JPH0517807Y2 - - Google Patents

Info

Publication number
JPH0517807Y2
JPH0517807Y2 JP4151685U JP4151685U JPH0517807Y2 JP H0517807 Y2 JPH0517807 Y2 JP H0517807Y2 JP 4151685 U JP4151685 U JP 4151685U JP 4151685 U JP4151685 U JP 4151685U JP H0517807 Y2 JPH0517807 Y2 JP H0517807Y2
Authority
JP
Japan
Prior art keywords
positive electrode
cylindrical
separator
resin layer
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4151685U
Other languages
Japanese (ja)
Other versions
JPS61158067U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4151685U priority Critical patent/JPH0517807Y2/ja
Publication of JPS61158067U publication Critical patent/JPS61158067U/ja
Application granted granted Critical
Publication of JPH0517807Y2 publication Critical patent/JPH0517807Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

《産業上の利用分野》 この考案は、例えばLR14型とかLR20型など円
筒形アルカリ電池の改良に関する。 《従来の技術》 従来、次のような内部構造の円筒形アルカリ電
池が知られている。有底円筒形の正極缶内に円筒
形に加圧成形した正極合剤を正極缶の内周面に密
着して配置する。この正極合剤の内周面に筒状の
セパレータを密着して配置する。セパレータは、
例えばポリプロピレン不織布シートを筒状に巻い
たもので、底はなく開口している。従つて、セパ
レータの下端開口部に正極缶の底面が露呈してい
る。この露呈した底面部分に溶融状態の合成樹脂
を注入し、セパレータの下端開口縁部およびその
内側の正極缶の中央内底部を覆う合成樹脂層を形
成する。この合成樹脂層が硬化してから、セパレ
ータの内周側に負極を充填する。 この構造において、上記の合成樹脂層は正極缶
の底面と負極とを確実に絶縁分離するためのもの
である。溶融状態で注入して硬化させた合成樹脂
層の替りに予め成形した樹脂板をセパレータの下
端開口部分に嵌め込む構造も知られている。樹脂
板の嵌め込み式に比べ、溶融樹脂を注入する方式
の方がセパレータの下端開口縁部の絶縁封止性能
が優れている。また、セパレータを底のある袋状
に作り、上記の合成樹脂層を形成しない構造もあ
る。これはセパレータの製作が非常に面倒であ
る。 《考案が解決しようとする問題点》 上述のように、溶融樹脂を注入、硬化させて上
記合成樹脂層を形成する構造は、他の構造に比べ
て基本的には優れたものと言える。しかし、実際
に性能上優れた電池を構成するには、上記合成樹
脂層に使用する樹脂材料を適切に選定しなければ
ならない。 上記合成樹脂層に使用される樹脂材料に望まれ
ることは、まずアルカリ電解液に対して充分な耐
性を有することである。また、溶融状態で注入す
る際の樹脂の流れ性が悪いと、溶融樹脂が正極缶
の内底部の必要部分に均一にいきわたらず、ピン
ホールなどが発生しやすくなり、負極と正極缶の
リーク経路ができてしまう。、また、−10℃程度の
低温で保存した電池を落下させて衝撃を加えた場
合などにも、上記合成樹脂層にひび割れができな
いことが望まれる。また、80℃といつた高温で電
池を保存しても、上記合成樹脂層が軟化して変形
しないことが望まれる。 上述した構造の従来の電池では、上記合成樹脂
層は酢酸ビニル系やポリアミド系合成樹脂で形成
されており、耐アルカリ性、流動性、低温時耐ク
ラツク性および耐熱性の面を満足するものではな
かつた。 すなわち、酢酸ビニル系合成樹脂を用いると流
動性に優れ製造は容易であるが、長時間貯蔵後に
アルカリ性電解液に侵されるとか、低温下で落下
させた時に樹脂層に亀裂を生じて電圧が劣化する
などの問題が生じている。一方、ポリアミド系の
合成樹脂は対アルカリ性および低温下での落下時
の耐クラツク性に優れているが、溶融時の粘度が
高いため流動性が悪く、作業しにくい欠点があ
り、またコストも高い。 この考案は上述した従来の問題点に鑑みなされ
たものであり、その目的は、耐アルカリ性、流れ
性、低温時耐クラツク性および耐熱性に優れた樹
脂材料で前述の合成樹脂層を形成し、性能の優れ
た円筒形アルカリ電池を提供することにある。 《問題点を解決するための手段》 そこでこの考案では、前述の合成樹脂層を形成
する樹脂材料としてポリオレフイン系熱溶融性樹
脂で、その硬さが針入度20〜50/25℃範囲の樹脂
を使用した。 《作用》 ポリオレフイン系熱溶融性樹脂は耐アルカリ性
および流動性に優れる。また、針入度20〜50/25
℃の上記樹脂は−10℃程度の低温でもそれほど硬
くならず、その状態で衝撃が加わつてもクラツク
が発生しにくい。また、80℃程度の高温でもそれ
ほど軟化せず、変形は殆ど見られない。 《実施例》 第1図は本考案を提供した円筒形アルカリ電池
の構造および製造工程を示す図である。同図Aに
示すように、有底円筒形の正極缶1内に、まず円
筒形に加圧成形された正極合剤4が装填される。
次に正極合剤4の内周面に密着するように筒状の
セパレータ3が装填される。次に、セパレータ3
の下端開口部3aの部分に露呈した正極缶1の底
面1aに溶融状態の合成樹脂(ポリオレフイン系
熱溶融性樹脂で針入度20〜50/25℃)がノズルか
ら適宜量を注入され、セパレータ3の下端縁部お
よびそれに囲まれた底面1aに均一に樹脂がいき
わたる。 上記の溶融樹脂7が硬化すると、第1図Bに示
す合成樹脂層70となる。次にセパレータ3の内
周部に負極2を充填する。そして封口ガスケツト
5、負極端子板6および集電棒8の組立体を正極
缶1の上端開口部から嵌合して正極缶1を密閉
し、正極缶1の開口端縁を内方へかしめる。 上記ポリオレフイン系熱溶融性樹脂の具体例と
しては、オレフイン系高分子および合成ゴムをベ
ースエラストマーとし、粘着性付与樹脂として石
油系合成樹脂を、粘度調整剤としてワツクスをそ
れぞれ適量含むものを使用した。また、この樹脂
の一般的な性状は次の表のとおりである。
<Industrial Application Field> This invention relates to the improvement of cylindrical alkaline batteries such as the LR14 type and LR20 type. <<Prior Art>> Conventionally, cylindrical alkaline batteries having the following internal structure are known. A positive electrode mixture press-molded into a cylindrical shape is placed in a bottomed cylindrical positive electrode can in close contact with the inner peripheral surface of the positive electrode can. A cylindrical separator is placed in close contact with the inner peripheral surface of this positive electrode mixture. The separator is
For example, it is made of polypropylene nonwoven fabric sheet rolled into a cylindrical shape, and has no bottom and is open. Therefore, the bottom surface of the positive electrode can is exposed at the lower end opening of the separator. A synthetic resin in a molten state is injected into the exposed bottom portion to form a synthetic resin layer that covers the lower opening edge of the separator and the central inner bottom of the positive electrode can inside the lower opening edge. After this synthetic resin layer is cured, the inner circumferential side of the separator is filled with a negative electrode. In this structure, the synthetic resin layer described above is for reliably insulating and separating the bottom surface of the positive electrode can and the negative electrode. A structure is also known in which a pre-formed resin plate is fitted into the opening at the lower end of the separator instead of a synthetic resin layer injected in a molten state and hardened. Compared to the resin plate fitting method, the method of injecting molten resin has better insulation sealing performance at the lower opening edge of the separator. There is also a structure in which the separator is made in the shape of a bag with a bottom and the above synthetic resin layer is not formed. This makes manufacturing the separator extremely troublesome. <<Problems to be solved by the invention>> As described above, the structure in which the synthetic resin layer is formed by injecting and curing molten resin can be said to be basically superior to other structures. However, in order to actually construct a battery with excellent performance, the resin material used for the synthetic resin layer must be appropriately selected. The resin material used for the synthetic resin layer is first desired to have sufficient resistance to alkaline electrolytes. In addition, if the flowability of the resin is poor when injecting it in a molten state, the molten resin will not spread evenly to the necessary parts of the inner bottom of the positive electrode can, causing pinholes and other problems to occur, resulting in leakage between the negative electrode and the positive electrode can. A route will be created. It is also desirable that the synthetic resin layer does not crack even when a battery stored at a low temperature of about -10° C. is dropped and subjected to impact. Furthermore, it is desirable that the synthetic resin layer does not soften and deform even if the battery is stored at a high temperature such as 80°C. In conventional batteries with the above structure, the synthetic resin layer is made of vinyl acetate or polyamide synthetic resin, which does not satisfy alkali resistance, fluidity, crack resistance at low temperatures, and heat resistance. Ta. In other words, vinyl acetate-based synthetic resin has excellent fluidity and is easy to manufacture, but it may be attacked by alkaline electrolyte after long-term storage, or cracks may occur in the resin layer when dropped at low temperatures, resulting in voltage degradation. Problems such as On the other hand, polyamide-based synthetic resins have excellent alkali resistance and crack resistance when dropped at low temperatures, but they have the disadvantage of having poor fluidity due to their high viscosity when melted, making them difficult to work with, and being expensive. . This invention was made in view of the conventional problems mentioned above, and its purpose was to form the synthetic resin layer described above with a resin material that has excellent alkali resistance, flowability, crack resistance at low temperatures, and heat resistance, The purpose of the present invention is to provide a cylindrical alkaline battery with excellent performance. 《Means for solving the problem》 Therefore, in this invention, the resin material for forming the synthetic resin layer mentioned above is a polyolefin-based heat-melting resin, and the hardness of the resin is in the range of 20 to 50/25 degrees Celsius. It was used. <<Function>> Polyolefin-based hot-melt resin has excellent alkali resistance and fluidity. Also, the penetration is 20 to 50/25
The above-mentioned resin at a temperature of -10°C does not become very hard even at a low temperature of about -10°C, and cracks are less likely to occur even if an impact is applied in that state. Furthermore, it does not soften much even at high temperatures of around 80°C, and almost no deformation is observed. <<Example>> FIG. 1 is a diagram showing the structure and manufacturing process of a cylindrical alkaline battery according to the present invention. As shown in FIG. 1A, first, a positive electrode mixture 4 press-molded into a cylindrical shape is loaded into a bottomed cylindrical positive electrode can 1 .
Next, a cylindrical separator 3 is loaded so as to be in close contact with the inner peripheral surface of the positive electrode mixture 4. Next, separator 3
An appropriate amount of molten synthetic resin (polyolefin-based heat-melting resin, penetration rate 20-50/25°C) is injected from a nozzle onto the bottom surface 1a of the positive electrode can 1 exposed at the lower end opening 3a of the separator. The resin evenly spreads over the lower end edge of 3 and the bottom surface 1a surrounded by it. When the molten resin 7 is hardened, it becomes a synthetic resin layer 70 shown in FIG. 1B. Next, the inner periphery of the separator 3 is filled with the negative electrode 2 . Then, the assembly of the sealing gasket 5, the negative terminal plate 6, and the current collector rod 8 is fitted from the upper opening of the positive electrode can 1 to seal the positive electrode can 1, and the opening edge of the positive electrode can 1 is caulked inward. As a specific example of the above-mentioned polyolefin-based hot-melt resin, one was used that uses an olefin-based polymer and synthetic rubber as a base elastomer, contains petroleum-based synthetic resin as a tackifying resin, and appropriate amounts of wax as a viscosity modifier. The general properties of this resin are shown in the table below.

【表】 また、耐アルカリ性については、45%KOH溶
液に30日間浸漬しておいても、問題となるような
変化は全く見られなかつた。また、−20℃の低温
状態でもクラツクは発生しなかつた。 《考案の効果》 以上詳細に説明したように、この考案によれ
ば、セパレータの下端開口部を塞ぐ合成樹脂層の
耐アルカリ性、低温時耐クラツク性および耐熱性
に優れたものとなり、また溶融樹脂注入時の流れ
性も良好であるので、合成樹脂層による正極缶と
負極との絶縁分離性能が極めて良好で信頼性の高
いものとなる。
[Table] Regarding alkali resistance, no problematic changes were observed even after 30 days of immersion in 45% KOH solution. Furthermore, no cracks occurred even at low temperatures of -20°C. <<Effects of the invention>> As explained in detail above, according to this invention, the synthetic resin layer that closes the opening at the lower end of the separator has excellent alkali resistance, low-temperature cracking resistance, and heat resistance. Since the flowability during injection is also good, the insulation separation performance between the positive electrode can and the negative electrode by the synthetic resin layer is extremely good and highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本考案に係る円筒形アルカリ電池の
製造工程を示す断面図、同図Bは完成した円筒形
アルカリ電池の断面図である。 1……正極缶、1a……底面、2……負極、3
……セパレータ、3a……下端開口部、4……正
極合剤、7……溶融状態の合成樹脂、70……硬
化した合成樹脂層。
FIG. 1A is a sectional view showing the manufacturing process of the cylindrical alkaline battery according to the present invention, and FIG. 1B is a sectional view of the completed cylindrical alkaline battery. 1...Positive electrode can, 1a...Bottom surface, 2...Negative electrode, 3
... Separator, 3a ... Lower end opening, 4 ... Positive electrode mixture, 7 ... Synthetic resin in molten state, 70 ... Cured synthetic resin layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 有底円筒形の正極缶と、この正極缶の内周面に
密着配置された円筒形の正極合剤と、この正極合
剤の内周面に密着配置された筒状のセパレータ
と、このセパレータの下端開口縁部によつて囲ま
れる部分の上記正極缶の中央内底部に形成された
合成樹脂層と、上記セパレータの内周部分に充填
された負極とを有する円筒形アルカリ電池であつ
て、上記合成樹脂層はポリオレフイン系熱溶融性
樹脂を溶融状態で注入して硬化させたものであ
り、その硬さが針入度20〜50/25℃の範囲である
ことを特徴とする円筒形アルカリ電池。
A cylindrical positive electrode can with a bottom, a cylindrical positive electrode mixture that is placed in close contact with the inner peripheral surface of the positive electrode can, a cylindrical separator that is placed in close contact with the inner peripheral surface of this positive electrode mixture, and this separator. A cylindrical alkaline battery comprising: a synthetic resin layer formed on the central inner bottom of the positive electrode can in a portion surrounded by the lower opening edge of the battery; and a negative electrode filled in the inner peripheral portion of the separator; The above synthetic resin layer is a cylindrical alkali resin layer made by injecting a polyolefin thermofusible resin in a molten state and hardening it, and having a hardness in the range of 20 to 50/25 degrees Celsius. battery.
JP4151685U 1985-03-25 1985-03-25 Expired - Lifetime JPH0517807Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151685U JPH0517807Y2 (en) 1985-03-25 1985-03-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151685U JPH0517807Y2 (en) 1985-03-25 1985-03-25

Publications (2)

Publication Number Publication Date
JPS61158067U JPS61158067U (en) 1986-09-30
JPH0517807Y2 true JPH0517807Y2 (en) 1993-05-12

Family

ID=33106253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151685U Expired - Lifetime JPH0517807Y2 (en) 1985-03-25 1985-03-25

Country Status (1)

Country Link
JP (1) JPH0517807Y2 (en)

Also Published As

Publication number Publication date
JPS61158067U (en) 1986-09-30

Similar Documents

Publication Publication Date Title
US3713896A (en) Seal for electrochemical cells
JP4184740B2 (en) Cap assembly and prismatic secondary battery including the same
JPH0517807Y2 (en)
US2526789A (en) Dry cell
JP2006040596A (en) Flat battery and its manufacturing method
JPS62154555A (en) Battery
CN100468830C (en) Battery where electrode rod is movable relative to cover
JPH09129198A (en) Flat organic electrolyte battery
US2025028A (en) Dry cell
JPH02276158A (en) Nonaqueous electrolyte battery and manufacture thereof
JPS62126544A (en) Manufacture of battery
JPH0357003Y2 (en)
JP3067455B2 (en) Dry cell
JPS6041422B2 (en) sealed alkaline battery
JPS62133664A (en) Manufacture of button type alkaline battery
JPS6052541B2 (en) Battery manufacturing method
JPS636993B2 (en)
JPS62139246A (en) Manufacture of dry battery
JPS5821073Y2 (en) organic electrolyte battery
JPS6040141B2 (en) Alkaline battery manufacturing method
JPH046120Y2 (en)
JPS59160953A (en) Manufacture of alkaline battery
JP2004134168A (en) Alkaline dry battery
JP3067320B2 (en) Manufacturing method of cylindrical alkaline battery
JP5252990B2 (en) Alkaline battery