JPH05177753A - Fiber reinforced inorganic material - Google Patents

Fiber reinforced inorganic material

Info

Publication number
JPH05177753A
JPH05177753A JP35889491A JP35889491A JPH05177753A JP H05177753 A JPH05177753 A JP H05177753A JP 35889491 A JP35889491 A JP 35889491A JP 35889491 A JP35889491 A JP 35889491A JP H05177753 A JPH05177753 A JP H05177753A
Authority
JP
Japan
Prior art keywords
fiber
layer
reinforced
inorganic material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35889491A
Other languages
Japanese (ja)
Other versions
JP3018697B2 (en
Inventor
Shigeto Nishide
重人 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3358894A priority Critical patent/JP3018697B2/en
Publication of JPH05177753A publication Critical patent/JPH05177753A/en
Application granted granted Critical
Publication of JP3018697B2 publication Critical patent/JP3018697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a fiber reinforced inorganic material wherein stability of strength, oxidation resistance, etc., in an ultra-high temperature state can be obtained for a long time and its reliability is high. CONSTITUTION:Fiber reinforced layers A, B composed by enclosing a carbon fiber 1 with a parent material texture 2 are laminated. Oxidation preventive layers C, D are formed respectively between the adjacent fiber reinforced layers A, B and on a surface layer of the fiber reinforced layer B of the most outside layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化無機系材料に
係り、特に、高温状態での高強度、高靱性、耐環境安定
性を得る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced inorganic material, and more particularly to a technique for obtaining high strength, high toughness and environmental stability under high temperature conditions.

【0002】[0002]

【従来の技術】高温、高強度、高靱性、耐環境安定性が
特に必要とされる技術分野である航空機、ロケット、宇
宙、核融合、エネルギ関連技術分野では、ロケット・ジ
ェット・ラムジェットエンジン、超高温耐熱壁用の材料
として、1000〜2000℃程度の範囲の超高温に耐
え得る超耐熱材料である繊維強化無機系材料が求められ
ている。かかる用途を完全に満たす材料を提供すること
は困難であるが、一部を満足させる材料として、炭素系
繊維の表面に、耐熱性、耐酸化性母材組織層を付着させ
た耐熱性複合材料等が検討されている。
2. Description of the Related Art Aircraft, rocket, space, nuclear fusion, rocket jet ramjet engine in the technical fields that require high temperature, high strength, high toughness and environmental stability, As a material for an ultrahigh temperature heat resistant wall, a fiber reinforced inorganic material that is an ultraheat resistant material capable of withstanding an ultrahigh temperature in the range of about 1000 to 2000 ° C is required. Although it is difficult to provide a material that completely satisfies such uses, a heat-resistant composite material in which a heat-resistant and oxidation-resistant base material texture layer is attached to the surface of carbon-based fiber as a material that partially satisfies Etc. are being considered.

【0003】従来より提供されている耐熱性複合材料
は、複数の単繊維を集合させた状態の繊維成形体を目的
とする形状に形成しておき、該繊維成形体にCVD法(
化学蒸着法 )等によって、母材組織層を付着形成するこ
とによって得られている。そして、繊維成形体の単繊維
が炭素繊維である場合、すなわち、母材組織層が炭素系
である場合には、高温環境で酸化し易く、耐酸化性等の
環境に対する安定性が損なわれるものとなるため、繊維
成形体を囲む母材組織層の表層に100〜200ミクロ
ン程度の酸化防止層を施すようにしている。
The heat-resistant composite material conventionally provided is formed into a desired shape of a fiber molded body in which a plurality of single fibers are aggregated, and the fiber molded body is subjected to a CVD method (
It is obtained by depositing a base material texture layer by a chemical vapor deposition method or the like. When the monofilament of the fiber molded body is a carbon fiber, that is, when the base material structure layer is a carbon-based material, it easily oxidizes in a high temperature environment, and the stability to the environment such as oxidation resistance is impaired. Therefore, an antioxidant layer having a thickness of about 100 to 200 μm is applied to the surface layer of the base material structure layer surrounding the fiber molded body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、母材組
織層の表層に形成された酸化防止層に繰り返し荷重等に
よる割れや欠落が生じた場合には、高温環境下における
急激な酸化を生じ易く、耐酸化性の環境に対する安定性
が著しく損なわれるものとなり、耐熱性複合材料の構造
強度が著しく低下するものとなる。したがって、高温状
態における強度、耐酸化性等の安定性が得られない以
上、かかる耐熱性複合材料を長時間あるいは信頼性が要
求される用途には使用できなかった。
However, when cracking or chipping due to repeated load or the like occurs in the antioxidant layer formed on the surface layer of the base material structure layer, rapid oxidation is likely to occur in a high temperature environment, The stability of the oxidation resistance with respect to the environment will be significantly impaired, and the structural strength of the heat resistant composite material will be significantly reduced. Therefore, since stability such as strength and oxidation resistance in a high temperature state cannot be obtained, such a heat resistant composite material could not be used for a long time or in an application requiring reliability.

【0005】本発明は上記事情に鑑みて提案されたもの
で、超高温状態における強度、耐酸化性等の安定性を長
時間得ることができ、かつその信頼性の高い繊維強化無
機系材料を提供することを目的とする。
The present invention has been proposed in view of the above circumstances, and provides a fiber-reinforced inorganic material that can obtain stability such as strength and oxidation resistance in an ultrahigh temperature state for a long time and has high reliability. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】そこで、請求項1記載の
発明に係る繊維強化無機系材料は、炭素繊維を母材組織
で囲んで成る繊維強化層を積層し、隣接する繊維強化層
間および最外層の繊維強化層の表層にそれぞれ酸化防止
層を形成することをその解決手段とした。
Therefore, the fiber-reinforced inorganic material according to the invention of claim 1 is formed by laminating a fiber-reinforced layer composed of carbon fibers surrounded by a matrix structure, and adhering to adjacent fiber-reinforced layers and The formation of an antioxidant layer on each of the outer layers of the fiber-reinforced layer was the solution.

【0007】なお、前記繊維強化層のうち少なくとも一
つには、即時破断しない程度の断面積が付与されている
ことが望ましい。また、前記酸化防止層は、金属酸化物
系ポリマーと無機フィラーとから構成することが望まし
い。さらに、前記繊維強化層は、前記炭素繊維の表面に
一体に形成しかつ低剪断強度の炭素または窒化ほう素か
らなる変形許容層を有することが望ましい。なお、前記
母材組織は、硅素の炭化物または窒化物、ほう素の炭化
物、元素周期率表におけるIVb 族・Vb 族・VIb族金属の
炭化物、窒化物、ほう化物、硅化物のいずれかから選択
されたものを主成分とする場合もある。
It is desirable that at least one of the fiber-reinforced layers has a cross-sectional area that does not cause immediate fracture. Further, it is desirable that the antioxidant layer be composed of a metal oxide polymer and an inorganic filler. Further, it is preferable that the fiber reinforced layer has a deformation-permissible layer integrally formed on the surface of the carbon fiber and made of carbon or boron nitride having a low shear strength. The base material structure is selected from silicon carbide or nitride, boron carbide, carbides, nitrides, borides, and silicides of Group IVb / Vb / VIb metals in the Periodic Table of the Elements. In some cases, the main component is the one obtained.

【0008】[0008]

【作用】請求項1記載の発明では、高温環境下で繰り返
し荷重等を受けて最外層の酸化防止層に万一割れや欠落
が生じた場合であっても、最内層の繊維強化層は内層の
酸化防止層によって酸化が防止され、耐酸化性の環境に
対する安定性が維持される。よって、本材料の構造強度
が低下することなく維持される。また、繊維強化層を積
層することで、上記繰り返し荷重等に対する構造強度を
各繊維強化層に負担させて、応力の分散が図られる。し
たがって、超高温状態における強度、耐酸化性等の安定
性が得られ、超高温状態下で長寿命かつ信頼性の高い材
料として使用できる。
According to the first aspect of the present invention, even if the outermost antioxidant layer is cracked or chipped due to repeated loading under a high temperature environment, the innermost fiber-reinforced layer is the inner layer. The anti-oxidation layer prevents the oxidation and maintains the stability of the oxidation resistance to the environment. Therefore, the structural strength of the material is maintained without lowering. In addition, by laminating the fiber reinforced layers, the structural strength against the above repeated load or the like is borne by each fiber reinforced layer, and the stress is dispersed. Therefore, stability such as strength and oxidation resistance in an ultrahigh temperature state can be obtained, and the material can be used as a long-life and highly reliable material in the ultrahigh temperature state.

【0009】請求項2記載の発明では、繊維強化層のう
ち少なくとも一つに、即時破断しない程度の断面積を付
与するので、超高温状態における強度等の安定性が得ら
れる。
According to the second aspect of the present invention, since at least one of the fiber reinforced layers is provided with a cross-sectional area that does not cause immediate fracture, stability such as strength in an ultrahigh temperature state can be obtained.

【0010】また、請求項3記載の発明において、炭素
繊維の表面に形成されている変形許容層は、複合材料で
ある繊維強化無機系材料に変形力が加えられた場合に、
塑性変形性を有することにより、炭素繊維と母材組織層
との相対的な変位を許容する。このため、炭素繊維本来
の強度を生かして複合材料としての強度を向上させ、か
つ、母材組織層の特性に基づく耐酸化性等が得られる。
Further, in the invention according to claim 3, the deformation-permissible layer formed on the surface of the carbon fiber, when a deformation force is applied to the fiber-reinforced inorganic material which is a composite material,
By having plastic deformability, relative displacement between the carbon fiber and the base material structure layer is allowed. Therefore, the strength of the composite material is improved by utilizing the original strength of the carbon fiber, and the oxidation resistance and the like based on the characteristics of the base material structure layer are obtained.

【0011】また、請求項4記載の発明において、母材
組織が炭素系以外の組成、つまり、硅素の炭化物または
窒化物、ほう素の炭化物、特定金属の炭化物、窒化物、
ほう化物、硅化物等から選択されたものを主成分とする
ものによって形成されていると、変形許容層が存在する
ことに基づいて、炭素繊維との拘わりが少なくなり、母
材組織層本来の高温状態での耐酸化性等が付与される。
Further, in the invention according to claim 4, the base material composition is a composition other than carbon-based, that is, silicon carbide or nitride, boron carbide, specific metal carbide, nitride,
When it is formed of a material whose main component is selected from boride, silicide, etc., due to the existence of the deformation-permissible layer, the relationship with the carbon fiber is reduced, and the base metal structure layer is essentially Oxidation resistance and the like at high temperature is imparted.

【0012】また、請求項5記載の発明において、前記
母材組織を、硅素の炭化物または窒化物、ほう素の炭化
物、元素周期率表におけるIVb 族・Vb 族・VIb 族金属
の炭化物、窒化物、ほう化物、硅化物のいずれかから選
択されたものを主成分とするから、変形許容層の存在に
基づいて、炭素繊維との拘わりを少なくすることがで
き、母材組織本来の高温状態での耐酸化性等が付与され
る。
Further, in the invention according to claim 5, the base metal structure is a carbide or nitride of silicon, a carbide of boron, a carbide or a nitride of IVb group, Vb group or VIb group metal in the periodic table of elements. Since the main component is selected from the group consisting of boron, boride, and silicide, it is possible to reduce the involvement with carbon fiber based on the existence of the deformation-permissible layer, and in the original high temperature state of the base metal structure. Oxidation resistance and the like are imparted.

【0013】[0013]

【実施例】以下、本発明に係る繊維強化無機系材料の一
実施例について、図1を参照して説明する。図1におい
て、符号A、Bは繊維強化層、符号C、Dは酸化防止層
を示している。
EXAMPLE An example of the fiber-reinforced inorganic material according to the present invention will be described below with reference to FIG. In FIG. 1, symbols A and B indicate fiber reinforced layers, and symbols C and D indicate antioxidant layers.

【0014】本実施例の繊維強化無機系材料は、構造材
として即時破断しない程度の断面積を有する繊維強化層
Aの上下に繊維強化層Bを積層し、繊維強化層Aと各繊
維強化層Bとの間に酸化防止層Cをそれぞれ介在させ、
最外層の繊維強化層Bの表層にそれぞれ酸化防止層Dを
設けた構成とされている。
In the fiber-reinforced inorganic material of this embodiment, a fiber-reinforced layer B having a cross-sectional area such that it does not immediately break as a structural material is laminated with a fiber-reinforced layer B above and below the fiber-reinforced layer A and each fiber-reinforced layer. And an anti-oxidation layer C between B and
The outermost fiber-reinforced layer B is provided with an antioxidant layer D on its surface.

【0015】前記繊維強化層A、Bは、それぞれ、炭素
繊維1と、この炭素繊維1を囲む母材組織2とから構成
されている。前者の炭素繊維1は、複合材料としての強
化繊維であり、複数の単繊維1aを2次元方向に集合さ
せるとともに、必要に応じて成形加工を施したもの等で
ある。かかる炭素繊維1を使用する理由は、非酸化性雰
囲気にて、高温までの温度範囲において優れた引っ張り
強度を有するためである。
The fiber reinforced layers A and B are each composed of a carbon fiber 1 and a matrix material 2 surrounding the carbon fiber 1. The former carbon fiber 1 is a reinforced fiber as a composite material, and is obtained by assembling a plurality of single fibers 1a in a two-dimensional direction and performing a molding process as necessary. The reason for using the carbon fiber 1 is that it has excellent tensile strength in a temperature range up to a high temperature in a non-oxidizing atmosphere.

【0016】この炭素繊維1の表面には変形許容層3が
一体に形成されている。この変形許容層3は、炭素また
は窒化ほう素から構成される。これら炭素または窒化ほ
う素としては、六方晶系の結晶構造を有するものが適用
される。炭素または窒化ほう素は、炭素繊維1に対して
反応等を起こさず安定状態で炭素繊維1と両立し、か
つ、塑性変形性を有するために適用される。そして、変
形許容層3は、その回りの母材組織2の厚さに対して、
10%以上で60%以下とされる。この理由は、10%
以下では炭素繊維1の本来の強度が発揮できず、60%
以上とすると耐酸化性が低下するためである。
A deformation permitting layer 3 is integrally formed on the surface of the carbon fiber 1. The deformation permitting layer 3 is made of carbon or boron nitride. As the carbon or boron nitride, those having a hexagonal crystal structure are applied. Carbon or boron nitride is applied because it does not react with the carbon fiber 1 and is compatible with the carbon fiber 1 in a stable state and has plastic deformability. Then, the deformation-permissible layer 3 has a thickness corresponding to the thickness of the base material structure 2 around it.
It is set to 10% or more and 60% or less. The reason for this is 10%
In the following, the original strength of carbon fiber 1 cannot be exhibited and 60%
This is because if it is above, the oxidation resistance is reduced.

【0017】前記母材組織2は、炭素または窒化ほう素
と反応等を起こさず、安定に両立し、かつ、耐酸化性の
高い材質であることが必要であり、次のいずれかを主成
分とするものが選定される。硅素の炭化物または窒化
物、炭化ほう素、元素周期率表におけるIVb 族・Vb族・
VIb 族金属であるTi、Zr、Hf、V 、Nb、Ta、Cr、Mo、W
の炭化物、窒化物、ほう化物、硅化物。
The base material structure 2 is required to be a material that does not react with carbon or boron nitride, is stable and compatible, and has high oxidation resistance. Is selected. Silicon carbide or nitride, boron carbide, IVb group / Vb group in the periodic table of elements
VIb group metals Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W
Carbides, nitrides, borides and silicides of.

【0018】前記酸化防止層C、Dは、金属酸化物系ポ
リマーと無機フィラーとから構成されており、常温乾燥
または低温加熱によって、各繊維強化層A、Bの表層に
セラミックの膜を形成することで、得られるようになっ
ている。前記の金属酸化物系ポリマーとしてはアルカリ
金属、オルガノアルコキシ金属、アルコキシ金属、変性
アセチルアセトネート金属などがある。かかる酸化防止
層C、Dを各繊維強化層A、Bの表層にコーティングす
ることで、耐候性、耐熱性、耐食性、防汚性等に優れた
被膜を得ることができる。
The antioxidant layers C and D are composed of a metal oxide polymer and an inorganic filler, and form a ceramic film on the surface layer of each of the fiber reinforced layers A and B by drying at room temperature or heating at low temperature. By doing so, you can get it. Examples of the metal oxide-based polymer include alkali metal, organoalkoxy metal, alkoxy metal, modified acetylacetonate metal and the like. By coating the surface layers of the fiber-reinforced layers A and B with the antioxidant layers C and D, a coating film having excellent weather resistance, heat resistance, corrosion resistance, antifouling property, etc. can be obtained.

【0019】本実施例によれば、1000℃〜2000
℃程度の超高温環境下で繰り返し荷重等を受け、最外層
の酸化防止層Dに万一割れや欠落が生じた場合であって
も、内層の酸化防止層Cによって最内層の繊維強化層A
の酸化を防止することができ、耐酸化性の環境に対する
安定性を維持することができる。この最内層の繊維強化
層Aには即時破断しない程度の断面積が付与されている
ため、本材料の構造強度を低下させることなく構造強度
を維持できる。また、繊維強化層A、Bを3層構造とす
ることで、上記繰り返し荷重等に対する構造強度を各繊
維強化層A、Bに負担させて、応力の分散を図ることが
できる。
According to this embodiment, 1000 ° C. to 2000 ° C.
Even if the outermost antioxidant layer D is cracked or chipped due to repeated loading under an ultrahigh temperature environment of about 0 ° C., the innermost antioxidant layer C prevents the innermost fiber reinforced layer A from being broken.
Can be prevented, and the stability of the oxidation resistance to the environment can be maintained. Since the innermost fiber-reinforced layer A is provided with a cross-sectional area that does not cause immediate fracture, the structural strength can be maintained without lowering the structural strength of the present material. In addition, by forming the fiber-reinforced layers A and B in a three-layer structure, the structural strength against the repeated load or the like can be applied to the fiber-reinforced layers A and B to disperse the stress.

【0020】また、炭素繊維1の表面に変形許容層3を
形成したので、複合材料である繊維強化無機系材料に変
形力が加えられた場合に、変形許容層3の塑性変形性を
有することによって、炭素繊維1と母材組織2との相対
的な変位を許容することができる。これによって、炭素
繊維本来の強度を生かした複合材料としての強度を向上
させることができ、かつ、母材組織2の特性に基づく耐
酸化性等を得ることができる。
Further, since the deformation allowance layer 3 is formed on the surface of the carbon fiber 1, the deformation allowance layer 3 should have plastic deformability when a deformation force is applied to the fiber reinforced inorganic material which is a composite material. Thus, the relative displacement between the carbon fiber 1 and the base material structure 2 can be allowed. This makes it possible to improve the strength of the composite material by taking advantage of the original strength of the carbon fiber, and to obtain the oxidation resistance and the like based on the characteristics of the base material structure 2.

【0021】また、母材組織2を炭素系以外の組成、つ
まり、硅素の炭化物または窒化物、ほう素の炭化物、特
定金属の炭化物、窒化物、ほう化物、硅化物等から選択
されたものを主成分とするものによって形成すれば、変
形許容層3が存在することに基づいて、炭素繊維1との
拘わりを少なくすることができ、母材組織2本来の高温
状態での耐酸化性等を付与できる。
Further, the base material structure 2 has a composition other than carbon, that is, one selected from silicon carbide or nitride, boron carbide, specific metal carbide, nitride, boride, silicide and the like. If it is formed of the main component, it is possible to reduce the relation with the carbon fiber 1 due to the existence of the deformation-permissible layer 3, and to improve the oxidation resistance of the base material structure 2 in the original high temperature state. Can be given.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明に係
る繊維強化無機系材料は、炭素繊維と母材組織とを有す
る繊維強化層を間に酸化防止層を介在させる形で積層
し、最外層の繊維強化層の表層に酸化防止層を形成する
構成としたので、超高温環境下で最外層の酸化防止層に
万一割れや欠落が生じた場合であっても、内層の酸化防
止層によって最内層の繊維強化層の酸化を防止でき、耐
酸化性の環境に対する安定性を維持できる。よって、本
材料の構造強度の低下を防止できる。また、繊維強化層
を積層することで、構造強度を各繊維強化層に負担さ
せ、応力の分散を図ることができる。したがって、超高
温状態における強度、耐酸化性等の安定性を得ることが
でき、超高温状態下で長寿命かつ信頼性の高い材料とし
て使用できる等の効果を奏する。
As described in detail above, the fiber-reinforced inorganic material according to the present invention is formed by laminating a fiber-reinforced layer having carbon fibers and a matrix structure with an antioxidant layer interposed therebetween. Since the antioxidant layer is formed on the surface of the outermost fiber reinforced layer, even if the outermost antioxidant layer is cracked or chipped in an ultrahigh temperature environment, the inner layer is protected against oxidation. The layer can prevent oxidation of the innermost fiber-reinforced layer and maintain the stability of the oxidation resistance to the environment. Therefore, it is possible to prevent the structural strength of the material from lowering. Further, by laminating the fiber reinforced layers, the structural strength can be applied to each fiber reinforced layer, and the stress can be dispersed. Therefore, it is possible to obtain stability such as strength and oxidation resistance in an ultrahigh temperature state, and it is possible to use the material as a material having a long life and high reliability in the ultrahigh temperature state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る繊維強化無機系材料の組織モデル
を示す正断面図である。
FIG. 1 is a front sectional view showing a structural model of a fiber-reinforced inorganic material according to the present invention.

【符号の説明】 1 炭素繊維 2 母材組織 3 変形許容層 A 繊維強化層 B 繊維強化層 C 酸化防止層 D 酸化防止層[Explanation of Codes] 1 carbon fiber 2 matrix structure 3 deformation allowable layer A fiber reinforced layer B fiber reinforced layer C antioxidant layer D antioxidant layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維を母材組織で囲んで成る繊維強
化層が積層され、隣接する繊維強化層間および最外層の
繊維強化層の表層にそれぞれ酸化防止層が形成されてい
ることを特徴とする繊維強化無機系材料。
1. A fiber-reinforced layer comprising carbon fibers surrounded by a matrix structure is laminated, and an antioxidant layer is formed on each of the adjacent fiber-reinforced layers and the outermost layer of the fiber-reinforced layer. Fiber reinforced inorganic material to be used.
【請求項2】 前記繊維強化層のうち少なくとも一つに
は、即時破断しない程度の断面積が付与されていること
を特徴とする請求項1記載の繊維強化無機系材料。
2. The fiber-reinforced inorganic material according to claim 1, wherein at least one of the fiber-reinforced layers is provided with a cross-sectional area that does not cause immediate fracture.
【請求項3】 前記酸化防止層は、金属酸化物系ポリマ
ーと無機フィラーとから構成されていることを特徴とす
る請求項1記載の繊維強化無機系材料。
3. The fiber-reinforced inorganic material according to claim 1, wherein the antioxidant layer is composed of a metal oxide polymer and an inorganic filler.
【請求項4】 前記繊維強化層は、前記炭素繊維の表面
に一体に形成されかつ低剪断強度の炭素または窒化ほう
素からなる変形許容層を有することを特徴とする請求項
1または請求項2記載の繊維強化無機系材料。
4. The fiber-reinforced layer has a deformation-permitting layer which is integrally formed on the surface of the carbon fiber and is made of carbon or boron nitride having a low shear strength. The fiber-reinforced inorganic material described.
【請求項5】 前記母材組織は、硅素の炭化物または窒
化物、ほう素の炭化物、元素周期率表におけるIVb 族・
Vb 族・VIb 族金属の炭化物、窒化物、ほう化物、硅化
物のいずれかから選択されたものを主成分とすることを
特徴とする請求項3記載の繊維強化無機系材料。
5. The base metal structure is a silicon carbide or nitride, a boron carbide, or a group IVb group in the periodic table of elements.
The fiber-reinforced inorganic material according to claim 3, characterized in that a main component is selected from the group consisting of carbides, nitrides, borides, and silicides of Vb group / VIb group metals.
JP3358894A 1991-12-27 1991-12-27 Fiber reinforced inorganic material Expired - Lifetime JP3018697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358894A JP3018697B2 (en) 1991-12-27 1991-12-27 Fiber reinforced inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358894A JP3018697B2 (en) 1991-12-27 1991-12-27 Fiber reinforced inorganic material

Publications (2)

Publication Number Publication Date
JPH05177753A true JPH05177753A (en) 1993-07-20
JP3018697B2 JP3018697B2 (en) 2000-03-13

Family

ID=18461656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358894A Expired - Lifetime JP3018697B2 (en) 1991-12-27 1991-12-27 Fiber reinforced inorganic material

Country Status (1)

Country Link
JP (1) JP3018697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020086784A (en) * 2001-05-11 2002-11-20 린통샨 Method for forming carbon fiber layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020086784A (en) * 2001-05-11 2002-11-20 린통샨 Method for forming carbon fiber layer

Also Published As

Publication number Publication date
JP3018697B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US10954168B2 (en) Ceramic matrix composite articles and methods for forming same
EP2970016B1 (en) Ceramic matrix composite and method of manufacture
EP3478646B1 (en) Ceramic matrix composite articles having different localized properties and methods for forming same
JP4740716B2 (en) SiC / SiC composite incorporating uncoated fibers to improve interlaminar strength
US4668579A (en) Interstitially protected oxidation resistant carbon-carbon composite
US4704332A (en) Lightweight fiber reinforced high temperature stable glass-ceramic abradable seal
US4962070A (en) Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic matrices
JP2009107920A (en) Flexible ceramic matrix composite structural material and its forming method
EP2970020B1 (en) Ceramic matrix composites and methods for producing ceramic matrix composites
US6890660B2 (en) Combustion chamber with internal jacket made of a ceramic composite material and process for manufacture
US4861638A (en) Molded article made of a composite material including metals and nonmetallic substances
US6506483B1 (en) Ceramic fiber debond coatings
JPH05177753A (en) Fiber reinforced inorganic material
EP0221764A2 (en) Metal-oxide coating for carbonaceous fibers
EP3819276B1 (en) Microstructured fiber interface coatings for composites
US6485791B1 (en) Method for improving the performance of oxidizable ceramic materials in oxidizing environments
JP2867536B2 (en) Corrosion and oxidation resistant materials
US20120183788A1 (en) Silicon carbide ceramic matrix composites, hybrid ceramic materials and methods of making the same
JP2782887B2 (en) Fiber reinforced inorganic material
US8236413B2 (en) Combination structural support and thermal protection system
JPH0987029A (en) Silicon carbide-based composite material and wear-resistant sliding part using the material
JP2782888B2 (en) Fiber reinforced inorganic material and method for producing the same
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
Hatta et al. Suppression of through-the-thickness cracks in SiC coating on C/C composites
Sullivan Non-Porous Metal-Oxide-Coated Carbonaceous Fibers and Applications in Ceramic and Metal Matrices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130