JPH05175591A - Laminated yag slab laser element and manufacture thereof - Google Patents

Laminated yag slab laser element and manufacture thereof

Info

Publication number
JPH05175591A
JPH05175591A JP34553191A JP34553191A JPH05175591A JP H05175591 A JPH05175591 A JP H05175591A JP 34553191 A JP34553191 A JP 34553191A JP 34553191 A JP34553191 A JP 34553191A JP H05175591 A JPH05175591 A JP H05175591A
Authority
JP
Japan
Prior art keywords
single crystal
yag
polycrystal
laser element
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34553191A
Other languages
Japanese (ja)
Inventor
Akio Ikesue
明生 池末
Toshiyuki Kinoshita
俊之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP34553191A priority Critical patent/JPH05175591A/en
Publication of JPH05175591A publication Critical patent/JPH05175591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide manufacture of a YAG which has the same characteristics as a single crystal, as well as to eliminate defects of requiring long time and having low yield in manufacturing a single crystal YAG laser element. CONSTITUTION:A single crystal YAG composed of yttrium, aluminum, and garnet, and a polycrystal YAG ceramics are laminated. The single crystal and the polycrystal are jointed at a temperature of 1400 deg.C or above. When the polycrystal ceramics is coupled with the single crystal, the grain boundary between the single crystal and the polycrystal begins to move toward the side of polycrystal, as a coupling temperature rises up. Finally, the grain boundary disappears and the whole becomes substantially a single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体レーザー材料とし
て用いられるイットリウム、アルミニウム、ガーネット
からなる所謂YAG素子の製造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of so-called YAG elements made of yttrium, aluminum and garnet used as solid-state laser materials.

【0002】[0002]

【従来の技術】固体レーザー材料としてのYAG単結晶
は、発光に関与するイオンとしてNd3+を添加し、チョ
コラルスキー法、ブリッジマン・ストックバーガー法等
によって製造される。
2. Description of the Related Art A YAG single crystal as a solid-state laser material is manufactured by the Czochralski method, the Bridgman-Stockburger method or the like by adding Nd 3+ as an ion involved in light emission.

【0003】さらには、その改善された方法が、特開昭
63−35490号公報、特開昭63−35496号公
報、特公平1−43719号公報等に開示されている。
Further, the improved method is disclosed in JP-A-63-35490, JP-A-63-35496, JP-B-1-43719 and the like.

【0004】ところが、この従来方法によってYAG単
結晶を製造する場合には、その育成温度として約200
0℃を必要とし、しかも、育成速度が0.2〜0.3m
m/hrと極めて遅い。そのため、1本の単結晶を製造
するのに約1カ月を要する上に、製造されたYAG単結
晶はNd元素の分布状態が均一ではないために、その一
部しか使用できず、歩留りが低いという欠点がある。
However, when a YAG single crystal is manufactured by this conventional method, the growth temperature is about 200.
0 ° C is required, and the growth rate is 0.2 to 0.3 m
Very slow at m / hr. Therefore, it takes about one month to produce one single crystal, and since the produced YAG single crystal does not have a uniform Nd element distribution state, only a part of it can be used and the yield is low. There is a drawback.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、単結
晶YAGレーザー素子の製造に際しての時間がかかり、
また、製造歩留りが低い欠点を解消すると共に単結晶体
と同等の特性を有するYAGの製造法を提供することに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to manufacture a single crystal YAG laser device in a time-consuming manner.
It is another object of the present invention to provide a method for manufacturing YAG which has characteristics equivalent to those of a single crystal body while solving the drawback of low manufacturing yield.

【0006】[0006]

【課題を解決するための手段】本発明は、従来製造され
ているYAGの単結晶体と多結晶体とを積層し接合する
ことによってその目的を達成した。
The present invention has achieved its object by laminating and joining a conventionally produced YAG single crystal and polycrystal.

【0007】その製造に際しては、まず、Y2 3 とA
2 3 を所定量混合するか、又はアルコキシド法や共
沈法等によって予め組成的に均一な湿式合成粉末とした
複合粉末を成形後焼結する。焼結は、真空焼結,HP
(ホットプレス)やHIP(ホットアイソスタティクプ
レス)等の様々な方法で差支えないが、焼結体の粒子が
組成的,組織的に均一でかつできるだけ微細で緻密な組
織とするためには、HIP焼成等の方法を採ることが望
ましい。この焼結体と単結晶とを接合する。接合方法は
任意の結晶方位を持つ単結晶を、できれば表面エネルギ
ーの小さい(100),(110)及び(111)面と
焼結した多結晶YAGセラミックスを接触させ、必要に
より外圧を加えた状態で1400℃以上の温度に昇温
し、相互拡散によって接合を行う。
In the production, first, Y 2 O 3 and A
A predetermined amount of 1 2 O 3 is mixed, or a composite powder which is a compositionally uniform wet synthetic powder is formed beforehand by an alkoxide method, a coprecipitation method, or the like and then sintered. Sintering is vacuum sintering, HP
Although various methods such as (hot pressing) and HIP (hot isostatic pressing) may be used, in order to make the particles of the sintered body compositionally and structurally uniform and as fine and dense as possible, It is desirable to adopt a method such as HIP firing. The sintered body and the single crystal are joined together. As a joining method, a single crystal having an arbitrary crystal orientation is preferably brought into contact with sintered (100), (110) and (111) faces having a small surface energy and sintered polycrystalline YAG ceramics, and external pressure is applied if necessary. The temperature is raised to 1400 ° C. or higher, and bonding is performed by mutual diffusion.

【0008】この接合に際しては、接合界面に、全く
不純物成分を添加しない、Nd,HoやEr等希土類
元素で発光に関与する元素を加える、発光に関与する
成分以外でd電子を含まないSi,Mg等の元素を加え
る等の手段を採用できる。
In this bonding, no impurity component is added to the bonding interface, a rare earth element such as Nd, Ho or Er, which is involved in light emission, is added, Si containing no d-electrons other than components related to light emission, Means such as adding an element such as Mg can be adopted.

【0009】ここで、単結晶と接合する多結晶セラミッ
クスは、接合後の単結晶化の有無に拘わらず、焼結体の
密度が理論密度の98%、好ましくは、99.5%以上
であることが、光学的散乱の原因となる気孔の残存を排
除する意味から望ましい。
Here, in the polycrystalline ceramics bonded to the single crystal, the density of the sintered body is 98% of the theoretical density, preferably 99.5% or more, regardless of the presence or absence of single crystallization after the bonding. Is desirable in the sense of eliminating residual pores that cause optical scattering.

【0010】ここで、接合温度が低い場合には、単結晶
と接合する多結晶セラミックスが接触部で接合されるだ
けで単結晶化の処理が行わなれないために、透光性の多
結晶YAGセラミックスを用いる必要がある。
Here, when the joining temperature is low, the polycrystalline ceramics to be joined with the single crystal are only joined at the contact portion and the single crystallization process is not performed. Therefore, the translucent polycrystalline YAG is used. It is necessary to use ceramics.

【0011】[0011]

【作用】単結晶への多結晶セラミックスの接合に際し
て、その接合温度が高くなると、単結晶と多結晶との粒
界が多結晶セラミックス側に向かって移動し始め、最終
的には粒界が消滅し全体がほぼ単結晶となる。この時母
材以外の不純物を入れなくても充分な温度と時間をかけ
ることにより、単結晶化は達成される。その接合に際し
て、接合面へのSiやMg元素の添加は、粒界の移動速
度を促進して低温でかつ短時間で単結晶化を達成するた
めのものであるが、Cr,Tiは除くd電子を含む元素
を添加することは、レーザー材料としての機能を著しく
低下させることになる。また、前記のNd,HoやEr
等希土類元素で発光に関与する元素は、d電子を含むも
のであるが、レーザー発振するための元素であるので、
添加しても差支えないばかりでなく、レーザーパワーを
高める意味でも重要である。これらの元素は、多結晶セ
ラミックスの粒界の移動と共に、セラミックス中に均一
に分散する。また、単結晶についても多結晶セラミック
スとしての境界部から拡散し、比較的均一に分布するよ
うになる。
[Operation] When joining the polycrystalline ceramics to the single crystal, when the joining temperature becomes high, the grain boundaries between the single crystal and the polycrystals start to move toward the polycrystalline ceramics side, and finally the grain boundaries disappear. The whole becomes almost a single crystal. At this time, single crystallization can be achieved by introducing sufficient temperature and time without adding impurities other than the base material. At the time of bonding, addition of Si or Mg element to the bonding surface is for promoting the moving speed of grain boundaries to achieve single crystallization at low temperature and in a short time, but Cr and Ti are excluded. Addition of an element containing an electron significantly reduces the function as a laser material. In addition, the above-mentioned Nd, Ho and Er
An element such as a rare earth element that participates in light emission includes a d electron, but is an element for laser oscillation,
Not only can it be added, but it is also important in terms of increasing the laser power. These elements are uniformly dispersed in the ceramic along with the movement of the grain boundaries of the polycrystalline ceramic. Further, the single crystal also diffuses from the boundary portion as the polycrystalline ceramic and becomes relatively uniformly distributed.

【0012】[0012]

【実施例】実施例1 図1は単結晶と多結晶YAGセラミックスの第1の接合
例を示すもので、両接合材の界面に何ら介在させない例
を示す。
EXAMPLES Example 1 FIG. 1 shows a first example of joining single crystal and polycrystalline YAG ceramics, and shows an example in which no intervening material is present at the interface between the two joining materials.

【0013】同図において、チョコラルスキー法によっ
て得た5mm厚のYAG単結晶1と、この単結晶よりも
薄い2.5mm厚の透明度が優れ、Nd2 3 を1.0
重量%含有し、且つ真空焼結法によって得た多結晶YA
Gセラミックス2のそれぞれの接合界面を、化学研磨あ
るは機械研磨によって表面粗さを0.1ミクロン以下、
できれば、0.03ミクロン以下に仕上げ、その接合面
に、単結晶1を多結晶体2で挟んで、上下から、100
〜300g/cm2 の荷重を加え、水素雰囲気中で17
00℃の温度で加熱した。
In the figure, the YAG single crystal 1 having a thickness of 5 mm obtained by the Czochralski method and the transparency having a thickness of 2.5 mm, which is thinner than this single crystal, are excellent and Nd 2 O 3 is 1.0.
Polycrystalline YA containing by weight and obtained by vacuum sintering method
The surface roughness of each bonding interface of the G ceramics 2 is 0.1 μm or less by chemical polishing or mechanical polishing,
If possible, finish to 0.03 micron or less, sandwich the single crystal 1 between the polycrystals 2 on the joint surface,
Apply a load of ~ 300 g / cm 2 and perform 17 in a hydrogen atmosphere.
Heated at a temperature of 00 ° C.

【0014】これによって、発光イオンであるNdの濃
度が肉厚中心部で少なく、外周部で多い濃度分布を有す
るスラブレーザー素子を得た。Ndの濃度差を板厚方向
で取ることは、中心部での熱発生が相対的に少なくなる
ために、熱放散が良好であるスラブレーザーとなる。
As a result, a slab laser element was obtained in which the concentration of Nd, which is a luminescent ion, was low in the central portion of the wall thickness and large in the outer peripheral portion. Taking the difference in Nd concentration in the plate thickness direction results in a slab laser having good heat dissipation because heat generation in the central portion is relatively small.

【0015】実施例2 図2は、接合界面に、多結晶体の粒界移動促進剤として
のSiO2 を接合界面に仕込んで全体を単結晶化した例
を示す。
Example 2 FIG. 2 shows an example in which SiO 2 as a grain boundary migration accelerating agent of a polycrystalline material was charged into the bonding interface to make the whole into a single crystal.

【0016】図2において、Ndを固溶した単結晶より
も厚さを増した4mm厚のYAGセラミックスのそれぞ
れの接合面に、Siアルコキシドを接合界面に載置し、
実施例1と同様の加圧状態の下で水素雰囲気で、175
0℃で20時間、加熱することによって、境界面3を移
動せしめて、且つ十分アニールすることによって、単結
晶体とした。
In FIG. 2, Si alkoxide was placed on the bonding interface on each bonding surface of a 4 mm thick YAG ceramic having a thickness larger than that of a single crystal in which Nd was dissolved.
175 in a hydrogen atmosphere under the same pressure as in Example 1.
The boundary surface 3 was moved by heating at 0 ° C. for 20 hours and sufficiently annealed to obtain a single crystal body.

【0017】このスラブレーザーは、比較的高温でアニ
ールするため、Ndの濃度分布が少なく、通常の単結晶
育成技術で作成されるスラブレーザーとほぼ同等の特性
を有する。単結晶体の一部を使用するだけであるので量
産性があり、コスト的にも有利である。
Since this slab laser is annealed at a relatively high temperature, it has a small Nd concentration distribution and has characteristics substantially equivalent to those of a slab laser produced by a normal single crystal growing technique. Since only a part of the single crystal body is used, it has mass productivity and is advantageous in cost.

【0018】[0018]

【発明の効果】本発明によって以下の効果を奏すること
ができる。
According to the present invention, the following effects can be obtained.

【0019】(1)単結晶と多結晶体を接合するだけ
で、単結晶化あるいは単結晶化しない何れの場合も、特
性の優れたレーザー素子を得ることができる。
(1) A laser element having excellent characteristics can be obtained by simply joining a single crystal and a polycrystal, in either case of single crystal formation or non-single crystal formation.

【0020】(2)単結晶化あるいは単結晶化しない何
れの場合も、従来の素子の製造と比較して、製造面の短
縮化ができる。
(2) In either case of single crystallization or non-single crystallization, the manufacturing surface can be shortened as compared with the conventional device manufacturing.

【0021】(3)立地条件(地震,落雷等がないこと
が従来の条件)を解消でき、電気炉等で多量に接合や単
結晶化の処理ができることから量産が可能である。
(3) The site condition (the conventional condition that there is no earthquake, lightning, etc.) can be eliminated, and a large amount of bonding and single crystallization can be performed in an electric furnace or the like, so that mass production is possible.

【0022】(4)多結晶体は、通常の単結晶育成技術
で作成されるものに比べ、発光イオン高濃度化が可能で
あるから、出力の高いレーザーの作成もできる。
(4) Since the polycrystal can be made to have a higher concentration of luminescent ions than that produced by a normal single crystal growing technique, it is possible to produce a laser having a high output.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例を示す図であって、単
結晶と多結晶とが接合された状態のままのレーザー素子
の構造を示す。
FIG. 1 is a diagram showing a first embodiment of the present invention, showing a structure of a laser element in which a single crystal and a polycrystal are bonded together.

【図2】 本発明の第2の実施例を示す図であって、単
結晶と多結晶とが接合され界面の移動による単結晶化す
る過程を示す。
FIG. 2 is a diagram showing a second embodiment of the present invention, showing a process in which a single crystal and a polycrystal are bonded and a single crystal is formed by moving an interface.

【符号の説明】[Explanation of symbols]

1 単結晶 2 多結晶セラミックス 3 界面 1 Single crystal 2 Polycrystalline ceramics 3 Interface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イットリウム,アルミニウム,ガーネッ
トからなる単結晶YAGと多結晶YAGセラミックスを
積層してなる積層型YAGスラブレーザー素子。
1. A stacked YAG slab laser device in which a single crystal YAG made of yttrium, aluminum and garnet and a polycrystalline YAG ceramic are stacked.
【請求項2】 イットリウム,アルミニウム,ガーネッ
トからなる単結晶と同多結晶を1400℃以上の温度で
接合するスラブレーザー素子の製造方法。
2. A method of manufacturing a slab laser element, in which a single crystal made of yttrium, aluminum and garnet and the same polycrystal are bonded at a temperature of 1400 ° C. or higher.
JP34553191A 1991-12-26 1991-12-26 Laminated yag slab laser element and manufacture thereof Pending JPH05175591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34553191A JPH05175591A (en) 1991-12-26 1991-12-26 Laminated yag slab laser element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34553191A JPH05175591A (en) 1991-12-26 1991-12-26 Laminated yag slab laser element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05175591A true JPH05175591A (en) 1993-07-13

Family

ID=18377220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34553191A Pending JPH05175591A (en) 1991-12-26 1991-12-26 Laminated yag slab laser element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05175591A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877453A1 (en) * 1996-09-04 1998-11-11 Fanuc Ltd. Laser oscillator
JP2005327997A (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator using the element
US7158546B2 (en) 2002-02-27 2007-01-02 Nec Corporation Composite laser rod, fabricating method thereof, and laser device therewith
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877453A1 (en) * 1996-09-04 1998-11-11 Fanuc Ltd. Laser oscillator
EP0877453A4 (en) * 1996-09-04 1999-01-13 Fanuc Ltd Laser oscillator
US7158546B2 (en) 2002-02-27 2007-01-02 Nec Corporation Composite laser rod, fabricating method thereof, and laser device therewith
US7496125B2 (en) 2002-02-27 2009-02-24 Konoshima Chemical Co. Ltd. Composite laser rod, fabricating method thereof, and laser device therewith
JP2005327997A (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator using the element
WO2005112208A1 (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator employing it
US7960191B2 (en) 2004-05-17 2011-06-14 Akio Ikesue Composite laser element and laser oscillator employing it
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4261781A (en) Process for forming compound semiconductor bodies
US4735666A (en) Method of producing ceramics
CN110776311B (en) Method for preparing perovskite type composite oxide high-entropy ceramic by hot-pressing sintering
JPS59116175A (en) Ceramic sintered member
US9604853B2 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
KR960001433B1 (en) Method for surface bonding of ceramic bodies
US4587067A (en) Method of manufacturing low thermal expansion modified cordierite ceramics
Ikesue et al. Origin and future of polycrystalline ceramic lasers
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
CN105236980A (en) ZrO2-LiF-codoped vacuum sintering method for lutetium oxide transparent ceramic
JPH05175591A (en) Laminated yag slab laser element and manufacture thereof
CN101286443A (en) Method for manufacturing pyrolytic boron nitride composite substrate
US4952535A (en) Aluminum nitride bodies and method
JP2003267800A (en) Oxide ion-conducting crystal and method for producing the same
JP3463941B2 (en) Polycrystalline transparent ceramics for laser
JP2012071995A (en) Alumina ceramic joined body and method for manufacturing the same
Bagayev et al. Simple method to join YAG ceramics and crystals
JPH0459658A (en) Light-transmitting sintered yttria and production thereof
JPH11157951A (en) Aluminum nitride bonded structure and its production
JP2652425B2 (en) Manufacturing method of piezoelectric ceramics
JP7467191B2 (en) Joining Method
JP2007063124A (en) Ceramic substrate
JP4803872B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP2000086346A (en) Ceramic substrate
KR102461995B1 (en) High Temperature Susceptor With Shaft Of Low Thermal Conductance