JPH0517806Y2 - - Google Patents

Info

Publication number
JPH0517806Y2
JPH0517806Y2 JP1985104915U JP10491585U JPH0517806Y2 JP H0517806 Y2 JPH0517806 Y2 JP H0517806Y2 JP 1985104915 U JP1985104915 U JP 1985104915U JP 10491585 U JP10491585 U JP 10491585U JP H0517806 Y2 JPH0517806 Y2 JP H0517806Y2
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
annular layer
electrode mixture
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985104915U
Other languages
Japanese (ja)
Other versions
JPS6214667U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985104915U priority Critical patent/JPH0517806Y2/ja
Publication of JPS6214667U publication Critical patent/JPS6214667U/ja
Application granted granted Critical
Publication of JPH0517806Y2 publication Critical patent/JPH0517806Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【考案の詳細な説明】 〈産業上の利用分野〉 この考案は乾電池に関し、詳しくは、正極合剤
における化学二酸化マンガンと天然二酸化マンガ
ンとの含有量を正極合剤外側と内側とで変えてや
ることにより、放電性能低下を招くことなくコス
トダウンを図つた乾電池の関するものである。
[Detailed explanation of the invention] <Industrial application field> This invention relates to dry batteries. Specifically, the content of chemical manganese dioxide and natural manganese dioxide in the positive electrode mixture is changed between the outside and inside of the positive electrode mixture. This invention relates to a dry battery that can reduce costs without deteriorating discharge performance.

〈従来の技術〉 二酸化マンガンを正極活物質、亜鉛を負極活物
質とし、塩化亜鉛と塩化アンモニウムの混合物ま
たは塩化亜鉛を主体とする電解液を用いている乾
電池では、負極亜鉛缶内に、亜鉛缶内面に密着さ
せ上記電解液を含浸させた紙セパレータ、二酸化
マンガンを主成分とし筒形に加圧成形された正極
合剤、正極集電体となる炭素棒を夫々同軸状に装
填する構成を採つている。このような乾電池に用
いられる二酸化マンガンとしては天然産の二酸化
マンガン鉱より得られる天然二酸化マンガン、天
然二酸化マンガンを化学処理して得られる化学二
酸化マンガン、菱マンガン鉱等を化学処理及び電
解処理して得られる電解二酸化マンガン等があ
る。ところで、乾電池用二酸化マンガンとしては
化学的に高純度であることは勿論、X線結晶構造
がγ形で含水度の大きい物性のものが特に高性能
を示し、高負荷、連続放電等に適するとされてい
る。このため、各種電気機器の小形化高性能化に
伴つてその電源として高出力のものが要求されて
いる現在、γ形で含水度の大きい物性の二酸化マ
ンガンの含有率が特に大きくそれ故活性度の非常
に高い電解二酸化マンガンの正極合剤中への添加
量がかなり大きくなつている。
<Prior art> In a dry battery that uses manganese dioxide as a positive electrode active material and zinc as a negative electrode active material, and uses a mixture of zinc chloride and ammonium chloride or an electrolyte mainly composed of zinc chloride, a zinc can is placed inside the negative electrode zinc can. A paper separator adhered to the inner surface and impregnated with the electrolytic solution, a positive electrode mixture made of manganese dioxide as a main component and pressure-molded into a cylindrical shape, and a carbon rod serving as a positive electrode current collector are each coaxially loaded. It's on. The manganese dioxide used in such dry batteries includes natural manganese dioxide obtained from naturally occurring manganese dioxide ore, chemical manganese dioxide obtained by chemically processing natural manganese dioxide, and rhodochrosite, which is obtained by chemically processing and electrolytically processing. There are electrolytic manganese dioxide etc. that can be obtained. By the way, manganese dioxide for dry batteries is not only chemically highly pure, but also has a γ-type X-ray crystal structure and high water content, which exhibits particularly high performance and is suitable for high loads, continuous discharge, etc. has been done. For this reason, with the miniaturization and high performance of various electrical devices, high-output power sources are now required, and the content of manganese dioxide, which is in the γ form and has high water content, is particularly high, and therefore has a high activity level. The amount of electrolytic manganese dioxide added to the positive electrode mixture has become considerably large.

〈考案が解決しようとする問題点〉 しかしながら、電解二酸化マンガンは正極活物
質として非常に優れた性能を発揮するものの、そ
の製造には多大な手間と工程を要するため、天然
二酸化マンガンや化学二酸化マンガン等に比べて
かなりコスト高になるという欠点があり、乾電池
のコストダウンを図る場合の障害となつている。
<Problems to be solved by the invention> However, although electrolytic manganese dioxide exhibits excellent performance as a positive electrode active material, its production requires a great deal of effort and process, so natural manganese dioxide and chemical manganese dioxide are They have the disadvantage that they are considerably more expensive than other batteries, which is an obstacle to efforts to reduce the cost of dry cell batteries.

このため、コストメリツトの非常に大きい天然
二酸化マンガン等の正極合剤中への含有量を高め
てコストダウンを図ることも考えられるが、天然
二酸化マンガンは軽負荷放電での利用率は高くそ
の種の放電での性能はほぼ電解二酸化マンガン並
であるものの、高負荷放電における利用率に著し
く劣るため、乾電池の放電特性向上の見地からそ
の添加量を制限せざるを得ないのが現状である。
For this reason, it may be possible to reduce costs by increasing the content of natural manganese dioxide, which has a very large cost advantage, in the positive electrode mix, but natural manganese dioxide has a high utilization rate in light load discharges and is one of the Although its performance in discharge is almost on par with electrolytic manganese dioxide, its utilization rate in high-load discharge is significantly inferior, so the amount added must currently be limited from the standpoint of improving the discharge characteristics of dry batteries.

〈問題点を解決するための手段〉 この考案の乾電池は、中心部に集電体を配し且
つ二酸化マンガンを活物質として含有する正極合
剤を亜鉛缶内に装填してなる乾電池において、正
極合剤は亜鉛缶断面半径方向に内側環状層と外側
環状層の少なくとも2つの環状層からなり、外側
環状層の活物質は化学二酸化マンガンを主体とし
てなり、内側環状層の活物質は天然二酸化マンガ
ンを主体としてなることを要旨とするものであ
る。
<Means for solving the problem> The dry battery of this invention has a current collector in the center and a positive electrode mixture containing manganese dioxide as an active material is loaded into a zinc can. The mixture consists of at least two annular layers, an inner annular layer and an outer annular layer, in the radial direction of the cross section of the zinc can, the active material of the outer annular layer is mainly chemical manganese dioxide, and the active material of the inner annular layer is natural manganese dioxide. The main purpose of this study is to focus on:

つまり、正極合剤が2つの環状層からなる場合
は上記のように外側環状層を化学二酸化マンガン
を主体とする組成とし且つ内側環状層を天然二酸
化マンガンを主体とする組成とする。また正極合
剤を3つ以上の環状層とした場合には、例えば、
最外側環状層における化学二酸化マンガンの含有
量をほぼ100%とし、最内側環状層における天然
二酸化マンガンの含有量をほぼ100%とし、他の
環状層は電池内側である程天然二酸化マンガンの
含有量を多くし且つ電池外側である程化学二酸化
マンガンの含有量を多くする構成を採る。尚、化
学二酸化マンガンの高負荷放電時の利用率は天然
二酸化マンガンに較べてかなり高く、それ故上記
のように正極合剤外層部における化学二酸化マン
ガンの含有量を多くするのみでも高負荷放電特性
はかなり良好であるが、更に特性改善のために、
正極合剤外層部に電解二酸化マンガンを少量添加
する等の構成としてもよいことは言うまでもな
い。
That is, when the positive electrode mixture consists of two annular layers, the outer annular layer has a composition mainly composed of chemical manganese dioxide, and the inner annular layer has a composition mainly composed of natural manganese dioxide, as described above. In addition, when the positive electrode mixture has three or more annular layers, for example,
The content of chemical manganese dioxide in the outermost annular layer is approximately 100%, the content of natural manganese dioxide in the innermost annular layer is approximately 100%, and the content of natural manganese dioxide in the other annular layers increases as the inner side of the battery increases. In addition, the outer side of the battery has a higher content of chemical manganese dioxide. Furthermore, the utilization rate of chemical manganese dioxide during high-load discharge is considerably higher than that of natural manganese dioxide, so simply increasing the content of chemical manganese dioxide in the outer layer of the positive electrode mixture as described above will improve the high-load discharge characteristics. is quite good, but in order to further improve the characteristics,
It goes without saying that a structure in which a small amount of electrolytic manganese dioxide is added to the outer layer of the positive electrode mixture may also be used.

〈作用〉 一般に乾電池を放電した場合、正極合剤中での
放電反応は合剤外周側(亜鉛缶側)から合剤内側
に向かつて進行する。従つて、高負荷放電の場合
は合剤外周部の二酸化マンガンが主に電池放電反
応に関与し、軽負荷放電の場合は合剤全体の二酸
化マンガンは放電反応に関与する。特に、高負荷
連続放電では炭素棒近傍の合剤中の二酸化マンガ
ンはほとんど放電反応に関与しないことが知得さ
れている。従つて、上記のように正極合剤外周側
に活性度の比較的高い化学二酸化マンガンを主成
分とする合剤を配し且つ内周側には天然二酸化マ
ンガンを主成分とする合剤を配する構造とするこ
とで、高負荷放電時には正極合剤外周の化学二酸
化マンガンの放電反応により、軽負荷放電時には
合剤全体中にある天然二酸化マンガンと化学二酸
化マンガンとの放電反応により、それぞれ高い放
電性能が得られる。また、合剤内側はコストメリ
ツトの非常に大きな天然二酸化マンガンを主成分
とするものなので、その分正極合剤のコストが易
くなり、電池コストダウンを図ることができる。
<Operation> Generally, when a dry battery is discharged, the discharge reaction in the positive electrode mixture proceeds from the outer periphery of the mixture (zinc can side) toward the inside of the mixture. Therefore, in the case of high-load discharge, the manganese dioxide in the outer periphery of the mixture mainly participates in the battery discharge reaction, and in the case of light-load discharge, the manganese dioxide in the entire mixture participates in the discharge reaction. In particular, it is known that during high-load continuous discharge, manganese dioxide in the mixture near the carbon rod hardly participates in the discharge reaction. Therefore, as mentioned above, a mixture mainly composed of chemical manganese dioxide with relatively high activity is arranged on the outer circumferential side of the positive electrode mixture, and a mixture mainly composed of natural manganese dioxide is arranged on the inner circumferential side. With this structure, during high-load discharge, the discharge reaction of the chemical manganese dioxide on the outer periphery of the positive electrode mixture results in a high discharge, and during light-load discharge, the discharge reaction between natural manganese dioxide and chemical manganese dioxide in the entire mixture results in high discharge. Performance can be obtained. Furthermore, since the inner part of the mixture is mainly composed of natural manganese dioxide, which has a very large cost advantage, the cost of the positive electrode mixture is reduced accordingly, and the cost of the battery can be reduced.

〈実施例〉 本考案を単一形乾電池に適用した例を示した第
1図A,Bにおいて、亜鉛缶1内に紙パレータ
2、底紙2aを介して炭素棒3が中心部に圧入さ
れた正極合剤3が収容され装填されている。正極
合剤2の上面には上蓋紙5が載置され、また、亜
鉛缶開口部を封口する封口ガスケツト6の上面か
ら炭素棒と封口ガスケツト6の炭素棒嵌挿孔との
間及び炭素棒嵌挿孔の上蓋紙対向部までには封口
剤11が塗布され充填されている。また亜鉛缶外
周から封口ガスケツト上面までの間には熱収縮性
チユーブ7が捲回され密着されている。熱収縮性
チユーブ7の封口ガスケツト上面には中央の正極
端子部を炭素棒3と接触させた正極端子板8が、
また、亜鉛缶1の底面には負極端子板9が夫々当
接し且つ外装缶10により当接面に圧接されてい
る。
<Example> In FIGS. 1A and 1B showing an example in which the present invention is applied to a single-type dry battery, a carbon rod 3 is press-fitted into the center of a zinc can 1 through a paper pallet 2 and a bottom paper 2a. The positive electrode mixture 3 is accommodated and loaded. A top cover paper 5 is placed on the top surface of the positive electrode mixture 2, and from the top surface of the sealing gasket 6 that seals the opening of the zinc can, there is a gap between the carbon rod and the carbon rod insertion hole of the sealing gasket 6, and a gap between the carbon rod and the carbon rod insertion hole of the sealing gasket 6. A sealing agent 11 is applied and filled up to the portion of the insertion hole facing the upper cover paper. Further, a heat-shrinkable tube 7 is wound and tightly attached between the outer periphery of the zinc can and the upper surface of the sealing gasket. On the upper surface of the sealing gasket of the heat-shrinkable tube 7 is a positive terminal plate 8 whose central positive terminal portion is in contact with the carbon rod 3.
Further, negative electrode terminal plates 9 are in contact with the bottom surfaces of the zinc cans 1, respectively, and are pressed against the contact surfaces by the outer cans 10.

上記の正極合剤4は亜鉛缶内周面側に位置する
外側環状層4aと炭素棒外周面側に位置する内側
環状層4bとから構成されている。外側環状層4
aは化学二酸化マンガンを主体とする二酸化マン
ガンを、内側環状層4bは天然二酸化マンガンを
主体とする二酸化マンガンを、夫々活物質として
含有してなるものである。
The positive electrode mixture 4 is composed of an outer annular layer 4a located on the inner peripheral surface side of the zinc can and an inner annular layer 4b located on the outer peripheral surface side of the carbon rod. outer annular layer 4
The inner annular layer a contains manganese dioxide mainly composed of chemical manganese dioxide, and the inner annular layer 4b contains manganese dioxide mainly composed of natural manganese dioxide as an active material.

〈考案の効果〉 この考案は乾電池は以上説明した通りものであ
り、電池高負荷放電時には正極合剤外周に多量に
存在する化学二酸化マンガンの放電反応により、
また電池軽負荷放電時には正極合剤全体中の天然
二酸化マンガンと化学二酸化マンガンの放電反応
によりそれぞれ高い放電性能が得られる。このた
め、放電性能の差程の低下を招くことなくコスト
メリツトの非常に大きい天然二酸化マンガンを多
く使用することができ、その分乾電池の大幅なコ
ストダウンを図れるという効果を奏し、その工業
上利用価値は高い。
<Effect of the invention> This invention is as explained above for dry batteries, and when the battery is discharged under high load, due to the discharge reaction of chemical manganese dioxide present in large amounts around the outer periphery of the positive electrode mixture,
Furthermore, during light load discharge of the battery, high discharge performance can be obtained due to the discharge reaction between natural manganese dioxide and chemical manganese dioxide in the entire positive electrode mixture. Therefore, it is possible to use a large amount of natural manganese dioxide, which has a great cost advantage, without causing a decrease in the difference in discharge performance, which has the effect of significantly reducing the cost of dry batteries, and making it possible to use it industrially. The value is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本考案の実施例を示した一部断面
図、第1図Bは第1図Aにおける−線断面図
である。 1……亜鉛缶、2……紙セパレータ、3……炭
素棒、4……正極合剤、4a……外側環状層、4
b……内側環状層。
FIG. 1A is a partial sectional view showing an embodiment of the present invention, and FIG. 1B is a sectional view taken along the line -- in FIG. 1A. 1... Zinc can, 2... Paper separator, 3... Carbon rod, 4... Positive electrode mixture, 4a... Outer annular layer, 4
b...Inner annular layer.

Claims (1)

【実用新案登録請求の範囲】 1 中心部に集電体を配し且つ二酸化マンガンを
活物質として含有する正極合剤を亜鉛缶内に装
填してなる乾電池において、正極合剤は亜鉛缶
断面半径方向に内側環状層と外側環状層の少な
くとも2つの環状層からなり、外側環状層の活
物質は化学二酸化マンガンを主体としてなり、
内側環状層の活物質は天然二酸化マンガンを主
体としてなることを特徴とする乾電池。 2 該環状層は電池内側である程天然二酸化マン
ガンの含有量が多く且つ電池外側である程化学
二酸化マンガンの含有量が多いものであること
を特徴とする実用新案登録請求の範囲第1項記
載の乾電池。
[Scope of Claim for Utility Model Registration] 1. In a dry battery in which a positive electrode mixture containing a current collector in the center and containing manganese dioxide as an active material is loaded into a zinc can, the positive electrode mixture has a cross-sectional radius of the zinc can. It consists of at least two annular layers, an inner annular layer and an outer annular layer in the direction, and the active material of the outer annular layer is mainly composed of chemical manganese dioxide,
A dry battery characterized in that the active material of the inner annular layer is mainly natural manganese dioxide. 2. Utility model registration claim 1, characterized in that the annular layer has a higher content of natural manganese dioxide as it goes inside the battery, and a higher content of chemical manganese dioxide as it goes outside the battery. dry battery.
JP1985104915U 1985-07-10 1985-07-10 Expired - Lifetime JPH0517806Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985104915U JPH0517806Y2 (en) 1985-07-10 1985-07-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985104915U JPH0517806Y2 (en) 1985-07-10 1985-07-10

Publications (2)

Publication Number Publication Date
JPS6214667U JPS6214667U (en) 1987-01-28
JPH0517806Y2 true JPH0517806Y2 (en) 1993-05-12

Family

ID=30978850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985104915U Expired - Lifetime JPH0517806Y2 (en) 1985-07-10 1985-07-10

Country Status (1)

Country Link
JP (1) JPH0517806Y2 (en)

Also Published As

Publication number Publication date
JPS6214667U (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US3484295A (en) Battery having a positive electrode in which the principal active material is isolated from the electrolyte by a secondary active material
JPH0517806Y2 (en)
EP0049295A1 (en) Silver oxide cell
JPH0560233B2 (en)
JPS6223426B2 (en)
JPH0322346A (en) Organic electrolyte battery
JPS63167671U (en)
JPS61281466A (en) Nonaqueous electrolyte battery
JPH026606Y2 (en)
JPH0538535Y2 (en)
JPH0539580Y2 (en)
JP2580947Y2 (en) Spiral lithium battery
JPH01260758A (en) Lithium battery
JP3087536B2 (en) Manganese dry cell
JPH0451420Y2 (en)
JPH0537423Y2 (en)
JPS5790882A (en) Manufacture of lead battery
JPH0426051A (en) Organic electrolyte battery
JPH03266362A (en) Organic electrolytic battery
JPS5852616Y2 (en) battery
JPH0212764A (en) Organic electrolyte battery
JPS63252353A (en) Slender organic electrolyte battery
JPH0212754A (en) Organic electrolytic cell
JPH0475627B2 (en)
JPS63126153A (en) Organic electrolyte cell