount of sodium silicate added in advance. The integral value X calculated by the equation 1 with respect to the time (tc minutes) until 85% of the water is neutralized is 500-1000.
The method is described in.

【0016】[0016]

【式1】 [Formula 1]

【0017】本発明の第三は、ケイ酸ソーダを硫酸で中
和するため第二段目の硫酸を添加する工程において中和
反応せしめた後の水溶液のpHが5 〜8.5 の範囲の間で硫
酸アルミニウムを酸化アルミニウム(Al2O3 )換算で二
酸化ケイ素(SiO2)重量当り0.1 〜0.5 %の範囲となる如
く添加することを特徴とする本発明第一又は二に記載の
方法である。
The third aspect of the present invention is that the pH of the aqueous solution after the neutralization reaction in the step of adding sulfuric acid in the second step for neutralizing sodium silicate with sulfuric acid is in the range of 5 to 8.5. The method according to the first or second aspect of the present invention is characterized in that aluminum sulfate is added in an amount of 0.1 to 0.5% based on the weight of silicon dioxide (SiO2) in terms of aluminum oxide (Al2O3).

【0018】本発明の第四は、前記スラリーを湿式粉砕
するに際し、該スラリーに硫酸アルミニウムを添加し、
該スラリーのpHを4 〜5 に調整した後湿式粉砕すること
を特徴とする本発明第一乃至三の何れかに記載の方法で
ある。
A fourth aspect of the present invention is to add aluminum sulfate to the slurry when wet-milling the slurry.
The method according to any one of the first to third aspects of the present invention, characterized in that the slurry is adjusted to pH 4 to 5 and then wet-milled.

【0019】本発明の第五は、ろ過、水洗後に凍結乾燥
して得られる水和ケイ酸粉末を水銀圧入法で測定した時
の細孔直径11〜50nm( ナノメーター)の範囲の細孔容積
が0.4 〜1.0 cm3/g であることを特徴とする本発明第一
乃至四の何れかに記載の方法である。
The fifth aspect of the present invention is that the hydrated silicic acid powder obtained by filtration, washing with water and freeze-drying has a pore volume in the range of 11 to 50 nm (nanometer) measured by mercury porosimetry. Is 0.4 to 1.0 cm3 / g, the method according to any one of the first to fourth aspects of the present invention.

【0020】本発明で用いられるケイ酸ソーダは、特に
限定されるものではなく、従来より水和ケイ酸の製造に
用いられているものが使用できるが、市販の3 号ケイ酸
ソーダでSiO2/Na2O のモル比が3.05±0.05のものが好適
に用いられる。
The sodium silicate used in the present invention is not particularly limited, and those conventionally used for the production of hydrated silicic acid can be used. A Na2O molar ratio of 3.05 ± 0.05 is preferably used.

【0021】本発明では、ケイ酸ソーダは、まず水に溶
解されて水溶液とされ、次いで硫酸で一部分中和を行な
って水和ケイ酸を析出させ、適度な1 次粒子となった時
点で、最終的な中和を行ない、1 次粒子の凝集体である
2 次粒子を生成させるという原理にもと基づくものであ
るが、水和ケイ酸の析出が始まり、1 次粒子が形成され
る過程から、各々の1 次粒子が凝集して大きな1 次粒子
となったり、2 次粒子が形成される過程の反応が重要で
ある。
In the present invention, sodium silicate is first dissolved in water to form an aqueous solution, and then partially neutralized with sulfuric acid to precipitate hydrated silicic acid, and when appropriate primary particles are formed, Final neutralization is performed to form primary particle aggregates.
Although it is based on the principle of forming secondary particles, from the process in which hydrated silicic acid begins to precipitate and primary particles are formed, each primary particle aggregates into large primary particles. The reaction in the process of forming secondary particles is important.

【0022】本発明では、中和のための硫酸は2 回に分
けて添加され、第一段目でケイ酸ソーダを中和するのに
必要な全硫酸の量の35〜45%の硫酸が硫酸ナトリウムの
存在下のケイ酸ソーダ水溶液へ攪拌しながら添加され
る。硫酸を添加する時間には特に制限はないが、均一な
反応を行なわしめるためには通常の攪拌条件下で8 〜15
分かけて添加するのが好ましい。温度は高い程、また硫
酸の添加速度が大きい程水和ケイ酸の析出速度は大きく
なるので、局部的な水和ケイ酸の析出またはゲル化を防
止するためには、硫酸の添加時間が短い場合は50℃以
下、時間が長い場合は60℃以下が好ましい。第一段目の
硫酸を添加し終えた水溶液は、次いで攪拌されながら温
度85〜95℃まで昇温されるが、この液中には二酸化ケイ
素(SiO2)濃度が6.0 〜8.0 g/100ml で、且つ硫酸ナト
リウム(Na2SO4)濃度が3.5 〜4.1g/100ml含有されるよ
うに、硫酸ナトリウム水溶液及び清水の添加量が調整さ
れる。
In the present invention, the sulfuric acid for neutralization is added in two steps, and 35 to 45% of the total amount of sulfuric acid necessary for neutralizing sodium silicate in the first stage is added. It is added with stirring to an aqueous sodium silicate solution in the presence of sodium sulfate. The time for adding sulfuric acid is not particularly limited, but in order to carry out a uniform reaction, it is necessary to add 8 to 15 under normal stirring conditions.
It is preferable to add it over minutes. The higher the temperature and the higher the addition rate of sulfuric acid, the higher the precipitation rate of hydrated silicic acid. Therefore, in order to prevent localized precipitation or gelation of hydrated silicic acid, the addition time of sulfuric acid is short. In the case, it is preferably 50 ° C or lower, and when the time is long, 60 ° C or lower is preferable. The aqueous solution after the addition of the sulfuric acid in the first step is then heated to a temperature of 85 to 95 ° C with stirring, and the silicon dioxide (SiO2) concentration in this solution is 6.0 to 8.0 g / 100 ml. In addition, the amounts of sodium sulfate aqueous solution and fresh water added are adjusted so that the sodium sulfate (Na2SO4) concentration is 3.5 to 4.1 g / 100 ml.

【0023】この水溶液中の二酸化ケイ素(SiO2)濃度が
6.0g/100ml未満では水和ケイ酸の1次粒子同士の衝突頻
度が相対的に少ないためか、凝集が不足し、得られる水
和ケイ酸は所望の印刷後並びに白紙不透明度を付与しな
い。逆に、二酸化ケイ素濃度が8.0g/100mlを超えると、
粒子の凝集が促進され、凝集した粒子内部の化学反応が
不十分となり、不均一な反応が生じるので前記と同じよ
うに所望の効果を得ることができない。
The concentration of silicon dioxide (SiO 2) in this aqueous solution is
If the amount is less than 6.0 g / 100 ml, the primary particles of the hydrated silicic acid collide relatively little with each other, the aggregation may be insufficient, and the obtained hydrated silicic acid does not impart desired paper opacity after printing. Conversely, if the silicon dioxide concentration exceeds 8.0 g / 100 ml,
Agglomeration of particles is promoted, the chemical reaction inside the agglomerated particles becomes insufficient, and a non-uniform reaction occurs, so that the desired effect cannot be obtained in the same manner as described above.

【0024】硫酸ナトリウムの添加によって部分的に中
和せしめた水溶液を昇温して水和ケイ酸を析出させる工
程での粘度及び得られる水和ケイ酸スラリーの粘度を低
下させることができるが、該水溶液中の硫酸ナトリウム
濃度が3.5g/100ml未満では、粘度低下が不十分となるこ
との他に、水和ケイ酸粒子の成長並びに凝集が減少する
傾向があるので、こうして得られる水和ケイ酸からは本
発明の所望の効果が得られない。その上、この場合は、
その後工程である湿式粉砕及び/或いは湿式分級工程に
おけるスラリーの粘度が高くなり、処理能力の低下を招
くので好ましくない。
Although the viscosity of the step of precipitating hydrated silicic acid and the viscosity of the resulting hydrated silicic acid slurry can be lowered by raising the temperature of the partially neutralized aqueous solution by the addition of sodium sulfate, If the concentration of sodium sulfate in the aqueous solution is less than 3.5 g / 100 ml, the decrease in viscosity will be insufficient and, in addition, the growth and aggregation of hydrated silicate particles will tend to decrease. The desired effect of the present invention cannot be obtained from the acid. Moreover, in this case,
The viscosity of the slurry in the subsequent step of wet pulverization and / or wet classification increases, resulting in a decrease in processing capacity, which is not preferable.

【0025】一方、硫酸ナトリウムの濃度が4.1g/100ml
を超えると1次粒子径が大きくなり、更には細孔径の分
布が望ましい範囲よりはずれるので、こうして物性の変
化を伴った水和ケイ酸は、所望の効果を発揮しない。そ
の上、理由は不明であるが、得られる水和ケイ酸中の粗
粒子を分級によって除去して製紙に用いているにもかか
わらず、紙からの填料の脱落が多くなるという欠点が生
じ、これはひいては抄紙機の計器類への付着、印刷機の
ブランケット或いは版に付着するという重大なトラブル
を発生する。
On the other hand, the concentration of sodium sulfate is 4.1 g / 100 ml
When it exceeds, the primary particle diameter becomes large, and further, the distribution of the pore diameter deviates from the desirable range, and thus the hydrated silicic acid accompanied by the change in the physical properties does not exhibit the desired effect. Moreover, although the reason is unknown, despite the fact that coarse particles in the obtained hydrated silicic acid are removed by classification for use in papermaking, there is a drawback that the amount of filler dropped from the paper increases. This in turn causes serious troubles such as sticking to instruments of a paper machine and sticking to a blanket or a plate of a printing machine.

【0026】前記した如く、本発明では第一段目の硫酸
を添加してケイ酸ソーダの部分的な中和が終了してから
所定の温度まで昇温する間の水溶液中の硫酸ナトリウム
の濃度を前記の範囲内に維持することが極めて重要であ
り、本発明の必須要件である。
As described above, in the present invention, the concentration of sodium sulfate in the aqueous solution during the temperature rise to a predetermined temperature after the partial neutralization of sodium silicate is completed by adding the first stage sulfuric acid. Is extremely important and is an essential requirement of the present invention.

【0027】以上に説明した如く、本発明では、第二段
階の硫酸を添加する前の部分的に中和を終了せしめた水
溶液中の硫酸ナトリウム並びに二酸化ケイ素の濃度を特
定しておくことが必須要件であるが、これらの調整は、
例えば、硫酸ナトリウムの場合、最初に仕込む硫酸ナト
リウムの量、最初に仕込む清水の量、第一段目の硫酸の
添加によって発生する硫酸ナトリウムの量或いは部分的
に中和を終了せしめた水溶液を昇温するために蒸気を直
接吹き込む場合は、発生するドレンのために希釈される
ことを予め考慮するとかいった細かい配慮が払われるべ
きである。
As described above, according to the present invention, it is essential to specify the concentrations of sodium sulfate and silicon dioxide in the partially neutralized aqueous solution before the addition of the sulfuric acid in the second stage. As a requirement, these adjustments are
For example, in the case of sodium sulphate, the amount of sodium sulphate initially charged, the amount of fresh water initially charged, the amount of sodium sulphate generated by the addition of sulfuric acid in the first step or the partially neutralized aqueous solution is raised. When steam is directly blown in for warming, careful consideration should be given to the fact that it will be diluted due to the generated drain.

【0028】本発明では、第一段目の硫酸の使用比率は
全体の硫酸使用量の35〜45%の範囲にあることが必須要
件である。水和ケイ酸は、一般に粒子径10〜50nmの水和
ケイ酸の単粒子が凝集したものであり、この単粒子の粒
子径の大きさによって凝集体の内部に構成される細孔径
の大きさ及び数が変化し、即ち、細孔容積の変化するこ
とが知られているが、本発明では、1 次粒子の直径が30
〜40nmであることが好ましく、このため第一段目の硫酸
比率を前記した範囲に維持することが重要である。
In the present invention, it is essential that the use ratio of the sulfuric acid in the first stage is within the range of 35 to 45% of the total amount of used sulfuric acid. Hydrated silicic acid is generally an aggregate of single particles of hydrated silicic acid having a particle size of 10 to 50 nm, and the size of the pore size formed inside the aggregate depends on the size of the particle size of this single particle. It is known that the number of particles and the number of particles change, that is, the pore volume changes.
It is preferably ˜40 nm, and therefore it is important to maintain the sulfuric acid ratio in the first stage within the above range.

【0029】第一段目の硫酸の使用比率が35%未満で
は、1 次粒子の成長が充分でないので得られた水和ケイ
酸の11〜50nm直径の範囲で得られる細孔容積が充分な量
に達せず、従ってそのような水和ケイ酸は印刷後の不透
明度の向上が十分満足すべき水準に到達しない。一方、
第一段目の硫酸の使用比率が45%以上の場合であると、
50%前後までは、細孔直径11〜50nmにおける細孔容積の
増加が認められ、印刷後の不透明度の向上効果も増大す
る傾向が認められるものの、該硫酸の使用比率が45%を
越えると、得られる水和ケイ酸のスラリーの粘度が著し
く高くなり、その後の取り扱いが著しく困難になるので
適さない。
When the proportion of sulfuric acid used in the first step is less than 35%, the growth of primary particles is not sufficient, so that the obtained hydrated silicic acid has a sufficient pore volume in the 11 to 50 nm diameter range. The amounts are not reached, and therefore such hydrated silicic acids do not reach a satisfactory level of improvement in opacity after printing. on the other hand,
If the usage rate of sulfuric acid in the first stage is 45% or more,
Up to around 50%, an increase in the pore volume in the pore diameter of 11 to 50 nm is observed, and the effect of improving the opacity after printing tends to increase, but when the use ratio of the sulfuric acid exceeds 45%. However, the viscosity of the obtained slurry of hydrated silicic acid becomes remarkably high and the subsequent handling becomes extremely difficult, which is not suitable.

【0030】第一段目の硫酸の添加が終了すると、その
後部分的に中和を終了せしめた水溶液を昇温して水和ケ
イ酸粒子の析出速度を速めるのが好ましく、昇温する際
には装置の許す限り早めても良いし、ゆっくり昇温して
も良いが、水和ケイ酸粒子の析出及び成長には或る程度
時間が必要なので、3 ℃/分のように急激に昇温した場
合は昇温後第二段目の中和(1 次粒子の成長停止並びに
2 次粒子の形成)に移行する前に、5 〜10分間保持時間
を設けて1 次粒子の熟成を行なうことが望ましい。これ
に対して、1 ℃/ 分の如くゆっくりと昇温する場合に
は、前記した保持時間を設ける必要はない。本発明で
は、第一段目の硫酸による中和を40〜50℃で終了し、そ
れから20〜30分の時間をかけて、1.5 〜2.5 ℃/ 分の昇
温速度で85〜95℃まで昇温し、その後保持時間を設けず
に第二段階の硫酸による中和を行なうのが製造操作上最
も容易で、しかも有利であるので好ましい。
After the addition of the sulfuric acid in the first step is completed, it is preferable to raise the temperature of the aqueous solution in which the neutralization is partially finished to accelerate the precipitation rate of hydrated silicic acid particles. The temperature may be raised as early as the equipment allows, or the temperature may be raised slowly, but a certain amount of time is required for the precipitation and growth of the hydrated silicic acid particles, so the temperature rises rapidly as 3 ° C / min. If the temperature rises, the second stage of neutralization is performed after the temperature is raised.
It is desirable to perform a aging of the primary particles with a holding time of 5 to 10 minutes before shifting to the formation of secondary particles). On the other hand, when the temperature is raised slowly such as 1 ° C./minute, it is not necessary to set the above holding time. In the present invention, the first stage of neutralization with sulfuric acid is completed at 40 to 50 ° C, and then the temperature is raised to 85 to 95 ° C at a temperature rising rate of 1.5 to 2.5 ° C / min for 20 to 30 minutes. It is preferable to perform warming and then carry out the second stage of neutralization with sulfuric acid without setting a holding time because it is the easiest and most advantageous in the production operation.

【0031】前記した昇温の間に水和ケイ酸粒子の析出
及びその1 次粒子の成長を行なわしめ、その後第二段目
の硫酸による中和により残部の水和ケイ酸を完全に析出
させると共に、1 次粒子が軽度に凝集した2 次粒子を形
成させることが行なわれる。第一段目の硫酸による中和
の後で、水和ケイ酸の1 次粒子の成長が十分であれば、
第二段目の硫酸の添加における硫酸濃度、添加に要する
時間等の条件には特に制限は加えられないが、1 次粒子
の成長が十分でない場合は、第二段目の硫酸による中和
は20〜40分かけて行ない、均一な中和反応を行なわしめ
るのが好ましい。
During the above-mentioned temperature rise, hydrated silicic acid particles are precipitated and their primary particles are grown, and then the second stage of neutralization with sulfuric acid completely precipitates the remaining hydrated silicic acid. At the same time, the secondary particles in which the primary particles are slightly aggregated are formed. After the neutralization with sulfuric acid in the first step, if the primary particles of hydrated silicic acid grow sufficiently,
There are no particular restrictions on the conditions such as the concentration of sulfuric acid in the addition of sulfuric acid in the second step and the time required for the addition, but if the growth of primary particles is not sufficient, neutralization with sulfuric acid in the second step is not possible. It is preferable to carry out the reaction for 20 to 40 minutes to carry out a uniform neutralization reaction.

【0032】本発明者等は、前記事実をより定量的に把
握した結果、部分的に中和した水溶液の温度が70℃を越
えてからの温度(T℃) とケイ酸ソーダの85%が中和され
るまでの時間(tc 分) に関する式1で示される積分値X
が500 〜1000の範囲内にあるのが好ましいことを見い出
した。尚、中和に用いる硫酸の濃度には、特に制限はな
いが、20〜30重量%の濃度のものが、液の増加並びに取
り扱い易さの面から好適である。
As a result of a more quantitative understanding of the above facts, the present inventors found that the temperature (T ° C.) after the temperature of the partially neutralized aqueous solution exceeded 70 ° C. and 85% of sodium silicate were Integral value X shown in Equation 1 regarding the time until neutralization (tc minutes)
It has been found that is preferably in the range of 500 to 1000. The concentration of sulfuric acid used for neutralization is not particularly limited, but a concentration of 20 to 30% by weight is preferable from the viewpoint of increasing the amount of liquid and easiness of handling.

【0033】前述した方法で得られた水和ケイ酸スラリ
ーは、二酸化ケイ素(SiO2) 濃度として5.5 〜6.5g/100
mlの範囲にあるが、このスラリーはベルトフィルター、
フィルタープレス、スクリュ−プレス等のようなろ過装
置において硫酸ナトリウムを含むろ液と水和ケイ酸のケ
ーキとに分離される。次いで、得られたケーキに清水を
加えて混合攪拌し、水和ケイ酸濃度が8 〜12g/100ml の
スラリーとする。このスラリーには、水和ケイ酸から分
離できなかった硫酸ナトリウムが含有されているが、こ
れはケーキの段階で水洗を繰り返し除去することもでき
る。スラリーをろ過する際には、スラリー温度を40〜60
℃以上に保ち、ろ過速度を悪化させず、水和ケイ酸の基
礎的な物性を変化せさないことが重要である。
The hydrated silicic acid slurry obtained by the above-mentioned method has a silicon dioxide (SiO2) concentration of 5.5 to 6.5 g / 100.
Although it is in the range of ml, this slurry is a belt filter,
It is separated into a filtrate containing sodium sulfate and a cake of hydrated silicic acid in a filter device such as a filter press or a screw press. Then, fresh water is added to the obtained cake and mixed and stirred to obtain a slurry having a hydrated silicic acid concentration of 8 to 12 g / 100 ml. This slurry contains sodium sulphate which could not be separated from the hydrated silicic acid, which can also be removed repeatedly by washing with water at the cake stage. When filtering the slurry, set the slurry temperature to 40-60
It is important that the temperature is kept above ℃, the filtration rate is not deteriorated, and the basic physical properties of hydrated silicic acid are not changed.

【0034】前記水和ケイ酸濃度が8 〜12g/100ml のス
ラリー中には、通常70μm 以上の粗粒子が全体の5 〜20
%の範囲で含有されるので、このスラリーを連続式ホモ
ミキサー、コロイドミル、ディスクリファイナー、サン
ドグラインダー、ボールミル、ロッドミル等の湿式粉砕
機にかけて処理し、続いて振動スクリーンのような分級
機を通し、70μm 以上の粗粒子の水和ケイ酸を除去し、
最終的に70μm 以上の粗粒子含有量を全体の0.05重量%
以下にすることが行なわれる。湿式粉砕機の処理条件と
しては、70μm 以上の水和ケイ酸の粗粒子は選択的に粉
砕されるが、30μm 以下、とりわけ10μm 以下の粒子は
粉砕されないように配慮されなければならない。即ち、
湿式粉砕機の機種及び条件を選定する場合には、水和ケ
イ酸粒子の平均粒径の低下を最小にとどめるように選択
し、分級機では残留する粗粒子のみを除去するのが望ま
しい。
In the slurry having a hydrated silicic acid concentration of 8 to 12 g / 100 ml, coarse particles of 70 μm or more are usually contained in the total amount of 5 to 20.
Since it is contained in the range of%, the slurry is processed by a wet homogenizer such as a continuous homomixer, a colloid mill, a disc refiner, a sand grinder, a ball mill and a rod mill, and then passed through a classifier such as a vibrating screen, Removes hydrated silicic acid with coarse particles of 70 μm or more,
Finally, the content of coarse particles of 70 μm or more is 0.05% by weight of the whole.
The following is done: As the processing conditions of the wet crusher, it is necessary to consider that coarse particles of hydrated silicic acid of 70 μm or more are selectively crushed, but particles of 30 μm or less, especially 10 μm or less are not crushed. That is,
When selecting the type and conditions of the wet pulverizer, it is desirable to select so as to minimize the decrease in the average particle size of the hydrated silicic acid particles, and to remove only the coarse particles remaining in the classifier.

【0035】水和ケイ酸粒子の平均粒径の低下は、抄紙
に際し水和ケイ酸を添加した時歩留りの低下をもたらす
と同時に、理由は不明であるが、11〜50nmの細孔容積を
も減少させるので、結果として印刷後並びに白紙不透明
度に対する効果を減少させ、本発明の所期の目的が達成
されない。本発明による水和ケイ酸の粒度分布は、平均
粒径が3 〜10μm であり、粒径1 〜30μm の粒子割合が
少なくとも80%以上含有するのであるが、この範囲内に
おいて、平均粒径は大きい程作用効果は大きくなる。
A decrease in the average particle size of the hydrated silicic acid particles causes a decrease in the yield when hydrated silicic acid is added during papermaking, and at the same time, the reason is unknown, but a pore volume of 11 to 50 nm is also present. As a result, the effect on post-printing as well as on white paper opacity is reduced, and the intended purpose of the present invention is not achieved. The particle size distribution of the hydrated silicic acid according to the present invention has an average particle size of 3 to 10 μm, and the particle ratio of the particle size 1 to 30 μm is at least 80% or more. The larger the value, the greater the effect.

【0036】一方、水和ケイ酸を湿式粉砕し、分級する
に際しては装置の処理能力並びに操業の面から水和ケイ
酸のスラリーの濃度並びに粘度が大変重要な要素とな
る。印刷後並びに白紙不透明度等の作用効果をより大き
くするためには、第一段目の硫酸の使用比率を45%前後
まで高くする方が良いが、この場合、同時にスラリーの
粘度の上昇傾向を伴うので処理能力並びに操業上、該硫
酸の使用比率をむやみに上げることはできない。本発明
では、このことに鑑み、中和が終了した後脱液されたケ
ーキを再度分散して得られるスラリーのpHを硫酸アルミ
ニウム(Al2(SO4)3 )を添加することによって4 〜5 の
範囲に調整すると、スラリーの粘度を硫酸アルミニウム
を添加しない場合の50〜80%まで低下できるので、第一
段目の硫酸比率を、例えば37%から42%へと5 %上げて
も、装置の処理能力を低下させずに、迅速に湿式粉砕と
分級が可能となる。
On the other hand, in wet pulverizing hydrated silicic acid and classifying it, the concentration and viscosity of the slurry of hydrated silicic acid are very important factors from the viewpoint of the processing capacity of the equipment and operation. After printing and in order to further increase the effects of white paper opacity, etc., it is better to increase the use ratio of sulfuric acid in the first stage to around 45%, but in this case, the viscosity of the slurry tends to increase at the same time. Therefore, the use ratio of the sulfuric acid cannot be increased unnecessarily in terms of processing capacity and operation. In the present invention, in view of this, the pH of the slurry obtained by redispersing the deliquored cake after neutralization is adjusted to the range of 4 to 5 by adding aluminum sulfate (Al2 (SO4) 3). Adjusting to 50% can reduce the viscosity of the slurry to 50-80% compared to the case where aluminum sulfate is not added, so even if the 5% increase in the first stage sulfuric acid ratio from 37% to 42%, Wet grinding and classification can be performed quickly without reducing the capacity.

【0037】更に、本発明では、特開昭60-65713号公報
に記載されている如く、ケイ酸ソーダ水溶液中にアルミ
ン酸ソーダ(NaAlO2)を添加したり、中和の途中で硫酸の
代わりに硫酸アルミニウム(硫酸バンド:Al2(SO4)3)を
用いて水和ケイ酸スラリーの粘度を低下させることもで
きる。しかしながら、アルミニウム化合物が0.5 %を越
えてケイ酸ソーダの中和反応中に存在すると、SiO2−Al
2O3 系化合物或いは複合物を生成し、得られる水和ケイ
酸の細孔径分布に影響が及び、印刷後並びに白紙の不透
明度の向上効果が阻害される恐れがあるので、酸化アル
ミニウム(Al2O3)換算で水和ケイ酸重量の0.5 %以下の
如く極めて少量しか用いることはできない。しかしなが
ら、その量が0.1 %未満では所望の粘度に下げることが
できないので好ましくない。また、中和反応の開始時に
アルミニウム化合物を添加する代わりに硫酸による中和
反応の後半で使用すると、2 次粒子内部までの反応が行
き届かず、従って細孔径分布を変化させずにスラリー粘
度を低下させることができて好都合である。
Further, in the present invention, as described in JP-A-60-65713, sodium aluminate (NaAlO2) is added to an aqueous solution of sodium silicate, or instead of sulfuric acid during neutralization. Aluminum sulphate (sulfuric acid band: Al2 (SO4) 3) can also be used to reduce the viscosity of the hydrated silicic acid slurry. However, when more than 0.5% of aluminum compound is present during the neutralization reaction of sodium silicate, SiO2-Al
2O3 type compounds or composites are produced, and the resulting pore size distribution of hydrated silicic acid may be affected, and the effect of improving the opacity of white paper after printing may be impaired, so conversion to aluminum oxide (Al2O3) Therefore, only a very small amount such as 0.5% or less of the weight of hydrated silicic acid can be used. However, if the amount is less than 0.1%, the desired viscosity cannot be lowered, which is not preferable. Also, when used in the latter half of the neutralization reaction with sulfuric acid instead of adding an aluminum compound at the start of the neutralization reaction, the reaction does not reach the inside of the secondary particles, and therefore the slurry viscosity is changed without changing the pore size distribution. It can be lowered, which is convenient.

【0038】前記した理由から、硫酸アルミニウムの添
加は、pH8.5 以下で行なうのが好適であり、逆にpH5 未
満で該硫酸アルミニウムを添加することは、中和反応が
終了しているために水和ケイ酸粒子との反応性が乏し
く、歩留りが悪いばかりでなく、水和ケイ酸を分離した
後のろ液を次の中和反応のため循環使用する際にはろ液
中にアルミニウム化合物が多くなり過ぎて、次の中和反
応に悪影響を及ぼすので好ましくない。
For the above reason, it is preferable to add aluminum sulfate at pH 8.5 or less, and conversely, if the aluminum sulfate is added at pH less than 5, the neutralization reaction is completed. Not only the reactivity with the hydrated silicic acid particles is poor and the yield is poor, but when the filtrate after separating the hydrated silicic acid is used for circulation for the next neutralization reaction, aluminum compounds are contained in the filtrate. It is not preferable because it becomes too large and adversely affects the subsequent neutralization reaction.

【0039】また本発明者等は、紙の印刷後の不透明度
の向上効果と填料の特性を研究している間に、填料の細
孔容積、とりわけ細孔直径が11〜50nmの範囲の細孔容積
が重要であることを知見した。しかも、この細孔容積は
水和ケイ酸の場合、単に乾燥すると、水和ケイ酸粒子の
表面に無数にあるシラノール基(−SiOH) 同士が縮結合
し、シロキサン結合基(−Si−O −Si−)となるため細
孔を塞いでしまい、正しい細孔径分布を示さないことが
分かった。
While studying the effect of improving the opacity of the paper after printing and the characteristics of the filler, the present inventors have found that the pore volume of the filler, especially the pore diameter in the range of 11 to 50 nm. We found that the pore volume was important. Moreover, in the case of hydrated silicic acid, when the pore volume is simply dried, innumerable silanol groups (-SiOH) are condensed to each other on the surface of the hydrated silicic acid particles, and a siloxane bond group (-Si-O- It was found that Si-) blocks the pores and does not show the correct pore size distribution.

【0040】これに対して、凍結乾燥した水和ケイ酸粉
末を用いて細孔分布を測定する時の細孔容積は、前記の
縮重合が起こりにくく、シラノール基をより多く残した
状態で粉末となるので細孔を防ぐことが少なく正確な値
となる。一方、紙を抄造する際に添加された水和ケイ酸
は、パルプ繊維に絡まった状態で紙に抄き込まれ、乾燥
されるが、この時、通常の添加水準であるパルプ重量当
り0.2 〜5.0 %の範囲では、水和ケイ酸粒子同士が密着
していることが少ないため細孔が塞がれている確率が小
さいと考えられる。
On the other hand, the pore volume when the pore size distribution is measured using freeze-dried hydrated silicic acid powder is such that the above-mentioned polycondensation is unlikely to occur, and the silanol groups remain in a large amount. As a result, it is possible to obtain accurate values with less pores. On the other hand, the hydrated silicic acid added when paper is made into paper is drawn into the paper while being entangled with pulp fibers and dried. In the range of 5.0%, the hydrated silicic acid particles are less likely to be in close contact with each other, and thus the probability that the pores are blocked is considered to be small.

【0041】一方、このようにして測定される細孔容積
に関して、11〜50nmの細孔直径の臨界的な意味はない
が、細孔径の小さい領域ではインキ中の油成分を保持す
る能力において最も優れているためと考えられたこと
と、測定データの取り扱いの便宜上選ばれた値である。
その理由としては、細孔径が小さい程毛細管現象に基づ
く吸引力が強く、従って、大きな径に入っている油成分
は隣接する小さな径の細孔にやがて吸収される。しかし
ながら、油成分は、多くの種類の炭化水素の混合体であ
り、あまりにも径が小さいと油成分が侵入できないと考
えられる。
On the other hand, regarding the pore volume measured in this way, a pore diameter of 11 to 50 nm does not have a critical meaning, but in the region where the pore diameter is small, the ability to retain the oil component in the ink is the most. These values were considered to be excellent and were selected for the convenience of handling the measured data.
The reason for this is that the smaller the pore size, the stronger the suction force based on the capillary phenomenon, and therefore the oil component contained in the larger size is eventually absorbed by the adjacent small size pores. However, the oil component is a mixture of many kinds of hydrocarbons, and it is considered that the oil component cannot penetrate if the diameter is too small.

【0042】従って、前記の測定結果による11〜50nmの
範囲の細孔容積が0.4cm3/g以上と大きい数値を示す水和
ケイ酸は、印刷後の不透明度の向上能力が優れている。
また、逆に1.0cm3/gの細孔容積を得ようとすると、第一
段目の硫酸の使用比率を45%以上に上げるとかの製造条
件を特別な範囲に選定し直す必要があるので、安定して
水和ケイ酸を製造することが困難となる。
Therefore, hydrated silicic acid having a large pore volume of 0.4 cm3 / g or more in the range of 11 to 50 nm according to the above measurement results has an excellent ability to improve opacity after printing.
On the contrary, when trying to obtain a pore volume of 1.0 cm3 / g, it is necessary to reselect manufacturing conditions such as increasing the use ratio of sulfuric acid in the first stage to 45% or more within a special range. It becomes difficult to stably produce hydrated silicic acid.

【0043】以上に述べたように、本発明は、製紙用填
料としての水和ケイ酸の製造において、攪拌、分離、移
送、粉砕、分級等の単位操作が極めて容易となり、得ら
れる水和ケイ酸を製紙において用いると、紙への歩留り
が良く、且つ印刷後並びに白紙の不透明度及び白色度の
向上に寄与するという効果を奏する。
As described above, according to the present invention, in the production of hydrated silicic acid as a filler for papermaking, unit operations such as stirring, separation, transfer, pulverization and classification become extremely easy, and the obtained hydrated silicic acid is obtained. When an acid is used in papermaking, it has an effect that the yield on the paper is good and it contributes to the improvement of the opacity and whiteness of the white paper after printing.

【0044】以下に実施例を挙げて本発明をより具体的
に説明するが、本発明は、勿論これらに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.

【0045】[0045]

【実施例】【Example】

実施例1 市販の固体水ガラスを溶解したケイ酸ソーダ水溶液(Si
O2/Na2O モル比=3.05、SiO2濃度=187g/l)80.2リット
ル及び硫酸ナトリウム(Na2SO4)水溶液(濃度=60.0g/l)
62リットル及び清水44.2リットルを内容積300 リットル
の攪拌機付き内部加熱式反応槽に供給した。次いで、蒸
気加温により水溶液の温度を45℃とした後、攪拌しなが
ら20重量%(228g/l) の硫酸13.0リットルを10分で添加
した。この時の全硫酸添加量に対する第一段目の硫酸の
添加比率は37%であった。
Example 1 Sodium silicate aqueous solution (Si
O2 / Na2O molar ratio = 3.05, SiO2 concentration = 187g / l) 80.2 liters and sodium sulfate (Na2SO4) aqueous solution (concentration = 60.0g / l)
62 liters and 44.2 liters of fresh water were supplied to an internal heating type reaction vessel with an internal volume of 300 liters equipped with a stirrer. Next, the temperature of the aqueous solution was adjusted to 45 ° C. by steam heating, and 13.0 liters of 20 wt% (228 g / l) sulfuric acid was added over 10 minutes while stirring. At this time, the addition ratio of the sulfuric acid in the first stage to the total amount of added sulfuric acid was 37%.

【0046】この時、蒸気のドレンも加わって内容物が
206 リットルとなったので、二酸化ケイ素(SiO2)濃度
は7.2g/100ml、第一段目の中和で硫酸ナトリウムが4.3K
g 生成したので、部分的に中和が終了した水溶液中の硫
酸ナトリウム(Na2SO4) 濃度は3.9g/100mlであった。こ
の部分的に中和が終了した水溶液をさらに攪拌しながら
蒸気を吹き込み、20分で95℃に昇温した。さらに、攪拌
を継続しながら、第二段目の硫酸22.3リットルのうち、
16.9リットルを30分かけて添加し、全ケイ酸ソーダの85
%を中和し、その後残部の硫酸5.4 リットルを10分かけ
て添加し、中和を完了させた。この時得られた水和ケイ
酸スラリーのpHは5.0 、式1で計算される積分値X は87
5 であった。
At this time, the content of the contents is increased by adding a steam drain.
Since it reached 206 liters, the silicon dioxide (SiO2) concentration was 7.2 g / 100 ml, and sodium sulfate was 4.3 K in the first stage of neutralization.
As a result, the concentration of sodium sulfate (Na2SO4) in the partially neutralized aqueous solution was 3.9 g / 100 ml. Steam was blown into this partially neutralized aqueous solution while further stirring, and the temperature was raised to 95 ° C. in 20 minutes. Further, while continuing stirring, of 22.3 liters of sulfuric acid in the second stage,
Add 16.9 liters over 30 minutes to obtain 85% total sodium silicate.
%, And then the remaining 5.4 liters of sulfuric acid was added over 10 minutes to complete the neutralization. The pH of the hydrated silicic acid slurry obtained at this time was 5.0, and the integral value X calculated by the formula 1 was 87.
It was 5.

【0047】得られた水和ケイ酸スラリー20リットルを
ろ布を敷いたバケット型遠心脱水機の中にいれて脱水
し、ケーキ状水和ケイ酸6Kg を得た。次いで、ケーキ状
水和ケイ酸を取り出し、これに水を加えて攪拌して再度
スラリーとし、水和ケイ酸の濃度を100g/lに調整した。
このスラリーの1 リットルを分取し、内容積2 リットル
のステンレスビーカーに直径2.0 〜2.6 mmのガラスビー
ズ1 リットルと共に入れ、50℃に保温しながら、ヤマト
ラボスターラーで480rpm、3 分間攪拌して粉砕処理を行
ない、このスラリーをJIS 200 メッシュの標準篩で篩
い、残渣を除去した。この粉砕及び分級処理後のスラリ
ーのpHは6.3 、B 型粘度計による粘度は500cp 、水和ケ
イ酸の平均粒径は7.2 μm 、1 〜30μm の粒子割合は86
%、及びこのスラリーをろ過、水洗の後凍結乾燥した粉
末の水銀圧入法で測定した直径11〜50nmの範囲の細孔容
積は0.42cm3/g であった。
20 liters of the obtained hydrated silicic acid slurry was placed in a bucket type centrifugal dehydrator covered with a filter cloth for dewatering to obtain 6 kg of cake-like hydrated silicic acid. Next, the cake-like hydrated silicic acid was taken out, water was added to this, and the mixture was stirred to form a slurry again, and the concentration of the hydrated silicic acid was adjusted to 100 g / l.
Take 1 liter of this slurry and put it in a stainless beaker with an internal volume of 2 liters along with 1 liter of glass beads with a diameter of 2.0 to 2.6 mm.While keeping the temperature at 50 ° C, stir for 3 minutes at 480 rpm with a YAMATURABO stirrer and pulverize. After the treatment, this slurry was sieved with a JIS 200 mesh standard sieve to remove the residue. The pH of the slurry after this pulverization and classification treatment is 6.3, the viscosity by a B-type viscometer is 500 cp, the average particle size of hydrated silicic acid is 7.2 μm, and the particle ratio of 1 to 30 μm is 86.
%, And the lyophilized powder of this slurry which had been filtered, washed with water, and then freeze-dried had a pore volume of 0.42 cm3 / g in the range of 11 to 50 nm in diameter measured by mercury porosimetry.

【0048】このスラリーの10.0mlを用いて針葉樹晒ク
ラフトパルプ13%、サーモメカニカルパルプ19%、グラ
ウンドパルプ38%、脱インキ古紙パルプ30%からなる新
聞紙用混合パルプ25g/l のパルプスラリー2 リットル
に、絶乾パルプ重量当り水和ケイ酸が2 %となるように
添加し、2 分間攪拌し、次いで硫酸バンド(Al2(SO4)3-
18H2O)を絶乾パルプ重量当り1 %加えて、さらに2 分
間攪拌し、全体を16リットルになる様に水を加えて希釈
し、充分に混合した後TAPPI 標準の角型シートマシンで
坪量42.5g/m2の紙を抄紙し、乾燥した。
Using 10.0 ml of this slurry, 2 liters of pulp slurry of 25 g / l of mixed pulp for newsprint consisting of 13% bleached softwood kraft pulp, 19% thermomechanical pulp, 38% ground pulp and 30% deinked waste paper pulp , Add hydrated silicic acid to 2% by weight of bone-dry pulp, stir for 2 minutes, and then add sulfuric acid band (Al2 (SO4) 3-
18H2O) at 1% based on absolute dry pulp weight, stir for an additional 2 minutes, dilute by adding water to a total volume of 16 liters, mix well, and then use a TAPPI standard square sheet machine to weigh 42.5 g. Paper of g / m2 was made and dried.

【0049】この手抄きシートを20℃、65%相対湿度の
部屋で調湿した後、線圧40kg/cm のマシンカレンダーを
2 回通過させ、王研式平滑度を50〜60秒の範囲内に調整
し、その後白色度、不透明度等の紙質試験及び印刷試験
を行ない、評価を行なった。
This handmade sheet was conditioned in a room at 20 ° C. and 65% relative humidity, and then a machine calender with a linear pressure of 40 kg / cm was used.
After passing twice, the Oken type smoothness was adjusted within the range of 50 to 60 seconds, and then the paper quality test such as whiteness and opacity and the printing test were conducted and evaluated.

【0050】用いた試験方法は次ぎのとおり。 1)粒度分布 粒径44μm (325 メッシュ)以上の粒子はJIS 標準篩を
重ね、振盪機上で振動させながら上部から水を流す水篩
法で測定した。44μm 以下の粒子は島津遠心沈降式度分
布測定装置(SA-CP2型)を用いて測定した。平均粒径は
中央累積値(メジアン径)で表示した。
The test method used is as follows. 1) Particle size distribution Particles with a particle size of 44 μm (325 mesh) or more were placed on a JIS standard sieve and measured by a water sieving method in which water was passed from the top while vibrating on a shaker. Particles of 44 μm or less were measured using a Shimadzu centrifugal sedimentation type degree distribution measuring device (SA-CP2 type). The average particle size is shown by the median cumulative value (median size).

【0051】2)スラリー粘度 東京計器社製B 型粘度計を使用し、20℃、60rpmでNo.1〜
3 のローターを用いて測定した。
2) Slurry viscosity Using a B-type viscometer manufactured by Tokyo Keiki Co., No. 1-at 20 ° C. and 60 rpm
It measured using the rotor of 3.

【0052】3)細孔容積 細孔容積はカルロエルバ(CARLOERBA)社製の2000型水銀
ポロシメーター(ダイラトメーター(DILATOMETER)タイ
プCD-3P 、キャピラリー(CAPILLARRY) :3mmφ、0.070
65cm2) を用いて測定した。尚、細孔容積は直径11〜50n
mの容積として表示した。
3) Pore Volume Pore volume is 2000 type mercury porosimeter (DILATOMETER type CD-3P, manufactured by CARLOERBA), CAPILLARRY: 3 mmφ, 0.070
65 cm2). The pore volume is 11 to 50n in diameter.
It was expressed as the volume of m.

【0053】4)印刷後の不透明度 宮腰M-3 印刷機で13.9×18cmの大きさのベタ印刷を行な
い、印刷後の不透明度Y(%)は式2で定義した。尚、印
刷後の不透明度は、試験に使用する原料パルプのロット
の違いでも0.2 〜0.3 %程度変動するので、水和ケイ酸
無添加のシートの印刷後の不透明度88.7%並びに標準物
質として市販の水和ケイ酸粉末を絶乾パルプ重量当り2
%となるように添加したシートの印刷後の不透明度91.4
%を基準として補正した値で表示した。
4) Opacity after printing Solid printing with a size of 13.9 × 18 cm was carried out with a Miyakoshi M-3 printing machine, and the opacity Y (%) after printing was defined by equation 2. Since the opacity after printing varies by 0.2 to 0.3% depending on the lot of raw pulp used in the test, the opacity after printing of sheets without hydrated silicic acid 88.7% and as a standard substance are commercially available. 2 hydrated silicic acid powders per absolute dry pulp weight
Opacity after printing of the sheet added so as to become 9% 91.4
The value was corrected based on%.

【0054】[0054]

【式2】 [Formula 2]

【0055】5)白紙不透明度 JIS P 8138に準拠して測定し、反射率89.5%の裏当て板
を使用した。
5) White paper opacity A backing plate having a reflectance of 89.5% was measured according to JIS P 8138.

【0056】6)白色度 JIS P 8123に準拠して測定した。6) Whiteness Measured according to JIS P 8123.

【0057】実施例2 水和ケイ酸ソーダの水溶液を66.3リットル、硫酸ナトリ
ウム水溶液63.9リットル、清水58リットルを用い、第一
段目の硫酸添加量を10.2リットル、第二段目の硫酸添加
量を18.9リットルとした以外は実施例1と同様にして水
和ケイ酸を製造した。この時の第一段目の硫酸の使用比
率は35%、昇温開始時の二酸化ケイ素(SiO2) 濃度は6.
0g/100ml、硫酸ナトリウム(Na2SO4) 濃度は3.5g/100ml
であった。
Example 2 Using 66.3 liters of an aqueous solution of hydrated sodium silicate, 63.9 liters of an aqueous solution of sodium sulfate and 58 liters of clear water, the addition amount of sulfuric acid in the first step was 10.2 liters and the addition amount of sulfuric acid in the second step was Hydrated silicic acid was produced in the same manner as in Example 1 except that the amount was 18.9 liters. At this time, the ratio of sulfuric acid used in the first step was 35%, and the silicon dioxide (SiO2) concentration at the start of temperature rise was 6.
0g / 100ml, sodium sulfate (Na2SO4) concentration 3.5g / 100ml
Met.

【0058】このようにして得られた水和ケイ酸を実施
例1と同様の操作で処理し、粉砕処理を行ない、JIS 20
0 メッシュ標準篩で残渣を除去した後の水和ケイ酸のス
ラリーのpHは6.0 、1 〜30μm の粒子の割合は91%、細
孔容積は0.40cm3/g であった。また、このスラリーを実
施例1と同様にして手抄きシートを作成し、評価を行な
った。
The hydrated silicic acid thus obtained was treated in the same manner as in Example 1 and crushed to obtain JIS 20
The pH of the hydrated silicic acid slurry after removing the residue with a 0-mesh standard sieve was 6.0, the proportion of particles of 1 to 30 μm was 91%, and the pore volume was 0.40 cm 3 / g. Further, a handmade sheet was prepared from this slurry in the same manner as in Example 1 and evaluated.

【0059】実施例3及び4 第一段目の硫酸の使用比率、昇温開始時の二酸化ケイ素
(SiO2) 濃度及び硫酸ナトリウム(Na2SO4)濃度を表1
に記載の通りとし、実施例1と同様にして2 種類の水和
ケイ酸並びにそれを含有するシートを製造し、評価し
た。
Examples 3 and 4 Table 1 shows the use ratio of the first stage sulfuric acid, the concentration of silicon dioxide (SiO2) and the concentration of sodium sulfate (Na2SO4) at the start of heating.
In the same manner as in Example 1, two types of hydrated silicic acid and sheets containing the same were produced and evaluated.

【0060】実施例5 実施例1と同様の反応条件で、商業規模の装置で水和ケ
イ酸を製造し、湿式粉砕及び振動スクリーン処理を行な
った。即ち、ケイ酸ソーダ水溶液(SiO2/Na2Oモル比=
3.05、SiO2濃度187g/l) 9.62m3、硫酸ナトリウム水溶液
(濃度60g/l)7.53m3及び清水5.82m3を有効容積30m3の攪
拌機付き内部加熱式反応層に供給し、次いで20重量%の
硫酸1.52m3を攪拌しながら12分かけて添加した。この時
の第一段目の硫酸の使用比率は36%、二酸化ケイ素濃度
は7.35g/100ml 、硫酸ナトリウム濃度は3.9g/100mlであ
った。さらに、その後攪拌しながら蒸気を吹き込み、20
分で、温度を45℃から91℃に昇温し、直ちに第二段目の
硫酸添加量2.71m3のうち完全中和に必要な全体の硫酸の
量の85%に相当する2.08m3を25分間で添加し、その後残
りの硫酸0.63m3を21分間で添加し、水和ケイ酸の析出反
応を終了させた。
Example 5 Under the same reaction conditions as in Example 1, hydrated silicic acid was produced in a commercial-scale apparatus, and wet-milled and vibrated. That is, an aqueous solution of sodium silicate (SiO2 / Na2O molar ratio =
3.05, SiO2 concentration 187g / l) 9.62m3, sodium sulfate aqueous solution (concentration 60g / l) 7.53m3 and clear water 5.82m3 were supplied to an internally heated reaction layer with an agitator with an effective volume of 30m3, and then 20% by weight of sulfuric acid 1.52m3. Was added with stirring over 12 minutes. At this time, the use ratio of sulfuric acid in the first step was 36%, the silicon dioxide concentration was 7.35 g / 100 ml, and the sodium sulfate concentration was 3.9 g / 100 ml. After that, blow steam with stirring,
The temperature was raised from 45 ℃ to 91 ℃ in 2.0 minutes, and 2.08m3 of 85% of the total amount of sulfuric acid required for complete neutralization out of 2.71m3 of sulfuric acid added in the second step was immediately added for 25 minutes. Then, the remaining 0.63 m3 of sulfuric acid was added over 21 minutes to terminate the precipitation reaction of hydrated silicic acid.

【0061】この反応で得られた濃度6.1g/100mlの水和
ケイ酸スラリーは、次にベルトフィルターでケーキ状と
され、清水を加えて攪拌し10.5g/100ml のスラリーとし
た。次いで、王子工営社製サンドグラインダー(内容積
100 リットル、2.0 〜2.3mmφのビーズ60kg充填)でス
ラリー供給速度60l/分で処理し、その後200 メッシュ振
動スクリーン(月島機械社製:ボールトン48型)で処理
した。この水和ケイ酸スラリーの粘度は400cp で、水和
ケイ酸の平均粒径は6.0 μm であった。
The hydrated silicic acid slurry having a concentration of 6.1 g / 100 ml obtained by this reaction was then made into a cake shape with a belt filter, and fresh water was added thereto and stirred to obtain a slurry of 10.5 g / 100 ml. Next, Oji Kogyo's sand grinder (internal volume
It was treated with 100 liters, 60 kg of beads of 2.0 to 2.3 mmφ) at a slurry supply rate of 60 l / min, and then treated with a 200 mesh vibrating screen (Tsukishima Kikai Co., Ltd .: Bolton 48 type). The viscosity of the hydrated silicic acid slurry was 400 cp, and the average particle size of the hydrated silicic acid was 6.0 μm.

【0062】この水和ケイ酸スラリーを用いて、新聞用
紙専用のツィンワイヤー抄紙機の完成原料(配合:針葉
樹晒クラフトパルプ13%、サーモメカニカルパルプ19
%、グラウンドパルプ38%、脱インキ古紙パルプ30%)
に絶乾原料当り2.5 %となるように添加し、絶乾重量で
坪量が42.5g/m2の新聞用紙を1200m/分で抄造し、得られ
た紙を評価した。
Using this hydrated silicic acid slurry, a finished raw material for a twin wire paper machine exclusively for newsprint (compounding: 13% softwood bleached kraft pulp, 19 thermomechanical pulp)
%, Ground pulp 38%, deinked waste paper pulp 30%)
Was added to 2.5% of the absolute dry raw material, and newsprint having an absolute dry weight of 42.5 g / m2 was produced at 1200 m / min, and the obtained paper was evaluated.

【0063】比較例1〜4 実施例1と同様の操作を用いて、表1に示される第一段
目の硫酸の使用比率、昇温開始時の二酸化ケイ素(SiO
2)濃度並びに硫酸ナトリウム(Na2SO4) 濃度で水和ケ
イ酸スラリーを製造し、これを用いて手抄きシートを得
て評価した。
Comparative Examples 1 to 4 Using the same operation as in Example 1, the use ratio of the sulfuric acid in the first stage shown in Table 1 and the silicon dioxide (SiO 2
2) Hydrated silicic acid slurries were produced at concentrations and sodium sulfate (Na2SO4) concentrations, and using this, handmade sheets were obtained and evaluated.

【0064】比較例5 昇温開始時の硫酸ナトリウム濃度を4.2g/100mlとした以
外は、実施例5と同様に水和ケイ酸スラリーを製造し、
これを用いて紙を得て評価した。
Comparative Example 5 A hydrated silicic acid slurry was produced in the same manner as in Example 5, except that the sodium sulfate concentration at the start of heating was 4.2 g / 100 ml.
Using this, paper was obtained and evaluated.

【0065】実施例1乃至比較例5で得られた結果を表
1に示す。
The results obtained in Examples 1 to 5 are shown in Table 1.

【0066】[0066]

【表1】 [Table 1]

【0067】実施例6 実施例1と同様の操作を用いて、表2に示される条件で
部分的に中和を行なわしめた水溶液に攪拌しながら蒸気
を吹き込み、20分で90℃の温度まで昇温した。さらに、
攪拌を継続しながら、第二段目の硫酸22.3リットルのう
ち17リットルを23分かけて添加し、全ケイ酸ソーダの85
%を中和し、その後残部の硫酸5.3 リットルを10分かけ
て添加し、中和を完了させた。この時得られた水和ケイ
酸スラリーのpHは5.5 、式1で計算される積分値X は55
0 であった。得られた水和ケイ酸スラリーを実施例1と
同様に処理して、スラリーの物性を測定し、続いて手抄
シートを作成して評価を行なった。
Example 6 Using the same procedure as in Example 1, steam was blown into an aqueous solution partially neutralized under the conditions shown in Table 2 with stirring to a temperature of 90 ° C. in 20 minutes. The temperature was raised. further,
While continuing to stir, add 17 liters of 22.3 liters of sulfuric acid in the second stage over 23 minutes to obtain 85% of total sodium silicate.
%, And then the remaining 5.3 liters of sulfuric acid was added over 10 minutes to complete the neutralization. The pH of the hydrated silicic acid slurry obtained at this time was 5.5, and the integrated value X calculated by the equation 1 was 55.
It was 0. The obtained hydrated silicic acid slurry was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0068】実施例7 実施例1と同様の操作を用いて、表2に示される条件で
部分的に中和した水溶液を20分で温度45℃から95℃へ昇
温し、その後15分間攪拌を継続してから、第二段目の硫
酸21.4リットルのうち全ケイ酸ソーダの85%を中和する
のに必要な硫酸15.9リットルを20分かけて添加し、残部
の硫酸5.5 リットルを5 分かけて添加し、中和を完了さ
せた。この時得られた水和ケイ酸スラリーのpHは5.3 、
式1で計算される積分値X は1000であった。得られた水
和ケイ酸スラリーを実施例1と同様に処理して、スラリ
ーの物性を測定し、続いて手抄シートを作成して評価を
行なった。
Example 7 Using the same procedure as in Example 1, the partially neutralized aqueous solution under the conditions shown in Table 2 was heated from 45 ° C. to 95 ° C. in 20 minutes and then stirred for 15 minutes. After that, 15.9 liters of sulfuric acid necessary to neutralize 85% of all sodium silicate in 21.4 liters of the second stage sulfuric acid was added over 20 minutes, and the remaining 5.5 liters of sulfuric acid was added for 5 minutes. Over the period of time to complete the neutralization. The pH of the hydrated silicic acid slurry obtained at this time was 5.3,
The integral value X calculated by Equation 1 was 1000. The obtained hydrated silicic acid slurry was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0069】比較例6 部分的に中和した水溶液を昇温する際の到達温度を90℃
から87℃に変更した以外は実施例6と同様にして水和ケ
イ酸スラリー並びに手抄シートを作成して評価を行なっ
た。式1で計算される積分値X は460 であった。
Comparative Example 6 The ultimate temperature when raising the temperature of the partially neutralized aqueous solution was 90 ° C.
To 87 ° C., a hydrated silicic acid slurry and a hand-made sheet were prepared and evaluated in the same manner as in Example 6. The integral value X calculated by Equation 1 was 460.

【0070】比較例7 実施例1と同様の操作を用いて表2に示される条件で部
分的に中和した水溶液を20分で温度45℃から95℃に昇温
後、20分間攪拌を継続してから第二段目の硫酸21.0リッ
トルのうち全ケイ酸ソーダーの85%を中和するのに必要
な硫酸15.3リットルを20分かけて添加し、残部の硫酸5.
7 リットルを5 分かけて添加し、中和を完了させた。こ
の時得られた水和ケイ酸スラリーのpHは5.5 、式1で計
算される積分値X は1125であった。得られた水和ケイ酸
スラリーを実施例1と同様に処理して、スラリーの物性
を測定し、続いて手抄シートを作成して評価した。
Comparative Example 7 Using the same procedure as in Example 1, an aqueous solution partially neutralized under the conditions shown in Table 2 was heated from 45 ° C. to 95 ° C. in 20 minutes, and stirring was continued for 20 minutes. Then, 15.3 liters of sulfuric acid necessary to neutralize 85% of all sodium silicate out of 21.0 liters of the second stage sulfuric acid was added over 20 minutes, and the rest of the sulfuric acid 5.
7 liters were added over 5 minutes to complete the neutralization. The hydrated silicic acid slurry obtained at this time had a pH of 5.5, and the integrated value X calculated by the equation 1 was 1125. The obtained hydrated silicic acid slurry was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0071】実施例8 実施例1と同様の操作を用いてケイ酸ソーダの中和を完
了し、ケーキ状水和ケイ酸を取り出し、これに水を加え
て攪拌して再度スラリーとして、水和ケイ酸の濃度を10
0g/lに調整した。この水和ケイ酸スラリー1 リットルを
実施例1と同様に粉砕処理する際に、硫酸アルミニウム
の10%(固形分換算)水溶液8.2ml を該スラリーに添加
し粉砕処理を行なった。得られた粉砕処理済の水和ケイ
酸スラリーを実施例1と同様に処理して、スラリーの物
性を測定し、続いて手抄シートを作成して評価を行なっ
た。
Example 8 Using the same procedure as in Example 1, the neutralization of sodium silicate was completed, the cake-like hydrated silicic acid was taken out, water was added to it, and the mixture was stirred to form a slurry again to be hydrated. Concentration of silicic acid 10
Adjusted to 0 g / l. When 1 liter of this hydrated silicic acid slurry was pulverized in the same manner as in Example 1, 8.2 ml of a 10% aqueous solution of aluminum sulfate (as solid content) was added to the slurry and pulverized. The pulverized hydrated silicic acid slurry thus obtained was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0072】実施例9 実施例1と同様の操作を用いて表2に示される条件でケ
イ酸ソーダの中和を完了し、ケーキ状水和ケイ酸を取り
出し、これに水を加えて攪拌して再度スラリーとして、
水和ケイ酸の濃度を100g/lに調整した。この水和ケイ酸
スラリー1 リットルを実施例1と同様に粉砕処理する際
に、硫酸アルミニウムの10%水溶液4.4ml を該スラリー
に添加し粉砕処理を行なった。得られた粉砕処理済の水
和ケイ酸スラリーを実施例1と同様に処理して、スラリ
ーの物性を測定し、続いて手抄シートを作成して評価を
行なった。
Example 9 Using the same procedure as in Example 1, the neutralization of sodium silicate was completed under the conditions shown in Table 2, the hydrated silicic acid cake was taken out, and water was added to it and stirred. Again as a slurry,
The concentration of hydrated silicic acid was adjusted to 100 g / l. When 1 liter of this hydrated silicic acid slurry was pulverized in the same manner as in Example 1, 4.4 ml of a 10% aqueous solution of aluminum sulfate was added to the slurry and pulverized. The pulverized hydrated silicic acid slurry thus obtained was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0073】比較例8 スラリーを粉砕処理する際に、添加する硫酸アルミニウ
ム水溶液4.4ml を20重量%濃度の硫酸1.1ml に変えたこ
と以外は実施例9と同様にして粉砕処理済の水和ケイ酸
スラリーを得た。中和完了時の該スラリーのpHは実施例
8と同じ4.8 であった。実施例1と同様に水和ケイ酸ス
ラリーを処理して、スラリーの物性を測定し、続いて手
抄シートを作成して評価を行なった。
Comparative Example 8 A hydrated silicified hydrate treated in the same manner as in Example 9 except that 4.4 ml of the aluminum sulfate aqueous solution added was changed to 1.1 ml of sulfuric acid having a concentration of 20% by weight when the slurry was pulverized. An acid slurry was obtained. The pH of the slurry upon completion of neutralization was the same as in Example 8, 4.8. The hydrated silicic acid slurry was treated in the same manner as in Example 1, the physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated.

【0074】実施例10 実施例1と同様の操作を用いて表2に示される条件で部
分的に中和した水溶液を20分で温度45℃から95℃へ昇温
し、その後攪拌を継続しながら第二段目の硫酸17.6リッ
トルを33分かけて添加し、全ケイ酸ソーダの90%を中和
し、次いで硫酸アルミニウム10%水溶液を3.9 リットル
(これは酸化アルミニウム、Al2O3 換算で含有される二
酸化ケイ素、SiO2重量当り0.4 %に相当する)添加し、
中和を完了させた。この時得られた水和ケイ酸スラリー
のpHは5.0 、式1で計算される積分値X は875 であっ
た。この水和ケイ酸スラリーを実施例1と同様にして粉
砕処理を行ない、スラリーの物性を測定し、続いて手抄
シートを作成して評価を行なった。
Example 10 Using the same procedure as in Example 1, an aqueous solution partially neutralized under the conditions shown in Table 2 was heated in 20 minutes from a temperature of 45 ° C. to 95 ° C., and then stirring was continued. While adding 17.6 liters of sulfuric acid in the second stage over 33 minutes to neutralize 90% of the total sodium silicate, then 3.9 liters of 10% aqueous solution of aluminum sulfate (this contains aluminum oxide and Al2O3 equivalent). Silicon dioxide, equivalent to 0.4% by weight of SiO2) added,
Neutralization was completed. The pH of the hydrated silicic acid slurry obtained at this time was 5.0, and the integrated value X calculated by the equation 1 was 875. The hydrated silicic acid slurry was pulverized in the same manner as in Example 1, the physical properties of the slurry were measured, and then a handmade sheet was prepared and evaluated.

【0075】実施例11 第二段目の中和のため硫酸を17.6リットル添加した後に
硫酸アルミニウム10%水溶液を1.0 リットル(これは酸
化アルミニウム換算で含有される二酸化ケイ素重量当り
0.1 %に相当する)添加したこと及び水和ケイ酸スラリ
ーを粉砕処理する際に硫酸アルミニウムの10%水溶液を
4.4ml 添加したこと以外は実施例10と同様にして粉砕
処理済み水和ケイ酸スラリーを作成し、スラリーの物性
を測定し、続いて手抄シートを作成して評価した。第二
段目の中和で硫酸アルミニウムを添加する直前のpHは8.
5 、中和が完了した水和ケイ酸スラリーのpHは5.5 であ
った。
Example 11 To the second stage neutralization, 17.6 liters of sulfuric acid was added, followed by 1.0 liter of a 10% aqueous solution of aluminum sulfate (this is based on the weight of silicon dioxide contained in terms of aluminum oxide).
(Corresponding to 0.1%) and a 10% aqueous solution of aluminum sulphate when grinding the hydrated silicic acid slurry.
A hydrated silicic acid slurry that had been pulverized was prepared in the same manner as in Example 10 except that 4.4 ml was added, the physical properties of the slurry were measured, and then a handmade sheet was prepared and evaluated. The pH just before adding aluminum sulfate in the second stage neutralization is 8.
5. The pH of the hydrated silicic acid slurry that had been neutralized was 5.5.

【0076】比較例9 第二段目の中和のため硫酸を15.9リットル添加した後に
硫酸アルミニウム10%水溶液を7.2 リットル(これは酸
化アルミニウム換算で含有される二酸化ケイ素重量当り
0.6 %に相当する)添加したこと以外は実施例10と同
様にして粉砕処理済みの水和ケイ酸スラリーを作成し、
スラリーの物性を測定し、続いて手抄シートを作成して
評価した。第二段目の中和で、硫酸アルミニウムを添加
する直前のpHは10.2、中和が完了した水和ケイ酸スラリ
ーのpHは5.4 であった。
Comparative Example 9 15.9 liters of sulfuric acid was added for the second stage neutralization, and then 7.2 liters of a 10% aqueous solution of aluminum sulfate (this was calculated based on the weight of silicon dioxide contained in terms of aluminum oxide).
(Corresponding to 0.6%) was prepared in the same manner as in Example 10 except that it was added,
The physical properties of the slurry were measured, and subsequently a handmade sheet was prepared and evaluated. In the second-stage neutralization, the pH immediately before the addition of aluminum sulfate was 10.2, and the pH of the neutralized hydrated silicic acid slurry was 5.4.

【0077】実施例6乃至比較例9で得られた結果を表
2に示す。
The results obtained in Examples 6 to 9 are shown in Table 2.

【0078】[0078]

【表2】 [Table 2]

【0079】表1及び2から明らかな如く、本発明法に
よれば粉砕処理前の水和ケイ酸スラリーの粘度が低い水
準に維持できるので、移送、粉砕等の操作が極めて容易
となり、得られる水和ケイ酸は紙に高い印刷後並びに白
紙不透明度及び白色度を付与することができる。
As is clear from Tables 1 and 2, according to the method of the present invention, since the viscosity of the hydrated silicic acid slurry before the pulverization treatment can be maintained at a low level, the operations such as transfer and pulverization are extremely easy to obtain. Hydrated silicic acid can impart high paper opacity and whiteness after printing on paper.

【0080】これに対し、第一段目の部分的に中和が完
了した水溶液中の二酸化ケイ素濃度が低いと第一段目の
硫酸の使用比率が低くても高くても(比較例1及び2)
印刷後並びに白紙不透明度が劣り、第一段目の硫酸添加
比率が高いと、スラリーの粘度が高くなり(比較例
3)、安定操業の維持が困難となり、該水溶液中の硫酸
ナトリウムの濃度が低いと(比較例4)、スラリー粘度
が異常に高くなり操業が不能となる。逆に硫酸ナトリウ
ムの濃度が高いと(比較例5)、性能の優れた水和ケイ
酸は得られるが、使用に際し抄紙機において紙から水和
ケイ酸が脱落し各所に付着する或いは接触式の厚み計の
ような計器類にも付着し使用不能になるというダストト
ラブルが発生した。
On the other hand, when the concentration of silicon dioxide in the partially neutralized aqueous solution in the first stage is low, the use ratio of sulfuric acid in the first stage is low or high (Comparative Example 1 and 2)
After printing and when the opacity of white paper is poor and the addition ratio of sulfuric acid in the first stage is high, the viscosity of the slurry becomes high (Comparative Example 3), it becomes difficult to maintain stable operation, and the concentration of sodium sulfate in the aqueous solution increases. When it is low (Comparative Example 4), the slurry viscosity becomes abnormally high and the operation becomes impossible. On the contrary, when the concentration of sodium sulfate is high (Comparative Example 5), hydrated silicic acid having excellent performance can be obtained, but in use, the hydrated silicic acid falls off from the paper in the paper machine and adheres to various places or is of contact type. There was a dust problem that it became unusable because it adhered to instruments such as thickness gauges.

【0081】一方、部分的に中和した水溶液を昇温する
際の最高温度が低い(87℃) ために積分値X が低い値と
なる場合(比較例6)、水和ケイ酸の細孔容積が小さく
て印刷後の不透明度を改善することができず、逆に最高
温度が高く(95 ℃) 、時間が長いために積分値Xの値が
高くなりすぎても(比較例7)水和ケイ酸の1次粒子の
成長が進むので細孔容積は大きくならず、印刷後の不透
明度の改善効果が劣った。
On the other hand, when the maximum value in raising the temperature of the partially neutralized aqueous solution is low (87 ° C.), the integrated value X is low (Comparative Example 6). The volume is too small to improve the opacity after printing, and conversely the maximum temperature is high (95 ° C) and the integrated value X becomes too high due to the long time (Comparative Example 7). Since the growth of primary particles of hydrated silicic acid proceeded, the pore volume did not increase and the effect of improving opacity after printing was poor.

【0082】水和ケイ酸を粉砕する際に、硫酸アルミニ
ウムを用いるとスラリーの粘度を低下させることができ
る(実施例1及び3と実施例8及び9との比較)が、硫
酸アルミニウムの代わりに、硫酸を用いると、スラリー
の粘度を低下させる効果はなく(比較例8)、スラリー
の粘度が高くなり、スクリーンの通過性が悪くなるので
生産性が劣り、第二段目の中和に際し硫酸の代わりに硫
酸アルミニウムを多く用いると(比較例9)不透明度の
改善効果は劣る。
When aluminum sulphate is used to grind hydrated silicic acid, the viscosity of the slurry can be reduced (comparison between Examples 1 and 3 and Examples 8 and 9), but instead of aluminum sulfate. When sulfuric acid is used, there is no effect of lowering the viscosity of the slurry (Comparative Example 8), the viscosity of the slurry becomes high, and the passability of the screen becomes poor, resulting in poor productivity, and the sulfuric acid during the second stage neutralization When a large amount of aluminum sulfate is used instead of (Comparative Example 9), the effect of improving opacity is poor.

【0083】[0083]

【発明の効果】本発明法によれば、水和ケイ酸スラリー
の粘度が低いので製造に際し安定操業が達成でき、抄紙
に際し紙から脱落することがなく、しかも印刷後並びに
白紙不透明度及び白色度の向上に効果のある水和ケイ酸
が製造できるという効果を奏する。
According to the method of the present invention, since the viscosity of the hydrated silicic acid slurry is low, stable operation can be achieved during production, the paper does not fall off during papermaking, and the opacity and whiteness of white paper after printing as well as after printing. It is possible to produce hydrated silicic acid which is effective in improving

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 茂 北海道苫小牧市王子町2丁目1番1号 王 子製紙株式会社苫小牧工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Yamakawa 2-1-1 Ojimachi, Tomakomai City, Hokkaido Oji Paper Co., Ltd. Tomakomai Mill

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】硫酸ナトリウムの存在下で、ケイ酸ソーダ
水溶液に硫酸を二段に分けて添加し、中和して製紙用水
和ケイ酸を製造する方法において、該ケイ酸ソーダを中
和するのに必要な硫酸の全量の35〜45%に相当する硫酸
の量を第一段目の硫酸として添加して、部分的に中和反
応せしめた後の水溶液が二酸化ケイ素(SiO2)濃度6.0
〜8.0g/100ml及び硫酸ナトリウム(Na2SO4)濃度3.5 〜
4.1g/100mlとなるように硫酸ナトリウムを予め補充して
調整し、次いで該水溶液を攪拌しながら85〜95℃に昇温
し、残部の硫酸を第二段目の硫酸として連続的に添加し
て中和を完了させて水和ケイ酸を析出せしめ、得られた
水和ケイ酸をろ過して分離し、次いで該水和ケイ酸を水
に再分散して得られるスラリーを湿式粉砕及び/又は湿
式分級することによって、水和ケイ酸の平均粒径が3 〜
10μm であり、且つ粒径1 〜30μm の粒子割合を少なく
とも80%以上とすることを特徴とする製紙用水和ケイ酸
の製造方法。
1. A method of producing hydrated silicic acid for papermaking by adding sulfuric acid to a sodium silicate aqueous solution in two steps in the presence of sodium sulfate and neutralizing the sodium silicate. The amount of sulfuric acid corresponding to 35-45% of the total amount of sulfuric acid required for the addition of sulfuric acid as the first-stage sulfuric acid to partially neutralize the solution, and the resulting aqueous solution has a silicon dioxide (SiO2) concentration of 6.0%.
~ 8.0g / 100ml and sodium sulfate (Na2SO4) concentration 3.5 ~
Sodium sulfate was pre-supplemented and adjusted to 4.1 g / 100 ml, then the aqueous solution was heated to 85 to 95 ° C. with stirring, and the remaining sulfuric acid was continuously added as the second-stage sulfuric acid. Neutralization is completed by precipitating hydrated silicic acid, the obtained hydrated silicic acid is separated by filtration, and then the hydrated silicic acid is redispersed in water to obtain a slurry, which is wet-milled and / or Or, by wet classification, the average particle size of hydrated silicic acid is 3 ~
A method for producing a hydrated silicic acid for papermaking, which has a particle ratio of 10 μm and a particle size of 1 to 30 μm of at least 80% or more.
【請求項2】部分的に中和反応せしめた後の水溶液の温
度が70℃を越えてからの該水溶液の温度(T℃) と予め添
加された全ケイ酸ソーダーの量の85%が中和されるまで
の時間(tc 分)に関し式1で計算される積分値X が500
〜1000であることを特徴とする請求項1に記載の方法。 【式1】
2. The temperature (T ° C.) of the aqueous solution after the temperature of the aqueous solution after the partial neutralization reaction exceeds 70 ° C. and 85% of the total amount of pre-added sodium silicate are medium. Integral value X calculated by equation 1 for the time until summing (tc minutes) is 500
The method of claim 1, wherein the method is ˜1000. [Formula 1]
【請求項3】ケイ酸ソーダを硫酸で中和するため第二段
目の硫酸を添加する工程において、硫酸による中和反応
後の水溶液のpHが5 〜8.5 の範囲とした後でさらに硫酸
アルミニウムを酸化アルミニウム(Al2O3) 換算で二酸化
ケイ素(SiO2)重量当り0.1 〜0.5 %の範囲で添加するこ
とを特徴とする請求項1又は2に記載の方法。
3. In the step of adding sulfuric acid in the second step for neutralizing sodium silicate with sulfuric acid, the pH of the aqueous solution after the neutralization reaction with sulfuric acid is adjusted to the range of 5 to 8.5, and then aluminum sulfate is further added. The method according to claim 1 or 2, characterized in that is added in the range of 0.1 to 0.5% based on the weight of silicon dioxide (SiO2) in terms of aluminum oxide (Al2O3).
【請求項4】前記スラリーを湿式粉砕するに際し、湿式
粉砕した後の該スラリーのpHが4 〜5 となるように該ス
ラリーに硫酸アルミニウムを添加した後湿式粉砕するこ
とを特徴とする請求項1乃至3の何れかに記載の方法。
4. When wet pulverizing the slurry, aluminum sulphate is added to the slurry so that the pH of the slurry after wet pulverizing is 4 to 5, and then wet pulverizing. 4. The method according to any one of 3 to 3.
【請求項5】ろ過、水洗後に凍結乾燥して得られる水和
ケイ酸粉末を水銀圧入法で測定した時の細孔直径11〜50
nm(ナノメーター)の範囲で得られる細孔容積が0.4 〜
1.0cm3/gであることを特徴とする請求項1乃至4の何れ
かに記載の方法。
5. A pore diameter of 11-50 when the hydrated silicic acid powder obtained by filtration, washing with water and freeze-drying is measured by mercury porosimetry.
Pore volume obtained in the range of nm (nanometer) is 0.4 ~
The method according to any one of claims 1 to 4, wherein the method is 1.0 cm3 / g.
JP3358046A 1991-12-27 1991-12-27 Method for producing hydrated silicic acid for papermaking Expired - Fee Related JP2666638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358046A JP2666638B2 (en) 1991-12-27 1991-12-27 Method for producing hydrated silicic acid for papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358046A JP2666638B2 (en) 1991-12-27 1991-12-27 Method for producing hydrated silicic acid for papermaking

Publications (2)

Publication Number Publication Date
JPH05178606A true JPH05178606A (en) 1993-07-20
JP2666638B2 JP2666638B2 (en) 1997-10-22

Family

ID=18457261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358046A Expired - Fee Related JP2666638B2 (en) 1991-12-27 1991-12-27 Method for producing hydrated silicic acid for papermaking

Country Status (1)

Country Link
JP (1) JP2666638B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704407A1 (en) 1994-09-26 1996-04-03 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
EP0778319A1 (en) 1995-12-08 1997-06-11 Oji Paper Company Limited Titania/silica composite particles and process for producing the same
KR100308520B1 (en) * 1999-06-01 2001-11-05 김충섭 A Process for Production of Polysilicate microgels as Retention and Drainage Aids in Papermaking
JP2002504881A (en) * 1997-06-13 2002-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved method for preparing low concentration polyaluminosilicate microgels
JP2008280234A (en) * 2007-04-10 2008-11-20 Oji Paper Co Ltd Hydrated silicate and method of manufacturing the same and paper
WO2010082442A1 (en) * 2009-01-15 2010-07-22 水澤化学工業株式会社 Amorphous silica and process for producing same
JP2010236112A (en) * 2009-03-30 2010-10-21 Daio Paper Corp Newsprint paper
AU2006235901B2 (en) * 2006-11-04 2013-01-24 Robles, Antonio Teves Mr Method for Preparing Acidic Solutions of Activated Silica and Polyvalent Metal Salt for Water Treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752442B2 (en) * 2005-10-17 2011-08-17 王子製紙株式会社 Hydrated silicic acid for papermaking and method for producing the same
CN106829969A (en) * 2017-03-08 2017-06-13 肇庆金三江硅材料有限公司 A kind of preparation method of low specific surface area silica

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704407A1 (en) 1994-09-26 1996-04-03 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
US5695730A (en) * 1994-09-26 1997-12-09 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
EP0778319A1 (en) 1995-12-08 1997-06-11 Oji Paper Company Limited Titania/silica composite particles and process for producing the same
JP2002504881A (en) * 1997-06-13 2002-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved method for preparing low concentration polyaluminosilicate microgels
KR100308520B1 (en) * 1999-06-01 2001-11-05 김충섭 A Process for Production of Polysilicate microgels as Retention and Drainage Aids in Papermaking
AU2006235901B2 (en) * 2006-11-04 2013-01-24 Robles, Antonio Teves Mr Method for Preparing Acidic Solutions of Activated Silica and Polyvalent Metal Salt for Water Treatment
JP2008280234A (en) * 2007-04-10 2008-11-20 Oji Paper Co Ltd Hydrated silicate and method of manufacturing the same and paper
WO2010082442A1 (en) * 2009-01-15 2010-07-22 水澤化学工業株式会社 Amorphous silica and process for producing same
JP2010184856A (en) * 2009-01-15 2010-08-26 Mizusawa Ind Chem Ltd Amorphous silica
JP2010236112A (en) * 2009-03-30 2010-10-21 Daio Paper Corp Newsprint paper

Also Published As

Publication number Publication date
JP2666638B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP5490345B2 (en) Precipitated calcium carbonate / silicon compound composite pigment
US8252413B2 (en) Light calcium carbonate, process for producing the same, and printing paper containing the same
US20100239511A1 (en) Spherical calcium carbonate and method of producing the same
JPH0891820A (en) Hydrated silicic acid and its production
JP4263864B2 (en) Novel composite for papermaking and method for synthesis
JPH05178606A (en) Production of hydrated silicic acid for paper making
CA2087857C (en) Precipitated calcium carbonate
US5316576A (en) High performance pigments of low oil absorption: preparation, properties and end-use applications
JP3995761B2 (en) Method for producing light calcium carbonate
JP3982027B2 (en) Method for producing composite particles
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
UA69405C2 (en) A method for filtering dilatant material and dilatant material deposit
JP4225929B2 (en) Light calcium carbonate-silica composite
JP4903493B2 (en) Method for producing composite particles
JP2730660B2 (en) Method for producing spindle-shaped calcium carbonate
US3152001A (en) Process for the production of a filler
JP2001098482A (en) Method for producing calcium carbonate for loading material
JPS5926927A (en) Preparation of fusiform calcium carbonate crystal
JPH09156919A (en) Complex particle of titania and silica and its production
JP2005272155A (en) Silica particles and paper with internally added silica particles
EP0543918B1 (en) High performance pigments of low oil absorption: preparation, properties and end-use applications
JPH10316419A (en) Production of precipitated calcium carbonate light slurry at high concentration
JPH09309724A (en) Production of precipitated calcium carbonate
JPH0160183B2 (en)
JPH0818827B2 (en) Method for producing spindle-shaped calcium carbonate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110627

LAPS Cancellation because of no payment of annual fees