JPH05175538A - Photosensor and manufacture thereof - Google Patents
Photosensor and manufacture thereofInfo
- Publication number
- JPH05175538A JPH05175538A JP3356083A JP35608391A JPH05175538A JP H05175538 A JPH05175538 A JP H05175538A JP 3356083 A JP3356083 A JP 3356083A JP 35608391 A JP35608391 A JP 35608391A JP H05175538 A JPH05175538 A JP H05175538A
- Authority
- JP
- Japan
- Prior art keywords
- film
- single crystal
- optical sensor
- substrate
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、絶縁体基板又は絶縁膜
上に堆積した単結晶半導体薄膜中に光感知半導体素子を
構成したSOI(Silicon On Insulator) 構造の光センサ及
びその作製方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical sensor having an SOI (Silicon On Insulator) structure in which a photo-sensing semiconductor element is formed in a single crystal semiconductor thin film deposited on an insulating substrate or an insulating film, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】サファイア, スピネル等の絶縁体基板、
或いは半導体基板上に形成したSiO2 膜表面に光感知半
導体素子等を形成する、所謂SOI 構造は素子間分離が容
易であり、また寄生容量が低く高速動作を得易いという
利点があり、またCMOSデバイスのラッチアップを解消し
得る有効な手段として知られており、これを利用してCM
OSデバイスと光センサデバイスとを組合せた光ICを実現
すべく各種の試みがなされている。2. Description of the Related Art Insulator substrates such as sapphire and spinel,
Alternatively, a so-called SOI structure, in which a photo-sensing semiconductor element or the like is formed on the surface of a SiO 2 film formed on a semiconductor substrate, has the advantages of easy element isolation, low parasitic capacitance, and easy high-speed operation. It is known as an effective means of eliminating device latch-up, and it can be used for CM
Various attempts have been made to realize an optical IC that is a combination of an OS device and an optical sensor device.
【0003】従来SOI 構造の光センサとしては、SiO2
膜上にレーザ再結晶化法により成長させた単結晶Si膜に
PNダイオードを作製する技術(Symposium on VLSITechno
logy. Digest 34〜35頁 1985)、或いはSi/SiGe超格子
量子井戸構造を用いてSi膜中にフォトセンサを作成する
技術(IEEE IEDM90 637頁 1990)等が知られている。ただ
前者は単結晶Si膜のバンドギャップが大きく、長波長光
に対する感度が悪く、例えば厚さが7000Å程度の薄い単
結晶Si膜では赤色光の検出が難しく、カラーセンサとし
て実用的でない。また後者は長波長帯域 (赤外域) の光
を検出対象としたものであり、具体的には図1に示す如
くである。Conventionally, as an optical sensor having an SOI structure, SiO 2 is used.
For single crystal Si film grown by laser recrystallization method on the film
Technology for manufacturing PN diodes (Symposium on VLSI Techno
Digest 34-35 (1985)), or a technique for producing a photosensor in a Si film by using a Si / SiGe superlattice quantum well structure (IEEE IEDM90 637-1990). However, the former is not practical as a color sensor because the single crystal Si film has a large band gap and poor sensitivity to long-wavelength light. For example, a thin single crystal Si film having a thickness of about 7,000 Å is difficult to detect red light. The latter is intended for detection of light in the long wavelength band (infrared region), and is specifically as shown in FIG.
【0004】図1は従来の光センサを示す断面構造図で
あり、サファイアからなる基板1の表面にSi膜2を厚さ
410nm 堆積し、このSi膜2の表面及び側周面を覆う態様
でSiO2 膜6を堆積し、このSiO2 膜6に穿った孔を通
じてSi膜2中に導電型がP型の領域4aを形成するための
不純物,N型の領域4cを形成するための不純物を夫々イ
オン注入してP型の領域4a, Si膜2本来のI型の領域4
b, N型の領域4cを基板1の表面と平行な方向に交互に
形成する。これによって基板1の表面と平行な向きに配
列されたPIN 接合により光感知半導体素子4を構成し、
次いでSiO2 膜6に穿ったスルーホールを通じて前記P
型の領域4a,N型の領域4cに連通する電極7を形成す
る。FIG. 1 is a cross-sectional structural view showing a conventional optical sensor, in which a Si film 2 is formed on the surface of a substrate 1 made of sapphire.
410 nm is deposited, and the SiO 2 film 6 is deposited in such a manner as to cover the surface and the side peripheral surface of the Si film 2, and a region 4a having a P type conductivity type is formed in the Si film 2 through the holes formed in the SiO 2 film 6. An impurity for forming and an impurity for forming the N-type region 4c are ion-implanted respectively to form a P-type region 4a, a Si film 2 and an original I-type region 4
b, N type regions 4c are alternately formed in a direction parallel to the surface of the substrate 1. As a result, the light-sensitive semiconductor element 4 is formed by the PIN junctions arranged in the direction parallel to the surface of the substrate 1.
Then, through the through hole formed in the SiO 2 film 6, the P
An electrode 7 communicating with the mold region 4a and the N-type region 4c is formed.
【0005】[0005]
【発明が解決しようとする課題】ところで、通常フルカ
ラーセンサでは、全波長帯域について所定の分光感度特
性が得られることが前提となるが、上述した如き従来の
光センサでは長波長帯域での受光感度特性が不十分であ
った。感度を向上させるにはSi膜2の膜厚を増加させ、
またGe組成を増大させるのが効果的であるが、膜厚が厚
くなると素子分離のための加工プロセスが難しくなり、
またGe組成を増大させるとSi, Geの特性の違いによる膜
中欠陥が発生し易く、その上プロセス条件を大幅に変更
しなければならない等の問題がある。本発明はかかる事
情に鑑みなされたものであって、その目的とするところ
は、SOI 構造を有し、しかも長波長光域の感度が高く、
簡単なプロセスで作製が可能な光センサ及びその作製方
法を提供するにある。By the way, in a full-color sensor, it is usually premised that a predetermined spectral sensitivity characteristic is obtained in all wavelength bands, but in the conventional optical sensor as described above, the light-receiving sensitivity in a long wavelength band is obtained. The characteristics were insufficient. To improve the sensitivity, increase the thickness of the Si film 2,
In addition, it is effective to increase the Ge composition, but if the film thickness increases, the processing process for element isolation becomes difficult,
Further, when the Ge composition is increased, defects in the film are likely to occur due to the difference in the characteristics of Si and Ge, and there is another problem that the process conditions must be changed significantly. The present invention has been made in view of the above circumstances, and an object thereof is to have an SOI structure and high sensitivity in a long wavelength light region,
An optical sensor that can be manufactured by a simple process and a manufacturing method thereof.
【0006】[0006]
【課題を解決するための手段】本発明に係る光センサ
は、絶縁物の表面に単結晶半導体膜を設け、この半導体
膜中に光感知半導体素子を形成してなる光センサにおい
て、前記絶縁物の表面にSi膜と、Si1-x Gex 膜とを積層
形成し、該Si1-x Gex 膜に前記光感知半導体素子を形成
したことを特徴とする。本発明に係る光センサの作製方
法は、絶縁物の表面に光感知半導体素子を形成した単結
晶半導体薄膜を設けてなる光センサの作製方法におい
て、前記絶縁物の表面にSi膜、Si1-x Gex 膜をこの順序
で形成する工程と、前記Si1-x Gex 膜に基板と平行な方
向に配列するPIN 接合を形成して前記光感知半導体素子
を構成する工程とを含むことを特徴とする。A photosensor according to the present invention is a photosensor in which a single crystal semiconductor film is provided on a surface of an insulator, and a photosensing semiconductor element is formed in the semiconductor film. and Si film on the surface of, Si 1-x Ge x and film laminated, characterized in that the formation of the light sensitive semiconductor element to the Si 1-x Ge x film. The method for producing an optical sensor according to the present invention is a method for producing an optical sensor comprising a single crystal semiconductor thin film having a photosensitive semiconductor element formed on the surface of an insulator, wherein a Si film, Si 1- forming a x Ge x film in this order, said Si 1-x Ge x film to form a PIN junction arranged in a direction parallel to the substrate and a step of forming the light sensitive semiconductor element Characterize.
【0007】[0007]
【作用】本発明に係る光センサにあっては、絶縁物表面
に形成したSi1-x Gex 膜中に光感知半導体素子を形成し
たから、バンドギャップを小さく、しかもSi1-x Gex 膜
とその下地層であるSi膜とのヘテロ界面での格子不整合
によりSi1-x Gex 膜に生じる格子歪みがバンドギャップ
を一層狭小化し、長波長光に対する感度の向上が図れ
る。また本発明の光センサの作製方法にあっては、絶縁
物表面にSi膜、Si1-x Gex 膜をこの順序で形成し、この
Si1-x Gex 膜中に絶縁物表面と平行な向きにPIN 接合を
配列形成して光感知半導体素子を構成するから、Si膜が
バッファ層として機能し絶縁物からの不純物の拡散を抑
制出来、またSi膜の光吸収機能によって感度の向上も図
れる。In the photosensor according to the present invention, since the photosensing semiconductor element is formed in the Si 1-x Ge x film formed on the surface of the insulator, the bandgap is small and the Si 1-x Ge x film is small. lattice strain occurring in Si 1-x Ge x film is further narrowing the bandgap by lattice mismatch at the hetero interface between the Si film is a membrane and its underlying layer, thereby the enhanced sensitivity for long wavelength light. Further, in the method for manufacturing an optical sensor of the present invention, a Si film and a Si 1-x Ge x film are formed in this order on the surface of an insulator, and
Since PIN junctions are formed in the Si 1-x Ge x film in a direction parallel to the surface of the insulator to form a light-sensitive semiconductor element, the Si film functions as a buffer layer and suppresses the diffusion of impurities from the insulator. Also, the light absorption function of the Si film can improve the sensitivity.
【0008】[0008]
【実施例】以下本発明を可視光センサに適用した場合を
示す図面に基づき具体的に説明する。図2は本発明に係
る光センサの断面構造図であり、図中1はサファイア等
の単結晶絶縁物からなる基板を示している。基板1の表
面には単結晶のSi膜2、単結晶のSi1-x Gex 膜3,単結
晶Si膜5がこの順序に堆積され、前記Si膜5、Si1-x Ge
x 膜3、Si膜2にわたる膜中には前記基板1の平面と平
行な向きに導電性がP型,I型,N型の領域4a,4b,4cが
この順序で相接して交互に位置するよう配列形成して構
成された光感知半導体素子4が設けられている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing a case where the present invention is applied to a visible light sensor. FIG. 2 is a cross-sectional structural view of an optical sensor according to the present invention, in which 1 denotes a substrate made of a single crystal insulator such as sapphire. On the surface of the substrate 1 Si film 2 of the single crystal, Si 1-x Ge x film 3 single crystal, a single crystal Si film 5 is deposited in this order, the Si film 5, Si 1-x Ge
In the film extending over the x film 3 and the Si film 2, the regions 4a, 4b, 4c having conductivity of P type, I type, N type are alternately contacted in this order in a direction parallel to the plane of the substrate 1. A photosensitive semiconductor element 4 is provided which is arranged and arranged to be positioned.
【0009】そして前記Si膜2,Si1-x Gex 膜3,Si膜
5の全面を覆うように基板1上にSiO2 膜6が形成さ
れ、該SiO2 膜6における前記P型の領域4a, N型の領
域4c夫々と対応する位置に穿ったスルーホールを通じて
前記各P型の領域4a, N型の領域4cに接するようAlから
なる電極7を設けてある。而してこのような光センサに
あっては基板1を通過した光が光感知半導体素子4に入
力されると、光電変換されて各電極7を通じて光強度,
波長に応じた電気信号が出力されることとなる。[0009] Then the Si film 2, Si 1-x Ge x film 3, Si film SiO 2 film 6 on the substrate 1 so as to cover the entire surface of 5 is formed, the P-type regions in the SiO 2 film 6 Electrodes 7 made of Al are provided so as to be in contact with the P-type regions 4a and N-type regions 4c through through holes formed at positions corresponding to the 4a and N-type regions 4c, respectively. Thus, in such an optical sensor, when the light passing through the substrate 1 is input to the light-sensitive semiconductor element 4, it is photoelectrically converted and the light intensity is transmitted through each electrode 7,
An electric signal corresponding to the wavelength will be output.
【0010】次に上述した如き本発明に係る光センサの
作製方法について図3〜図5に基づき説明する。図3〜
図5は本発明に係る光センサの主要作製工程を示す説明
図である。先ず図3(a) に示す如く超高真空中にて 750
℃程度に加熱したサファイア等の単結晶絶縁物からなる
基板1の主面(1/1 0 2 )にSi分子線を1×1313atom
s/cm2 s の強度で30分間照射し、表面の清浄化を行う。Next, a method of manufacturing the optical sensor according to the present invention as described above will be described with reference to FIGS. Figure 3-
FIG. 5 is an explanatory view showing the main manufacturing steps of the optical sensor according to the present invention. First, as shown in Fig. 3 (a), 750
A Si molecular beam of 1 × 13 13 atom was formed on the main surface (1/10 2) of the substrate 1 made of a single crystal insulator such as sapphire heated to about ℃.
Irradiate at an intensity of s / cm 2 s for 30 minutes to clean the surface.
【0011】次に図3(b) に示す如く、基板1の温度を
800℃に昇温し、基板1の主面に分子線エピタキシー法
によりSi単結晶を厚さ200nm 成長させてバッファ層とし
て機能するSi膜2を形成した後、図3(c) に示す如く基
板1の温度を 550℃としてE型電子銃にてSi分子線を、
またクヌードセンセルにてGe分子線を夫々発生させて照
射し、Si膜2の表面に単結晶のSi0.8 Ge0.2 膜3を厚さ
200nm 成長させ、更に続いて図3(d) に示す如くこのSi
0.8 Ge0.2 膜3表面に前記と同様に単結晶のSi膜5を厚
さ10nm成長させる。バッファ層たるSi膜2はSi1-x Gex
膜3の下地層として良好な結晶性の下地を提供すること
となる。Next, as shown in FIG. 3 (b), the temperature of the substrate 1 is
After raising the temperature to 800 ° C and growing a Si single crystal to a thickness of 200 nm on the main surface of the substrate 1 by the molecular beam epitaxy method to form the Si film 2 which functions as a buffer layer, the substrate is formed as shown in Fig. 3 (c). The temperature of 1 is set to 550 ° C and the Si molecular beam is emitted by the E-type electron gun.
Also, Ge molecular beams are generated and irradiated in the Knudsen cell to form a single crystal Si 0.8 Ge 0.2 film 3 on the surface of the Si film 2.
It is grown to 200 nm, and subsequently, as shown in Fig. 3 (d), the Si
A single crystal Si film 5 is grown to a thickness of 10 nm on the surface of the 0.8 Ge 0.2 film 3 as described above. The Si film 2 as the buffer layer is Si 1-x Ge x
As a base layer of the film 3, a good crystalline base is provided.
【0012】図4(a) に示す如くSi膜2,Si1-x Gex 膜
3,Si膜5の表面,側周面を覆う態様でSiO2 膜6を形
成し、更にこのSiO2 膜6上に図4(b) に示す如くフォ
トレジスト8を塗布し、これをパターニングしてSiO2
膜6の表面を部分的に露出させ、この露出させた部分の
SiO2 膜6をその下地層であるSi膜5の下面近傍までエ
ッチングして孔6aを形成した後、不純物である、例えば
B+ をSi膜5,Si1-x Gex 膜3及びSi膜2の下面に達す
る深さにイオン注入し、ここに導電型がP型の領域4aを
形成する。[0012] FIGS. 4 (a) to Si film 2 as shown, Si 1-x Ge x film 3, the surface of the Si film 5, to form a SiO 2 film 6 in a manner to cover the side peripheral surface, further the SiO 2 film As shown in FIG. 4 (b), a photoresist 8 is coated on the surface of the substrate 6 and patterned to form SiO 2
The surface of the membrane 6 is partially exposed, and the exposed portion
After forming the hole 6a by etching the SiO 2 film 6 to the vicinity of the lower surface of the Si film 5 which is a base layer, an impurity, for example, B + a Si film 5, Si 1-x Ge x film 3 and the Si film Ions are implanted to a depth reaching the lower surface of 2 to form a region 4a having a P-type conductivity type therein.
【0013】図5(a) に示す如く孔6a内にフォトレジス
トを充填して埋戻した後、これと所定の間隔を隔てた位
置に前記図4(b) に示したのと同様にして孔6bを形成
し、不純物である、例えばP+ をSi膜5,Si1-x Gex 膜
3及びSi膜2の下面に達する深さにイオン注入し、ここ
に導電型がN型の領域4cを形成する。As shown in FIG. 5 (a), the hole 6a is filled with a photoresist and back-filled, and then at a position separated by a predetermined distance in the same manner as shown in FIG. 4 (b). the hole 6b formed, an impurity, for example, P + a-Si film 5, Si 1-x Ge x film 3 and the Si film implanted to a depth reaching the lower surface of 2, wherein the conductivity type of the N-type region Form 4c.
【0014】同様にして孔6bをフォトレジストにて埋戻
すことでSi膜5,Si1-x Gex 膜3,Si膜2の膜中にわた
ってイオン注入により形成された導電型がP型、本来Si
膜2,Si膜5,Si1-x Gex 膜3,Si膜5夫々にて構成さ
れたI型、イオン注入により形成されたN型の各領域4
a,4b,4cが基板1の表面と平行な向きに交互に並んだ状
態となり、PIN 接合が繰り返し配列された光感知半導体
素子4が構成される。その後は、SiO2 膜6における前
記P型の領域4a, N型の領域4cと対応する位置にスルー
ホールを設け、ここにAlからなる電極7を形成すること
で、図2に示した光センサが作製されることとなる。[0014] Similarly Si film 5 by returning embedding holes 6b in photoresist, Si 1-x Ge x film 3, Si film 2 for ion implantation by forming conductive type a P-type over into film, originally Si
Film 2, Si film 5, Si 1-x Ge x film 3, Si film 5 each configured I type in people, each region of N-type formed by ion implantation 4
The a, 4b, and 4c are alternately arranged in a direction parallel to the surface of the substrate 1 to form the photosensitive semiconductor element 4 in which PIN junctions are repeatedly arranged. After that, a through hole is provided in the SiO 2 film 6 at a position corresponding to the P-type region 4a and the N-type region 4c, and the electrode 7 made of Al is formed therein, whereby the optical sensor shown in FIG. Will be produced.
【0015】なお上記実施例においてはSi1-x Gex 膜3
はそのGe組成xを0.2 、また膜厚を200nm とした場合を
示したが、Ge組成xは0.2 ±0.1(0.1 ≦x≦0.3)の範囲
内、また膜厚は250nm 以下の範囲であればよい。In the above embodiment, the Si 1-x Ge x film 3 is used.
Shows the case where the Ge composition x is 0.2 and the film thickness is 200 nm. The Ge composition x is within 0.2 ± 0.1 (0.1 ≤ x ≤ 0.3), and the film thickness is within 250 nm. Good.
【0016】図6はSi1-x Gex 膜の膜厚が200nm,800nm
夫々における吸光度とGe組成xとの関係を示すグラフで
あり、横軸にGe組成xを、また縦軸に吸光度(相対強
度)をとって示している。なお、グラフ中○印でプロッ
トしたのはSi1-x Gex 膜の膜厚が200nm である場合の、
また●印でプロットしたのは同じく膜厚が800nm である
場合の夫々の結果を示している。FIG. 6 shows the Si 1-x Ge x film thicknesses of 200 nm and 800 nm.
6 is a graph showing the relationship between the absorbance and the Ge composition x in each case, in which the horizontal axis represents the Ge composition x and the vertical axis represents the absorbance (relative intensity). The reason was plotted by ○ mark in the graph if the thickness of the Si 1-x Ge x film is 200 nm,
Also, the plots with ● marks show the respective results when the film thickness is 800 nm.
【0017】図6に●印でプロットした線から明かな如
く、通常吸光度はGe組成xが大きくなってバンドギャッ
プが小さくなるに従って、また膜厚が厚くなるに従って
大きな値となるが、Si1-x Gex 膜の膜厚が200nm の場合
はGe組成x=0.2 においても膜厚800nm の場合における
Ge組成x=0.5 におけるのと同等の吸光度が得られてい
ることが解る。これは格子歪みによってSi0.8 Ge0.2 膜
のバンドギャップが無歪みの状態よりも一層狭くなった
ことに起因していると考えられる。なお図6中には具体
的には示していないが、Si1-x Gex 膜の膜厚が260nm 以
下で同様の効果が得られることが確認出来た。As is clear from the line plotted with the ● marks in FIG. 6, the absorbance usually increases as the Ge composition x increases and the band gap decreases, and as the film thickness increases, Si 1- x Ge x When the film thickness is 200 nm, when Ge composition x = 0.2, the film thickness is 800 nm.
It is understood that the same absorbance as that at the Ge composition x = 0.5 is obtained. This is probably because the lattice strain caused the band gap of the Si 0.8 Ge 0.2 film to become narrower than in the unstrained state. Although not specifically shown in FIG. 6, it was confirmed that the same effect was obtained when the thickness of the Si 1-x Ge x film was 260 nm or less.
【0018】Si膜2と、該Si膜2の表面に厚さを変えて
形成したSi0.8 Ge0.2 膜3との格子定数を二結晶X線回
折法により測定した結果を表1に示す。なおSi0.8 Ge
0.2 膜を厚さが200nm,260nm,300nm の3通りに形成した
場合における夫々の格子定数(Å)を示してある。Table 1 shows the results of measuring the lattice constants of the Si film 2 and the Si 0.8 Ge 0.2 film 3 formed on the surface of the Si film 2 by changing the thickness by the double crystal X-ray diffraction method. Si 0.8 Ge
The respective lattice constants (Å) in the case where the 0.2 film is formed in three thicknesses of 200 nm, 260 nm and 300 nm are shown.
【0019】 [0019]
【0020】表1から明らかな如くSi0.8 Ge0.2 膜3の
厚さを200nm とした場合の格子定数は5.484 Åであっ
て、歪のないバルクSi0.8 Ge0.2 の格子定数5.68Åと比
較して大きくなっており、結晶格子が成長方向に大きく
歪んでいることが解る。なお、Si0.8 Ge0.2 膜3の膜厚
が260nm の格子定数は歪みのない厚さ300nm のバルクSi
0.8 Ge0.2 の格子定数と同じ5.468 Åであって結晶格子
の歪みは測定されなかったが、これはSi0.8 Ge0.2 膜3
の膜厚が260nm 以下では成長層中にミスフイット転位が
発生せず、しかもSiGe/Si界面での格子不整合がミスフ
イット転位により緩和されることによると考えられる。As is clear from Table 1, when the thickness of the Si 0.8 Ge 0.2 film 3 is 200 nm, the lattice constant is 5.484 Å, which is compared with the lattice constant 5.68 Å of unstrained bulk Si 0.8 Ge 0.2. It can be seen that the crystal lattice is large and is distorted in the growth direction. The lattice constant of the Si 0.8 Ge 0.2 film 3 of 260 nm is the strain-free bulk Si of 300 nm.
0.8 distortion of the crystal lattice have the same 5.468 Å and the lattice constant of Ge 0.2 is not measured, which is Si 0.8 Ge 0.2 layer 3
It is considered that when the film thickness is less than 260 nm, misfit dislocations do not occur in the growth layer and the lattice mismatch at the SiGe / Si interface is relaxed by the misfit dislocations.
【0021】図7は図2に示す本発明に係る光センサと
図1に示す従来の光センサとの比較試験結果を示すグラ
フであり、横軸に波長(nm)を、また縦軸に光電流(mA)及
び本発明に係る光センサの光電流IA と従来の光センサ
の光電流IB との比IA /IB をとって示してある。グ
ラフ中実線は本発明に係る光センサの、また一点鎖線は
従来の光センサの結果を示している。なお破線は本発明
に係る光センサの光電流IA と従来の光センサの光電流
IB との比IA /IB を示している。FIG. 7 is a graph showing comparative test results between the optical sensor according to the present invention shown in FIG. 2 and the conventional optical sensor shown in FIG. 1, in which the horizontal axis represents wavelength (nm) and the vertical axis represents optical wavelength. The current (mA) and the ratio I A / I B between the photocurrent I A of the photosensor according to the present invention and the photocurrent I B of the conventional photosensor are shown. The solid line in the graph shows the result of the optical sensor according to the present invention, and the alternate long and short dash line shows the result of the conventional optical sensor. The broken line indicates the ratio I A / I B of the photocurrent I A of the photosensor according to the present invention and the photocurrent I B of the conventional photosensor.
【0022】このグラフから明らかな如く波長400 〜10
00nmの可視光領域の全域にわたって従来の光センサと比
較して本発明に係る光センサの光電流が大幅に向上して
いることが解る。特に光電流比IA /IB から明らかな
如く長波長領域になるに従って本発明に係る光センサの
検出能力が大幅に向上していることが解る。なお上述の
実施例は基板としてサファイア,スピネル等の単結晶絶
縁物上にSi膜2等を順次成長させた構成を示したが、例
えば従来知られている半導体基板の表面に絶縁膜を堆積
し、この絶縁膜上にSi膜2等を順次成長させることとし
てもよい。As is apparent from this graph, wavelengths of 400 to 10
It can be seen that the photocurrent of the photosensor according to the present invention is significantly improved as compared with the conventional photosensor over the entire visible light region of 00 nm. In particular, as is clear from the photocurrent ratio I A / I B, it can be seen that the detection capability of the optical sensor according to the present invention is significantly improved as the wavelength becomes longer. In the above-described embodiment, the substrate has a structure in which the Si film 2 or the like is sequentially grown on a single crystal insulator such as sapphire or spinel. However, for example, an insulating film is deposited on the surface of a conventionally known semiconductor substrate. The Si film 2 and the like may be sequentially grown on this insulating film.
【0023】[0023]
【発明の効果】以上の如く本発明に係る光センサ及びそ
の作製方法にあっては、Si膜上に形成したSi1-x Gex 膜
中にPIN 接合を基板表面と平行な向きに配列形成したか
らSi1-x Gex /Siヘテロ界面での格子不整合によって生
じるSi1-x Gex 膜の結晶格子歪みのためバンドギャップ
の一層の狭小化が図れ、長波長光に対する高い感度が得
られ、カラーセンサ等としての利用が可能となり、その
上プロセス条件を変更することなく作製が可能となる等
本発明は優れた効果を奏するものである。In the optical sensor and a manufacturing method thereof according to the above as the present invention exhibits, sequences form a PIN junction oriented parallel to the substrate surface during Si 1-x Ge x film formed on the Si film Therefore, due to the crystal lattice distortion of the Si 1-x Ge x film caused by the lattice mismatch at the Si 1-x Ge x / Si hetero interface, the band gap can be further narrowed and high sensitivity to long wavelength light can be obtained. Therefore, the present invention has excellent effects such that it can be used as a color sensor or the like and can be manufactured without changing process conditions.
【図1】従来の光センサの断面構造図である。FIG. 1 is a sectional structural view of a conventional optical sensor.
【図2】本発明に係る光センサの断面構造図である。FIG. 2 is a sectional structural view of an optical sensor according to the present invention.
【図3】本発明に係る光センサの作製工程を示す説明図
である。FIG. 3 is an explanatory diagram showing a manufacturing process of the optical sensor according to the invention.
【図4】本発明に係る光センサの作製工程を示す説明図
である。FIG. 4 is an explanatory view showing a manufacturing process of the optical sensor according to the invention.
【図5】本発明に係る光センサの作製工程を示す説明図
である。FIG. 5 is an explanatory diagram showing a manufacturing process of the optical sensor according to the invention.
【図6】Si1-x Gex 膜の組成xと吸光度との関係を示す
グラフである。FIG. 6 is a graph showing the relationship between the composition x of a Si 1-x Ge x film and the absorbance.
【図7】本発明に係る光センサと従来の光センサとの比
較試験結果を示すグラフである。FIG. 7 is a graph showing a comparison test result of the optical sensor according to the present invention and the conventional optical sensor.
1 単結晶絶縁物からなる基板 2 Si膜 3 Si1-x Gex 膜 4 光感知半導体素子 4a P型の領域 4b I型の領域 4c N型の領域 5 Si膜 6 SiO2 膜 7 電極Single crystal insulator substrate 2 made of Si film 3 Si 1-x Ge x layer 4 light sensitive semiconductor elements 4a P-type region 4b I-type region 4c N-type region 5 Si film 6 SiO 2 film 7 electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 和彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Kawai 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.
Claims (2)
この半導体膜中に光感知半導体素子を形成してなる光セ
ンサにおいて、 前記絶縁物の表面にSi膜と、Si1-x Gex 膜とを積層形成
し、該Si1-x Gex 膜に前記光感知半導体素子を形成した
ことを特徴とする光センサ。1. A single crystal semiconductor film is provided on a surface of an insulator,
The optical sensor obtained by forming a light sensitive semiconductor element in the semiconductor film, wherein the insulator Si film on the surface of, Si 1-x Ge x and film laminated to said Si 1-x Ge x film An optical sensor comprising the light-sensitive semiconductor element.
した単結晶半導体薄膜を設けてなる光センサの作製方法
において、 前記絶縁物の表面にSi膜、Si1-x Gex 膜をこの順序で形
成する工程と、前記Si1-x Gex 膜に基板と平行な方向に
配列するPIN 接合を形成して前記光感知半導体素子を構
成する工程とを含むことを特徴とする光センサの作製方
法。2. A method for manufacturing an optical sensor, comprising a single crystal semiconductor thin film having a photosensitive semiconductor element formed on the surface of an insulator, comprising: forming a Si film or a Si 1-x Ge x film on the surface of the insulator. A photosensor characterized by including the steps of forming in order and forming the photo-sensing semiconductor device by forming PIN junctions arranged in a direction parallel to the substrate on the Si 1-x Ge x film. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3356083A JPH05175538A (en) | 1991-12-20 | 1991-12-20 | Photosensor and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3356083A JPH05175538A (en) | 1991-12-20 | 1991-12-20 | Photosensor and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05175538A true JPH05175538A (en) | 1993-07-13 |
Family
ID=18447246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3356083A Pending JPH05175538A (en) | 1991-12-20 | 1991-12-20 | Photosensor and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05175538A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5665981A (en) * | 1994-10-24 | 1997-09-09 | Micron Technology, Inc. | Thin film transistors and method of promoting large crystal grain size in the formation of polycrystalline silicon alloy thin films |
US6258664B1 (en) | 1999-02-16 | 2001-07-10 | Micron Technology, Inc. | Methods of forming silicon-comprising materials having roughened outer surfaces, and methods of forming capacitor constructions |
US8698144B2 (en) | 2009-07-17 | 2014-04-15 | Samsung Display Co., Ltd. | Display device with improved sensing mechanism |
-
1991
- 1991-12-20 JP JP3356083A patent/JPH05175538A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5665981A (en) * | 1994-10-24 | 1997-09-09 | Micron Technology, Inc. | Thin film transistors and method of promoting large crystal grain size in the formation of polycrystalline silicon alloy thin films |
US5977560A (en) * | 1994-10-24 | 1999-11-02 | Micron Technology, Inc. | Thin film transistor constructions with polycrystalline silicon-germanium alloy doped with carbon in the channel region |
US5985703A (en) * | 1994-10-24 | 1999-11-16 | Banerjee; Sanjay | Method of making thin film transistors |
US6320202B1 (en) | 1994-10-24 | 2001-11-20 | Micron Technology, Inc. | Bottom-gated thin film transistors comprising germanium in a channel region |
US6258664B1 (en) | 1999-02-16 | 2001-07-10 | Micron Technology, Inc. | Methods of forming silicon-comprising materials having roughened outer surfaces, and methods of forming capacitor constructions |
US8698144B2 (en) | 2009-07-17 | 2014-04-15 | Samsung Display Co., Ltd. | Display device with improved sensing mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448614B2 (en) | Circuit-incorporating photosensitive device | |
USRE39393E1 (en) | Device for reading an image having a common semiconductor layer | |
US7510904B2 (en) | Structure for and method of fabricating a high-speed CMOS-compatible Ge-on-insulator photodetector | |
US20070187796A1 (en) | Semiconductor photonic devices with enhanced responsivity and reduced stray light | |
WO2015042610A2 (en) | Superlattice materials and applications | |
JPH0287684A (en) | Integrated pin photo detector and method | |
EP0304335B1 (en) | Photosensor device | |
KR101579548B1 (en) | Passivated upstanding nanostructures and methods of making the same | |
TW200812098A (en) | Semiconductor photo detecting element, manufacturing method of the same, and manufacturing method of optoelectronic integrated circuit | |
JP6769486B2 (en) | Manufacturing method of semiconductor crystal substrate, manufacturing method of infrared detector | |
US20070272996A1 (en) | Self-aligned implanted waveguide detector | |
JP3108528B2 (en) | Optical position detection semiconductor device | |
JPH05175538A (en) | Photosensor and manufacture thereof | |
JP2928058B2 (en) | Method for manufacturing solid-state imaging device | |
US20050214964A1 (en) | Sige super lattice optical detectors | |
KR100636393B1 (en) | Image sensor | |
KR100718875B1 (en) | Image sensor manufacturing method and the image sensor therefrom | |
TWI286357B (en) | Photodetector circuits | |
JPH05136386A (en) | Image sensor | |
JP2699838B2 (en) | Infrared detector and manufacturing method thereof | |
JPH11177119A (en) | Photodiode and its manufacture | |
JP2601475B2 (en) | Method for manufacturing photoelectric conversion device | |
JPH01309387A (en) | Semiconductor photodetecting element | |
JP2001274451A (en) | Semiconductor image pickup element and method of manufacturing it | |
KR970006609B1 (en) | Semiconductor photodiode and method of the same |