JP3463941B2 - Polycrystalline transparent ceramics for laser - Google Patents

Polycrystalline transparent ceramics for laser

Info

Publication number
JP3463941B2
JP3463941B2 JP10807992A JP10807992A JP3463941B2 JP 3463941 B2 JP3463941 B2 JP 3463941B2 JP 10807992 A JP10807992 A JP 10807992A JP 10807992 A JP10807992 A JP 10807992A JP 3463941 B2 JP3463941 B2 JP 3463941B2
Authority
JP
Japan
Prior art keywords
laser
light
single crystal
elements
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10807992A
Other languages
Japanese (ja)
Other versions
JPH05301770A (en
Inventor
明生 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP10807992A priority Critical patent/JP3463941B2/en
Publication of JPH05301770A publication Critical patent/JPH05301770A/en
Application granted granted Critical
Publication of JP3463941B2 publication Critical patent/JP3463941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、レーザ発振素子として
好適に使用されガーネット構造を有する、イットリウム
・アルミニウム・ガーネット(YAG),ガドリニウム
・ガリウム・ガーネット(GGG),ガドリニウム・ス
カンジウム・ガリウム・ガーネット(GSGG)等のレ
ーザ用多結晶透明セラミックスに関する。 【0002】 【従来の技術】YAGに代表されるガーネット構造の固
体レーザは、その市場の約95%を占め、半導体の微細
加工、鋼材やセラミックスの切断及び熱処理、医療用レ
ーザメス等多岐に応用され、近年ではSHG(第二高調
波)素子を用いて波長変換したグリーンやブルーレーザ
が、光磁気記録材料の書込み操作用としても用いられて
いる。 【0003】ところでYAGは発光に関与する元素とし
て、Ndやその他の発光元素を添加したものが、チョコ
ラルスキー法やブリッジマン・ストックバーガー法等で
製造されているが、それらはいずれも単結晶である。 【0004】このような方法で単結晶YAGを製造する
場合、育成温度が約2000°Cを必要とし、かつ育成
速度が0.2〜0.3mm/hrと極めて遅い。このこ
とから1本の単結晶を製造するのに約1ケ月を要し、且
つ製造された単結晶YAGの発光元素が均一とはなり難
い。特にNd元素を添加するものに限っては単結晶を育
成する際、ホスト材料中の発光元素を均一に分散させる
ことが難しいばかりでなく、その濃度も1原子%程度が
限界となっている。このことからたとえ単結晶YAGを
製造したとしても、レーザ材料として使用できるのはご
く一部である。また単結晶育成技術では極めて高価なイ
リジウム坩堝が必要なため、製造される単結晶YAGが
高価であることは勿論、生産性の面でも十分満足すべき
ものではない。 【0005】 【発明が解決しようとする課題】本発明が解決すべき課
題は、単結晶のように製造上の欠点や素材そのものの欠
点がなく、かつ発振特性に優れたレーザ用多結晶透明セ
ラミックスを得ることにある。 【0006】 【課題を解決するための手段】本発明のレーザ用多結晶
透明セラミックスは、SiO,LiO,NaO,
MgO,CaOの中の一種または二種以上と、発光元素
としてのランタニド元素、Cr元素、Ti元素の中の一
種または二種以上とを含有する気孔率が1%以下のガー
ネット構造を有する焼結体であって、焼結体を構成する
粒子の平均粒子径が5〜1000μmで、構成粒子中に
含まれる発光元素に関して、粒子全体の80%以上が±
15%以内の濃度差の範囲であり、且つ、直線透過光の
内部損失が30%/cm以下であることを特徴とする。 【0007】 【作用】本発明のレーザ用多結晶透明セラミックスは、
YAG,GGG,GSGGを構成する適切な粒度の原料
粉末を使用し、これにSiO2 ,Li2 O,Na2 O,
MgO,CaOの一種以上、さらにランタニド元素及び
Cr、Ti元素の発光元素又は増感元素を一種又は二種
以上含有し、適正な条件下で焼結を行なうことで、レー
ザ発振機能を付加された透明な高密度焼結体を得ること
ができる。 【0008】YAGの場合、まず純度99重量%、好ま
しくは99.9重量%以上のY2 3 、Al2 3 を用
い、さらに発光元素や増感元素となるランタニド元素の
酸化物(La2 3 CeO 2 、Pr6 11,Nd2
3 ,Pm2 3 ,Sm2 3,Eu2 3 ,Gd
2 3 ,Tb2 3 ,Dy2 3 ,Ho2 3 ,Er2
3、Tm2 3 ,Yb2 3 ,Lu2 3 )及びTi
2 ,Cr2 3 などの酸化物をガーネット組成となる
ように秤量する。または、アルコキシド法や共沈法など
によって予め組成的に均一な湿式合成粉末を用いる。こ
れにSiO2 ,Li2 ,Na2 O,MgO,CaO
の酸化物成分を一種以上適量添加する。ここで、Y2
3 及びAl2 3 の純度が99重量%未満では不純物の
作用によって良品のレーザ材料を得ることが困難とな
る。また、焼結体の平均粒子径や密度として特許請求の
範囲のものを得るためには、原料粉末の一次粒径が1μ
m以下のAl2 3 及びY2 3 を使用することが好ま
しい。 【0009】SiO2 ,Li2 Oなどの酸化物成分は、
その量が適切である限り多結晶体の微構造を改善すると
共に、異相(焼結体中に残存するYAlO3 やAl2
3 など)を排除するため、材料の透明度(ホスト材料の
透明度)を向上させ、結果的にレーザの発振効率を向上
させる。一方これら酸化物を添加した場合にも、酸化物
中のカチオンにはdやf電子等の電子構造が存在せず、
レーザ発振特性には殆ど悪影響を与えない。但し、これ
らの元素はYAGセラミックス中の原子価が3価のイオ
ンであるAl3+及びY3+と置換するが、1価元素のL
i,Na、2価元素のMg,Ca、及び4価元素のSi
はそれぞれ価数がAlやYとは異なる。このため、単純
な系の原子レベルでは、多結晶体中の結晶の電荷を保つ
ためアニオン又はカチオンサイトへ格子欠陥を生じる。
この欠陥量は比較的少ないレベルでは光学的特性を劣化
させることはないが、余りにも多過ぎるとホスト材料の
格子欠陥に伴う変色等の影響が生じることとなる。従っ
て、これらの元素を添加する場合は、できるだけ少なく
添加することと、価数の異なる元素をうまく組み合わせ
る(例えば2価と4価を等量ずつ添加する等)ことで、
より良い光学特性を有するホスト材料を得ることがで
き、これらの酸化物の添加量は、0.005〜1.0重
量%の範囲にあることが望ましい。 【0010】この配合粉末に、アルコール等の有機溶媒
又は蒸留水を加え、ポットミル中で混合し、この混合さ
れた粉末を減圧下又は常圧下で乾燥させる。得られた粉
末は一軸プレスまたはコールドアイソスタティックプレ
ス(CIP)などで成形した後に焼結を行なう。焼結の
手段も特に限定されるものではないが、真空焼結の場合
は、1600〜1850°Cの温度範囲、ホットプレス
(HP)やホットアイソスタティックプレス(HIP)
の場合は1400〜1850°Cの温度範囲で適正な焼
結時間処理することによって目的とする焼結体が得られ
る。また酸素ガスや水素ガス中で焼結することも可能で
あり、それらの焼結方法を組み合わせることによっても
目的とする焼結体が得られる。 【0011】固体レーザとして用いるためには、焼結体
の密度が理論密度の99.0%以上(気孔率では1%以
下)を有し、且つ多結晶体を構成する平均粒子径が5〜
1000μmの範囲であることが必要である。焼結体の
密度が99.0%より低ければ、光の透過率が極端に低
下する。焼結体の相対密度に関しては同じ化学組成の単
結晶と多結晶を学振法又はX線法により測定した両者の
密度を比較することで求められる。それ以外の方法とし
ては焼結体内部に存在する気孔を顕微鏡やSEM等で表
面観察した画像を解析するこによっても求められる。ま
た焼結体の粒子径が1000μmより大きいと発光元素
を均一に固溶できなかったり、粒界部に発光元素が偏析
したりして光学的に均質で透明なものとはなりにくく、
逆に5μmより小さいと実用に供するだけの透明度が得
られない。 【0012】焼結体の透明度はレーザ発振させた場合の
発振効率と密接な関係があることから、できるだけ高い
ことが望ましい。この値は光吸収係数で表現できる。す
なわち、ランバート・ベールの法則、log(Io
I)=αd 〔ここで、Io :入射光強度,I:透過光
強度(試料を透過した光の強度) ,α:光吸収係数,
d:試料厚さ〕におけるαの値が0.204cm-1、好
ましくは0.125cm-1以下に止める必要がある。ま
た、透明度は直線透過光の内部損失でも表すことがで
き、厚さ10mmの試料に直線光を照射した場合、その
内部損失は30%以下が必要である。この意味は、表面
の加工精度が同一の試料において、厚さ1mmと11m
mの試料の直線透過率の差異が30%以内ということで
ある。これ以上母材内部での吸収損失が大きいと、光の
増幅により吸収損失が大きくなりレーザ発振しないばか
りでなく、場合によっては母材の破壊にまで至る。母材
の吸収損失については発光元素の吸収がない可視波長領
域(または測定波長に対する透過率のバックグラウンド
レベル)で、試料の厚さに対して透過率をプロットした
ときの傾きによって求められる。レーザ発振効率は母材
の透明度に依存する傾向との予測はできるが、より好ま
しくはその値が20%以下(α値で表現すればα=0.
125cm-1以下)のロスに止めることが肝要である。
また、透過率の絶対値についても(試料の面粗さが0.
1μm以下のものに限って)厚さ1mmの試料が400
〜900nmの波長範囲で、発光元素等の吸収を除く部
分の直線透過率が75%以上であることも必要である。 【0013】一方、発光元素の均一性は焼結体で固体レ
ーザ材料を作製する際の最も大きな利点であり、特に大
型形状の大出力レーザを目的とした場合に重要な技術と
なる。その均一度については、焼結体を構成する各々の
粒子の80%以上が、濃度差が±15%の範囲(例えば
2原子%の発光元素を含むものは2±0.3%の範囲)
にあることが必要である。その濃度分布については、焼
結体の粒子の50個程度、少なくとも20個程度の粒子
をランダムに分析することによって判定する。焼結体中
の発光元素や増感元素の濃度分布はEDX(エネルギー
分散型X線分光器)やIMA(イオンマイクロアナライ
ザー)などの微小領域を計測する機器分析装置によって
容易に測定できる。 【0014】レーザは元来フラッシュランプまたはLD
(レーザダイオード)で材料内部に存在する発光元素を
励起させ、これを連続して増幅することから強力なレー
ザ光が発振できる。ここで、多結晶セラミックスのよう
な粒界がある材料を励起させ、レーザ発振する場合、粒
子内部で増幅されたレーザ光が粒界部で損失(異相や結
晶欠陥等に起因する減衰)するため、多結晶体でレーザ
発振することは不可能と考えるのが一般的である。また
仮にレーザ発振したとしても、粒界部の光損失が大きい
はずであり、単結晶材料に比べ特性劣化が著しいと予測
されることから固体レーザ材料はすべて単結晶であるべ
きと考えられており、現状もその通りとなっている。多
結晶体は粒子内部の結晶欠陥(格子欠陥)のレベルは元
来単結晶より低くなるはずであるが(溶融しないた
め)、焼結過程で完璧に近い物質移動が起きにくいため
粒子内部に組織的または結晶構造的欠陥を残すこととな
る。しかしこのような不都合を回避すれば、多結晶セラ
ミックスの粒子内部の光学的特性は単結晶を上回り、レ
ーザの増幅能力は高くなる。粒界部の光損失については
否定できないが、粒界部の損失を極力低減させることに
よって実用に十分耐えうるものとなる。また、レーザ材
料としての特性はこの透過率だけが全てでなく、発光元
素の均一性、ホスト材料中の発光元素濃度、材料の歪み
など様々な因子があり、透明度を除くその他の要因につ
いては多結晶体の方が単結晶体よりも優れている可能性
が高いことから、特性全体から考えれば同等または単結
晶を凌駕するものが存在する。例えば材料の歪みに関し
て、単結晶では偏光板を通して観察したときにかなりの
残留歪みが確認できるが、多結晶体ではこのような歪み
を殆ど検出できないなど優れた特徴を有する。 【0015】また、Ndを含有した単結晶YAGは、N
dの濃度分布が不均一であるばかりでなく、その濃度は
1原子%程度までしか含有できないが、焼結による多結
晶YAGの場合であればそのNd濃度は10〜12原子
%まで含有でき、しかもその分布は極めて均一にでき
る。このことから、小型・ハイパワー等の特徴を有する
新型固体レーザへの応用も可能と考えられる。 【0016】 【実施例】実施例としてホスト材がYAGであるレーザ
用多結晶透明セラミックスについて述べる。 【0017】Al2 3 、Y2 3 と発光元素及び増感
元素としてのランタニド元素及びCr,Tiを合量10
0g秤量し、さらにこれにSiO2 ,Li2 O,Na2
O,MgO,CaOの各酸化物を所定量添加し、ポット
ミル中へそれぞれの粉末とエチルアルコール300c
c、さらにアルミナボール500gを入れ、24時間混
合した。混合した粉末を500mmHgの減圧下で乾燥
し、乾燥した粉末を乳鉢で軽く再混合した。 【0018】この粉末を直径50mm、高さ15mmの
タブレットに仮成形後、1000kg/cm2 の圧力で
ラバープレスした。 【0019】この成形体を電気炉に入れ、100°C/
hrで昇温し、所定温度にて焼成後、100°C/hr
で冷却した。得られた焼結体から直径6mm、厚さ10
mmの試料を作成し、両面の面粗さを5nm、平坦度
1/8λに仕上げた。 【0020】 【表1】 表1に示す実施例1〜12は、焼結温度、焼結時間、焼
成雰囲気等を選ぶことにより、焼結体の平均粒子径及び
気孔率を変化させたもので、これをLDやキセノンフラ
ッシュランプで励起した時の発振特性の結果を示す。 【0021】〔比較例〕表2は、ホスト材がYAGで発
光元素を1原子%含んだ単結晶及び、特許請求の範囲外
の組成の多結晶YAGを示す。比較例1は、従来のチョ
コラルスキー法で育成された1原子%NdのYAG単結
晶で、808nmLD(300mW)で励起した時の出
力は、84mWで出力効率は28.0%であった。 【0022】 【表2】 〔結果〕表1より明らかなように、本実施例のレーザ用
多結晶透明セラミックスは、Nd及び酸化物を添加した
場合、特にNdの濃度上昇に伴ってレーザ出力が高くな
っていることがわかる。実施例7,8に示すように、従
来の単結晶育成技術では添加が不可能なNd元素の高濃
度化が可能となり、従来の単結晶よりも2倍程度の高出
力化が可能となった。また、実施例10〜12はNd以
外のランタニド元素を添加した例を示しているが、いず
れもかなり高いレべルのレーザ発振効率を示した。 【0023】一方特許請求の範囲外の平均粒子径又は気
孔率を有する比較例2〜4は、発振効率が極度に低い
か、または発振しないものとなっている。特許請求範囲
の平均粒径及び気孔率を有し、SiO2 等の添加元素を
加えていない比較例5は、比較的高い発振効率を確保す
ることができるが、同じ平均粒径及び気孔率で添加元素
を含む実施例2と比較すると発振効率が低下しているの
がわかる。 【0024】なお、ここではホスト材としてYAGを用
いたもののみ示したが、GGG、GSGG等の他のガー
ネット構造のセラミックスでも同等の結果が得られた。 【0025】 【発明の効果】本発明により結晶構造が立方晶系に属す
る多結晶透明セラミックスを用いてレーザの発振が可能
となった。材料特性上発光元素(特にNd)の高濃度
化ができる発光元素が均一となる材料の大型化が図
れるなどの特徴を有するものとなる。このため、工業的
には通常のレーザとしての用途に適する以外に、レーザ
の小型化や高出力化が可能となることから、最近話題と
なっているマイクロチップレーザとしての用途の拡大、
更には大型・均一化、更には高出力化が図れるメリット
を利用して、レーザ加工やレーザ核融合などの応用が期
待される。 【0026】また、経済性を考慮しても、従来の単結晶
育成技術で不可欠な貴金属ルツボ(イリジウム)や高価
な単結晶育成装置が不要となり有利である。その他、焼
結法では素材の焼結に必要な温度はその融点より低く、
また焼結時間も数〜数十時間程度であるので合成に消費
される電力量も格段に少ない。更には一台の焼結炉でた
くさんの焼結体が作製できることやニアネットシェイプ
技術で素材を使用する形状に近いまま効率良く作製でき
るので、コスト、量産、経済性(希土類資源の有効利用
や電力費削減)等の利点がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to yttrium aluminum garnet (YAG) and gadolinium gallium garnet (GGG) which are suitably used as a laser oscillation element and have a garnet structure. ), And polycrystalline transparent ceramics for laser such as gadolinium, scandium, gallium, garnet (GSGG). [0002] Garnet-structured solid-state lasers represented by YAG occupy about 95% of the market, and are applied to a wide variety of applications such as fine processing of semiconductors, cutting and heat treatment of steel materials and ceramics, and laser scalpels for medical use. In recent years, green and blue lasers whose wavelength has been converted using an SHG (second harmonic) element have been used for writing operations on magneto-optical recording materials. [0003] Incidentally, YAG to which Nd and other light-emitting elements are added as elements involved in light emission is manufactured by the Czochralski method, the Bridgman-Stockberger method, etc., but all of them are single crystals. is there. [0004] When a single crystal YAG is produced by such a method, the growth temperature needs to be about 2000 ° C, and the growth rate is extremely slow at 0.2 to 0.3 mm / hr. From this, it takes about one month to manufacture one single crystal, and it is difficult for the manufactured single crystal YAG to have a uniform light emitting element. In particular, when a single crystal is grown only with the addition of the Nd element, it is not only difficult to uniformly disperse the light emitting element in the host material, but also the concentration is limited to about 1 atomic%. For this reason, even if a single crystal YAG is manufactured, only a part can be used as a laser material. In addition, since the single crystal growing technique requires an extremely expensive iridium crucible, the produced single crystal YAG is not only expensive but also unsatisfactory in terms of productivity. SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a polycrystalline transparent ceramic for a laser which is free from the drawbacks in manufacturing and the raw material itself as in a single crystal and has excellent oscillation characteristics. Is to get [0006] The polycrystalline transparent ceramics for laser of the present invention comprises SiO 2 , Li 2 O, Na 2 O,
Sintered with MgO, and one or two or more of the CaO, lanthanide element as a light emitting element, Cr element, one or porosity containing a two or more than 1% of the garnet structure in the Ti element And the average particle diameter of the particles constituting the sintered body is 5 to 1000 μm, and
Regarding the contained luminescent elements, 80% or more of the whole particles are ±
It is characterized in that the density difference is within the range of 15% and the internal loss of the linearly transmitted light is 30% / cm or less. The polycrystalline transparent ceramic for laser of the present invention is
A raw material powder having an appropriate particle size constituting YAG, GGG, GSGG is used, and SiO 2 , Li 2 O, Na 2 O,
A laser oscillation function is added by sintering under appropriate conditions, containing one or more of MgO and CaO, and one or more luminous elements or sensitizing elements of lanthanide elements and Cr and Ti elements. A transparent high-density sintered body can be obtained. In the case of YAG, first, Y 2 O 3 and Al 2 O 3 having a purity of 99% by weight, preferably 99.9% by weight or more are used, and a lanthanide element oxide (La) serving as a light emitting element or a sensitizing element is used. 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O
3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd
2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2
O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ) and Ti
Oxides such as O 2 and Cr 2 O 3 are weighed to have a garnet composition. Alternatively, a wet synthetic powder having a uniform composition in advance by an alkoxide method, a coprecipitation method, or the like is used. In addition to this, SiO 2 , Li 2 O , Na 2 O, MgO, CaO
At least one oxide component is added in an appropriate amount. Here, Y 2 O
If the purity of 3 and Al 2 O 3 is less than 99% by weight, it becomes difficult to obtain a good laser material due to the action of impurities. Further, in order to obtain the average particle diameter and density of the sintered body as claimed in the claims, the primary particle diameter of the raw material powder must be 1 μm.
It is preferred to use m 2 or less of Al 2 O 3 and Y 2 O 3 . Oxide components such as SiO 2 and Li 2 O are:
As long as the amount is appropriate, the microstructure of the polycrystalline body can be improved and the heterophase (YAlO 3 or Al 2 O remaining in the sintered body can be improved).
3 ), the transparency of the material (transparency of the host material) is improved, and as a result, the oscillation efficiency of the laser is improved. On the other hand, even when these oxides are added, the cation in the oxide has no electronic structure such as d or f electron,
There is almost no adverse effect on the laser oscillation characteristics. However, these elements replace the trivalent ions Al 3+ and Y 3+ in the YAG ceramics, but the monovalent element L 3
i, Na, divalent element Mg and Ca, and tetravalent element Si
Have different valences from Al and Y, respectively. For this reason, at the atomic level of a simple system, lattice defects occur at anion or cation sites in order to maintain the charge of the crystals in the polycrystal.
If the defect amount is relatively small, the optical characteristics are not deteriorated, but if it is too large, discoloration or the like due to lattice defects of the host material occurs. Therefore, when these elements are added, they should be added as little as possible, and elements having different valences should be properly combined (for example, divalent and tetravalent are added in equal amounts).
A host material having better optical characteristics can be obtained, and the amount of these oxides added is preferably in the range of 0.005 to 1.0% by weight. An organic solvent such as alcohol or distilled water is added to the compounded powder, mixed in a pot mill, and the mixed powder is dried under reduced pressure or normal pressure. The obtained powder is formed by a uniaxial press or a cold isostatic press (CIP) and then sintered. The means for sintering is not particularly limited, but in the case of vacuum sintering, a temperature range of 1600 to 1850 ° C., hot press (HP) or hot isostatic press (HIP)
In the case of (1), the desired sintered body is obtained by performing an appropriate sintering time treatment in a temperature range of 1400 to 1850 ° C. It is also possible to perform sintering in oxygen gas or hydrogen gas, and a desired sintered body can be obtained by combining those sintering methods. For use as a solid-state laser, the sintered body has a density of 99.0% or more (1% or less in porosity) of the theoretical density and an average particle diameter of the polycrystal of 5 to 5.
It needs to be in the range of 1000 μm. If the density of the sintered body is lower than 99.0%, the light transmittance is extremely reduced. The relative density of the sintered body can be determined by comparing the densities of a single crystal and a polycrystal having the same chemical composition measured by the Gakushin method or the X-ray method. As another method, it is also required to analyze an image obtained by observing the surface of pores existing inside the sintered body with a microscope, an SEM, or the like. Also, if the particle size of the sintered body is larger than 1000 μm, the light emitting element cannot be uniformly dissolved, or the light emitting element segregates at the grain boundary, and it is difficult to be optically uniform and transparent,
On the other hand, if it is smaller than 5 μm, transparency sufficient for practical use cannot be obtained. The transparency of the sintered body is preferably as high as possible because it has a close relationship with the oscillation efficiency when laser oscillation is performed. This value can be represented by a light absorption coefficient. That is, Lambert-Beer's law, log (I o /
I) = αd [where I o : incident light intensity, I: transmitted light intensity (intensity of light transmitted through the sample), α: light absorption coefficient,
d: sample thickness] must be 0.204 cm -1 , preferably 0.125 cm -1 or less. The transparency can also be represented by the internal loss of linearly transmitted light. When a sample having a thickness of 10 mm is irradiated with linear light, the internal loss must be 30% or less. This means that the thickness of 1 mm and 11 m
m means that the difference in the linear transmittance is within 30%. If the absorption loss inside the base material is larger than this, the absorption loss increases due to the amplification of light, causing not only laser oscillation but also destruction of the base material in some cases. The absorption loss of the base material is determined by a slope when the transmittance is plotted with respect to the thickness of the sample in a visible wavelength region where the light emitting element is not absorbed (or a background level of the transmittance with respect to the measurement wavelength). Although it is possible to predict that the laser oscillation efficiency tends to depend on the transparency of the base material, it is more preferable that the value be 20% or less (α = 0.
It is important to keep the loss at 125 cm -1 or less.
In addition, the absolute value of the transmittance (when the surface roughness of the sample is 0.
400 mm sample with a thickness of 1 mm
In the wavelength range of 900900 nm, it is necessary that the linear transmittance of the portion excluding the absorption of the light-emitting element and the like is 75% or more. On the other hand, the uniformity of the light-emitting elements is the greatest advantage when a solid-state laser material is manufactured from a sintered body, and is an important technique particularly when a large-sized high-power laser is intended. Regarding the uniformity, 80% or more of each particle constituting the sintered body has a concentration difference of ± 15% (for example, a range containing 2 at% luminescent element is 2 ± 0.3%).
It is necessary to be in. The concentration distribution is determined by randomly analyzing about 50, at least about 20 particles of the sintered body. The concentration distribution of the light-emitting element and the sensitizing element in the sintered body can be easily measured by an instrument analyzer such as EDX (energy dispersive X-ray spectrometer) or IMA (ion microanalyzer) which measures a small area. A laser is originally a flash lamp or an LD.
A (laser diode) excites a light-emitting element existing in the material and continuously amplifies the light-emitting element, so that a strong laser beam can oscillate. Here, when a material having grain boundaries such as polycrystalline ceramics is excited and laser oscillation is performed, laser light amplified inside the grains is lost at the grain boundaries (attenuation due to heterophase, crystal defects, etc.). Generally, it is generally considered impossible to perform laser oscillation in a polycrystalline body. Even if the laser oscillates, the light loss at the grain boundary should be large, and the property deterioration is expected to be remarkable compared to the single crystal material. The current situation is exactly the same. Although the level of crystal defects (lattice defects) in a polycrystal should be originally lower than that of a single crystal (because it does not melt), near-perfect mass transfer hardly occurs during the sintering process, so that Or crystal structure defects. However, if such inconveniences are avoided, the optical characteristics inside the particles of the polycrystalline ceramics are higher than that of the single crystal, and the laser amplifying ability is increased. Although the light loss at the grain boundary cannot be denied, the loss at the grain boundary is reduced as much as possible, so that it can withstand practical use. In addition, the characteristics of a laser material include not only the transmittance but also various factors such as the uniformity of the light emitting element, the concentration of the light emitting element in the host material, and the distortion of the material. Since a crystal is more likely to be superior to a single crystal, there are some which are equivalent or superior to a single crystal in view of the overall characteristics. For example, regarding the distortion of a material, a single crystal has a remarkable residual distortion when observed through a polarizing plate, but a polycrystal has such excellent characteristics that such a distortion can hardly be detected. Further, the single crystal YAG containing Nd is
Not only is the concentration distribution of d non-uniform, but its concentration can only be up to about 1 atomic%, but in the case of polycrystalline YAG by sintering, its Nd concentration can be up to 10-12 atomic%, Moreover, the distribution can be extremely uniform. From this, it is considered that application to a new type of solid-state laser having features such as small size and high power is also possible. EXAMPLES As examples, polycrystalline transparent ceramics for lasers whose host material is YAG will be described. Al 2 O 3 , Y 2 O 3 , a lanthanide element as a light emitting element and a sensitizing element, and a total amount of Cr and Ti are 10
0 g was weighed, and further added thereto were SiO 2 , Li 2 O, Na 2
A predetermined amount of each oxide of O, MgO and CaO is added, and each powder and ethyl alcohol 300c are put into a pot mill.
c. Further, 500 g of alumina balls were added and mixed for 24 hours. The mixed powder was dried under a reduced pressure of 500 mmHg, and the dried powder was lightly mixed in a mortar. This powder was preliminarily formed into a tablet having a diameter of 50 mm and a height of 15 mm, and then subjected to a rubber press under a pressure of 1000 kg / cm 2 . The molded body was placed in an electric furnace at 100 ° C. /
After heating at a predetermined temperature and firing at a predetermined temperature, 100 ° C / hr
And cooled. From the obtained sintered body, diameter 6mm, thickness 10
mm sample was prepared, the surface roughness of both surfaces was finished to 5 nm, and the flatness was finished to 1 / 8λ. [Table 1] In Examples 1 to 12 shown in Table 1, the average particle size and porosity of the sintered body were changed by selecting the sintering temperature, sintering time, sintering atmosphere, and the like. The result of the oscillation characteristic when excited by a lamp is shown. Comparative Example Table 2 shows a single crystal in which the host material is YAG and contains 1 atomic% of a light emitting element and a polycrystalline YAG having a composition outside the scope of the claims. Comparative Example 1 was a 1 atom% Nd YAG single crystal grown by the conventional Czochralski method, and when excited with an 808 nm LD (300 mW), the output was 84 mW and the output efficiency was 28.0%. [Table 2] [Results] As is evident from Table 1, the laser output of the polycrystalline transparent ceramics for laser of the present example was increased when Nd and oxides were added, particularly as the Nd concentration increased. . As shown in Examples 7 and 8, the Nd element, which cannot be added by the conventional single crystal growing technique, can be increased in concentration, and the output can be increased about twice that of the conventional single crystal. . Examples 10 to 12 show examples in which a lanthanide element other than Nd was added, and all of them showed a considerably high level of laser oscillation efficiency. On the other hand, Comparative Examples 2 to 4 having an average particle diameter or porosity outside the scope of the claims have extremely low oscillation efficiency or do not oscillate. Comparative Example 5, which has the average particle diameter and porosity of the claims and does not include an additive element such as SiO 2 , can secure a relatively high oscillation efficiency, but has the same average particle diameter and porosity. It can be seen that the oscillation efficiency is lower than that of Example 2 including the additional element. Although only the case where YAG is used as the host material is shown here, similar results were obtained with other ceramics having a garnet structure such as GGG and GSGG. According to the present invention, a laser can be oscillated by using a polycrystalline transparent ceramic having a cubic crystal structure. In terms of material characteristics, the material has characteristics such as an increase in the size of a material in which a light-emitting element capable of increasing the concentration of a light-emitting element (in particular, Nd) becomes uniform. For this reason, in addition to being industrially suitable for use as a normal laser, it is also possible to reduce the size and increase the output of the laser.
In addition, applications such as laser processing and laser fusion are expected, taking advantage of the advantages of achieving large size, uniformity, and high output. Even in consideration of economy, there is no need for a noble metal crucible (iridium) or an expensive single crystal growing apparatus which is indispensable for the conventional single crystal growing technique. In addition, in the sintering method, the temperature required for sintering the material is lower than its melting point,
Also, since the sintering time is about several to several tens of hours, the amount of electric power consumed for the synthesis is extremely small. Furthermore, since a large number of sintered bodies can be manufactured in one sintering furnace, and it can be manufactured efficiently using the near-net shape technology while keeping the shape close to the shape using the material, cost, mass production, economical efficiency (effective use of rare earth resources and There are advantages such as power cost reduction).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−218963(JP,A) 特開 平2−283663(JP,A) 特開 平2−92817(JP,A) 特開 平4−175265(JP,A) 特開 平3−252355(JP,A) 特開 昭50−127908(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-3-218963 (JP, A)                 JP-A-2-283661 (JP, A)                 JP-A-2-92817 (JP, A)                 JP-A-4-175265 (JP, A)                 JP-A-3-252355 (JP, A)                 JP-A-50-127908 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 SiO,LiO,NaO,Mg
O,CaOの中の一種または二種以上と、発光元素とし
てのランタニド元素、Cr元素、Ti元素の中の一種ま
たは二種以上とを含有する気孔率が1%以下のガーネッ
ト構造を有する焼結体であって、焼結体を構成する粒子
の平均粒子径が5〜1000μmで、構成粒子中に含ま
れる発光元素に関して、粒子全体の80%以上が±15
%以内の濃度差の範囲であり、且つ、直線透過光の内部
損失が30%/cm以下であるレーザ用多結晶透明セラ
ミックス。
(57) [Claims 1] SiO 2 , Li 2 O, Na 2 O, Mg
Sintering having a garnet structure with a porosity of 1% or less containing one or two or more of O and CaO and one or two or more of lanthanide elements, Cr elements and Ti elements as light emitting elements And the average particle diameter of the particles constituting the sintered body is 5 to 1000 μm, and 80% or more of all the particles of the luminescent elements contained in the constituent particles are ± 15.
%, And the internal loss of linearly transmitted light is not more than 30% / cm.
JP10807992A 1992-04-27 1992-04-27 Polycrystalline transparent ceramics for laser Expired - Fee Related JP3463941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10807992A JP3463941B2 (en) 1992-04-27 1992-04-27 Polycrystalline transparent ceramics for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10807992A JP3463941B2 (en) 1992-04-27 1992-04-27 Polycrystalline transparent ceramics for laser

Publications (2)

Publication Number Publication Date
JPH05301770A JPH05301770A (en) 1993-11-16
JP3463941B2 true JP3463941B2 (en) 2003-11-05

Family

ID=14475344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10807992A Expired - Fee Related JP3463941B2 (en) 1992-04-27 1992-04-27 Polycrystalline transparent ceramics for laser

Country Status (1)

Country Link
JP (1) JP3463941B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282447A (en) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Translucent material and method for manufacturing the same
CN1313413C (en) * 2005-09-29 2007-05-02 上海大学 Preparation of Cr4+ A12O3 transparent laser ceramic materials
JP2007115877A (en) * 2005-10-20 2007-05-10 Fujifilm Corp Solid laser device
JP5339172B2 (en) * 2006-11-15 2013-11-13 株式会社メガオプト Coherent doppler rider
JP2008124371A (en) * 2006-11-15 2008-05-29 Megaopto Co Ltd Laser oscillation method and laser apparatus
JP2008143726A (en) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center Polycrystalline transparent y2o3 ceramics and its production method
JP4878343B2 (en) * 2007-12-12 2012-02-15 神島化学工業株式会社 Translucent rare earth gallium garnet sintered body, manufacturing method thereof and magneto-optical device
JP6245629B2 (en) * 2013-03-26 2017-12-13 大学共同利用機関法人自然科学研究機構 In-vehicle ignition system using semiconductor laser pumped solid-state laser device
CN111868007B (en) * 2019-02-12 2022-06-21 捷客斯金属株式会社 Cr: YAG sintered body

Also Published As

Publication number Publication date
JPH05301770A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
Zhang et al. Sintering of Yb3+: Y2O3 transparent ceramics in hydrogen atmosphere
JP6585620B2 (en) Alumina sintered body and base substrate for optical element
JP5526313B2 (en) Translucent terbium oxide sintered body for magneto-optical element
JP6649959B2 (en) Manufacturing method of transparent alumina sintered body
JP2009143751A (en) Translucent rare earth-gallium garnet sintered compact, its manufacturing method and magneto-optical device
JP3463941B2 (en) Polycrystalline transparent ceramics for laser
JP5000934B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and optical device
JP2008143726A (en) Polycrystalline transparent y2o3 ceramics and its production method
US7081425B2 (en) Aluminum nitride sintered body
US11434143B2 (en) Polycrystalline YAG sintered body and production method thereof
JPH05330913A (en) Polycrystalline transparent y2o3 ceramics for laser
JP3243278B2 (en) Polycrystalline transparent YAG ceramics for solid-state laser
JPH05294709A (en) Polycrystalline transparent ceramic for laser
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
JP4251649B2 (en) Translucent lutetium oxide sintered body and method for producing the same
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JPH05301769A (en) Polycrystalline transparent ceramic for laser
JP3883106B2 (en) Translucent scandium oxide sintered body and method for producing the same
JPH05330912A (en) Polycrystalline transparent y2o3 ceramics for laser
JP2001220223A (en) Laser medium, method for producing the same, and laser oscillator by using the laser medium
JPH05286761A (en) Manufacture of polycrystalline transparent yag ceramic for solid laser
Valiev et al. Fabrication and properties of novel multilayered Y3Al5O12/MgAl2O4 ceramics doped with rare-earth ions
JPH06211563A (en) Polycrystalline transparent ceramics for laser beam nuclear fusion
JP6502595B1 (en) Polycrystalline YAG sintered body and method for manufacturing the same
JP7224579B2 (en) Wavelength conversion member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees