JPH05175431A - Monolithic microwave integrated circuit - Google Patents

Monolithic microwave integrated circuit

Info

Publication number
JPH05175431A
JPH05175431A JP34163891A JP34163891A JPH05175431A JP H05175431 A JPH05175431 A JP H05175431A JP 34163891 A JP34163891 A JP 34163891A JP 34163891 A JP34163891 A JP 34163891A JP H05175431 A JPH05175431 A JP H05175431A
Authority
JP
Japan
Prior art keywords
resistor
layer
ion implantation
fet
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34163891A
Other languages
Japanese (ja)
Inventor
Masayoshi Miyauchi
正義 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34163891A priority Critical patent/JPH05175431A/en
Publication of JPH05175431A publication Critical patent/JPH05175431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make a resistor compact by forming the resistor of several tens of KOMEGA by the selective ion implantation. CONSTITUTION:An N<+> layer, which is to become a source region 102 and a drain region 103 of an FET, is formed on a semi-insulating substrate 101 by selective ion implantation with photoresist 100 as a mask. Then, an FET operating layer 104 and a first resistor 105 are formed by selective ion implantation. Then, a second resistor 106 comprising a P-type layer is formed by selective ion implantation. After the photoresist 100 is removed, capless annealing is performed. Then, a source 107 and a drain 108 of the FET and an electrode 109, which is in ohmic contact with the first resistor, are formed. Thereafter, an electrode 110, which is in ohmic contact with the second resistor, is formed. Since the second sheet resistance is rhos-5,000OMEGA/square, the circuit can be made compact to 1/5 in comparison with a conventional circuit. The selective ion implantation conditions of the layers are as follows: the N<+> layer (Si, 250KeV and 4E12); the P-type layer (Zn<+>, 750KeV and 4E12); and the FET operating layer (Si<+>, 70KeV and 4E12).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はモノリシック・マイクロ
波集積回路(以下MMICと略称)に関し、特に高抵抗
を必要とするMMICの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monolithic microwave integrated circuit (hereinafter abbreviated as MMIC), and more particularly to improvement of MMIC requiring high resistance.

【0002】[0002]

【従来の技術】III −V族化合物半導体、特にGaAs
を用いた電界効果トランジスタ(以下FETと略称)と
抵抗、キャパシタを1チップ上に集積したMMICはマ
イクロ波帯の増幅器や発振器として開発が進められてお
り、一部実用化されている。近年、MMICも低電圧動
作、低消費電流化が要望されており、これに伴いFET
の低電圧動作、効率向上とともに、例えばFETのバイ
アス回路等の回路構成上、抵抗値が数百KΩ以上のもの
が要求されてきている。一般にMMICで使用される抵
抗には金属薄膜抵抗、例えばNiCr、TaN等や、F
ETの動作層と同様に形成できるn型半導体層を用いた
半導体抵抗例えばSi+ イオン注入層が用いられてい
る。しかし、これらの抵抗の最大値は通常〜数十KΩが
限度であり、これ以上の抵抗値を形成しようとすると回
路の小型化が困難、特性の再現性が乏しい等の問題が生
じ、数百KΩ以上の抵抗を備えたMMICを構成するこ
とができなかった。
2. Description of the Related Art III-V compound semiconductors, especially GaAs
An MMIC in which a field effect transistor (hereinafter abbreviated as “FET”) using, a resistor, and a capacitor are integrated on one chip is under development as a microwave band amplifier or oscillator, and is partially put into practical use. In recent years, MMICs have been required to operate at low voltage and consume low current.
In addition to the low voltage operation and the improvement in efficiency, a resistance value of several hundreds of KΩ or more has been demanded due to the circuit configuration such as a bias circuit of FET. Generally, the resistors used in the MMIC are metal thin film resistors such as NiCr and TaN, and F.
A semiconductor resistor using an n-type semiconductor layer that can be formed similarly to the ET operation layer, for example, a Si + ion implantation layer is used. However, the maximum value of these resistances is usually up to several tens of KΩ, and if it is attempted to form a resistance value higher than this, problems such as difficulty in downsizing the circuit and poor reproducibility of characteristics occur. It was not possible to construct an MMIC having a resistance of KΩ or more.

【0003】以下、本発明の従来例として図3を参照し
てn型半導体層を用いて抵抗を形成する場合について説
明する。
As a conventional example of the present invention, a case of forming a resistor using an n-type semiconductor layer will be described below with reference to FIG.

【0004】半絶縁性GaAs基板201上の所定位置
にホトレジスト202を塗布して開孔部215を形成す
る(図3(a))。次に、例えば注入エネルギー70K
eV注入量4E12cm-2の条件でSi+ をイオン注入
し、ホトレジストを除去した後、850℃ 15min
キャップレスアニールを施し抵抗層205を形成する
(図3(b))。次に、Pt/AuGe電極209を前
記半導体層205の両端にリフトオフ法により形成し4
50℃の熱処理を施しオーム性電極を形成する(図3
(c))。
A photoresist 202 is applied at a predetermined position on the semi-insulating GaAs substrate 201 to form an opening 215 (FIG. 3A). Next, for example, injection energy 70K
Si + is ion-implanted under the condition of an eV implantation amount of 4E12 cm −2 , the photoresist is removed, and then 850 ° C. for 15 minutes
Capless annealing is performed to form the resistance layer 205 (FIG. 3B). Next, Pt / AuGe electrodes 209 are formed on both ends of the semiconductor layer 205 by a lift-off method.
Heat treatment is performed at 50 ° C. to form an ohmic electrode (FIG. 3).
(C)).

【0005】上記方法により形成した半導体抵抗値
(R)は以下の式で表せる。
The semiconductor resistance value (R) formed by the above method can be expressed by the following equation.

【0006】 R=ρs・L/W ----------(1) ρs:抵抗層のシート抵抗 L:抵抗層の長さ W:抵抗層の幅 上記イオン注入条件で形成した抵抗層のρsは約100
0Ω□であるため、例えばL/W=10の場合、R=1
0KΩの抵抗値が得られる。また、イオン注入条件、す
なわち抵抗層のρsを変化させることにより抵抗値を変
えることも可能である。例えば、前記例よりも低い抵抗
値が必要とされる場合には、注入量を増加させ、かつ注
入エネルギーを大きくすればよい。例えば、Si+ イオ
ンを250KeV 4E13cm-2の条件で注入した場
合にはρs〜100Ω□となりL/W=1の場合にはR
=100Ω、L/W=10ではR=1000Ωが得られ
る。逆に高い抵抗値が必要な場合には、注入量を減らし
かつ注入エネルギーを小さくすればよい。しかしながら
注入量を減らすとキャリア濃度(n)が低下するため、
GaAs基板表面から伸びる電子空乏層により抵抗値が
表面状態の影響を受けやすい。半絶縁性基板内の不純
物、例えば基板中の炭素や酸素量によって注入原子の活
性化率が左右されやすくなるためρsの再現性、制御性
が悪くなる。したがって、ρsを増加させるには限度が
あり、このため高抵抗を実現するにはL/W比を大きく
せざるをえない。しかしながらL/W比を大きくすると
必然的に抵抗の長さが長くなる。例えば100KΩの抵
抗値を得るにはρs=1000Ω、W=10μmの場
合、L=1000μmとなりMMICチップの小形化が
困難になる。近年MMICの低電圧動作、低消費電流が
求められていることから回路構成上抵抗値が数百KΩ以
上のものが必要とされている。例えば、図に示すFET
のゲート・バイアス回路においてゲート側に接続した抵
抗R1、R2での消費電流を低減するために、R1、R
2を100KΩ〜1MΩにする必要があるが、現状のn
型半導体抵抗では寸法、再現性、制御性上から数十KΩ
以上の抵抗形成は困難であるため、MMICの低消費電
流化が図れない等の問題がある。
R = ρs · L / W ---------- (1) ρs: Sheet resistance of the resistance layer L: Length of the resistance layer W: Width of the resistance layer Ρs of resistance layer is about 100
Since it is 0Ω □, for example, when L / W = 10, R = 1
A resistance value of 0 KΩ is obtained. It is also possible to change the resistance value by changing the ion implantation condition, that is, ρs of the resistance layer. For example, when a resistance value lower than that in the above example is required, the implantation amount and the implantation energy may be increased. For example, when Si + ions are implanted under the condition of 250 KeV 4E13 cm -2 , ρs is 100Ω □, and when L / W = 1, R is
= 100Ω and L / W = 10, R = 1000Ω is obtained. On the contrary, when a high resistance value is required, the injection amount and the injection energy may be reduced. However, when the injection amount is reduced, the carrier concentration (n) decreases,
Due to the electron depletion layer extending from the GaAs substrate surface, the resistance value is easily influenced by the surface state. The reproducibility and controllability of ρs deteriorate because the activation rate of implanted atoms is easily influenced by the amount of impurities in the semi-insulating substrate, such as the amount of carbon or oxygen in the substrate. Therefore, there is a limit to increase ρs, and therefore, the L / W ratio must be increased to realize high resistance. However, when the L / W ratio is increased, the length of the resistance is inevitably increased. For example, in order to obtain a resistance value of 100 KΩ, when ρs = 1000Ω and W = 10 μm, L = 1000 μm, which makes it difficult to miniaturize the MMIC chip. In recent years, low voltage operation and low current consumption of MMICs have been required, so that resistances of several hundreds KΩ or more are required in terms of circuit configuration. For example, the FET shown in the figure
In order to reduce the current consumption of the resistors R1 and R2 connected to the gate side in the gate bias circuit of
2 must be 100 KΩ to 1 MΩ, but the current n
Type semiconductor resistance is several tens of KΩ in terms of size, reproducibility and controllability.
Since it is difficult to form the resistance described above, there is a problem that the current consumption of the MMIC cannot be reduced.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように従来
のn型半導体を用いてバイアス回路用の抵抗を形成する
場合、高抵抗(数十KΩ以上)を得るには抵抗層の長さ
が長くなりMMICチップを小形にすることが困難であ
り、またρsを増大しようとすると抵抗値の再現性、制
御性が悪くなるという問題があった。
As described above, when the conventional n-type semiconductor is used to form the resistance for the bias circuit, the length of the resistance layer is required to obtain high resistance (several tens of KΩ or more). There is a problem that it becomes difficult to make the MMIC chip small in size because it becomes long, and if it is attempted to increase ρs, reproducibility of resistance value and controllability are deteriorated.

【0008】本発明はMMICにおけるバイアス抵抗の
小形化をはかり、再現性、制御性に優れ、小形化された
MMICを提供することを目的とする。
It is an object of the present invention to provide a miniaturized MMIC, which is excellent in reproducibility and controllability by miniaturizing the bias resistance in the MMIC.

【0009】[0009]

【課題を解決するための手段】本発明に係るモノリシッ
ク・マイクロ波集積回路は、半絶縁性化合物半導体基板
上に少なくとも一つの電界効果トランジスタと、p型半
導体層で形成した抵抗からなるバイアス回路を具備する
ことをその特徴とし、本発明により数十KΩ以上の高い
半導体抵抗層を備えたMMICを提供することが可能と
なる。
A monolithic microwave integrated circuit according to the present invention comprises a bias circuit including at least one field effect transistor and a resistor formed of a p-type semiconductor layer on a semi-insulating compound semiconductor substrate. According to the present invention, it is possible to provide an MMIC having a high semiconductor resistance layer of several tens of KΩ or more.

【0010】[0010]

【作用】本発明は、抵抗値が数十KΩ以上のバイアス抵
抗をp型不純物の選択イオン注入により形成するもので
あり、このp型半導体層はn型半導体層と比べ移動度が
数分の一ないし十分の一と小さいため(1)式に示すよ
うに、同一キャリァ濃度でもρsが数倍〜十倍になる。
このため抵抗値が数十KΩ以上の抵抗を容易に形成で
き、n型半導体層を使用して構成したMMICと比べチ
ップの小形化、抵抗値の再現性、制御性の向上が可能に
なる。
According to the present invention, a bias resistor having a resistance value of several tens of KΩ or more is formed by selective ion implantation of p-type impurities. The p-type semiconductor layer has a mobility of several minutes as compared with the n-type semiconductor layer. Since it is as small as one to one tenth, as shown in the equation (1), ρs becomes several times to ten times even at the same carrier concentration.
Therefore, it is possible to easily form a resistor having a resistance value of several tens of KΩ or more, and it is possible to reduce the chip size, improve the reproducibility of the resistance value, and improve the controllability as compared with the MMIC configured using the n-type semiconductor layer.

【0011】[0011]

【実施例1】(実施例1)以下、本発明による一つの実
施例について図面を参照し説明する。
Embodiment 1 (Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1および図2にGaAs FETと抵抗
を具備するMMICの製造工程を工程順に断面図で示
す。
1 and 2 are cross-sectional views showing the steps of manufacturing an MMIC having a GaAs FET and a resistor in the order of steps.

【0013】半絶縁性基板101上にFETソース領域
102、ドレイン領域103となるn+ 層をホトレジス
ト100をマスクに選択イオン注入(注入条件Si+
50KeV 4E13)によりそれぞれ形成する、(図
1(a))。次に、FETの動作層104および第一の
抵抗105を選択イオン注入(注入条件Si+ 70Ke
V 4E12)によりそれぞれ形成する(図1
(b))。次に、本発明に係る抵抗層として、p型層よ
りなる第二の抵抗106を選択イオン注入(注入条件Z
+ 70Kev 4E12)により形成し、ホトレジス
ト100を除去した後850℃ 15minのキャップ
レスアニールを施す(図1(c))。次に、FETのソ
ース107、ドレイン108、および第一の抵抗とオー
ム性をなす電極(Pt/AuGe)109をそれぞれ形
成する(図1(d))。引き続き第二の抵抗とオーム性
接触をなす電極(Pt/AuZn)110を形成する
(図2(a))。次に、FETのゲート電極(Ti/A
l)111をリフトオフ法により形成した後、表面保護
膜としてSiN膜(厚さ2000A)112をプラズマ
CVD法により形成する(図2(b))。前記SiN膜
112の所定の領域をエッチング除去することによりS
iN膜に開孔部113を形成した後、最後に所定の位置
に配線電極(Au/Pt/Ti)114をリフトオフ法
により形成することでFETと第一および第二の抵抗が
接続される(図2(c))。
On the semi-insulating substrate 101, selective ion implantation (implantation condition Si + 2 is carried out) on the n + layer to be the FET source region 102 and drain region 103 by using the photoresist 100 as a mask.
50 KeV 4E13), respectively (FIG. 1 (a)). Next, the active layer 104 of the FET and the first resistor 105 are selectively ion-implanted (implantation conditions: Si + 70 Ke
V 4E12) respectively (Fig. 1
(B)). Next, as the resistance layer according to the present invention, the second resistor 106 made of a p-type layer is selectively ion-implanted (implantation condition Z
n + 70 Kev 4E12), the photoresist 100 is removed, and then capless annealing is performed at 850 ° C. for 15 minutes (FIG. 1C). Next, a source 107 and a drain 108 of the FET and an electrode (Pt / AuGe) 109 having an ohmic property with the first resistance are formed (FIG. 1D). Subsequently, an electrode (Pt / AuZn) 110 that makes ohmic contact with the second resistor is formed (FIG. 2A). Next, the gate electrode of the FET (Ti / A
l) After forming 111 by the lift-off method, a SiN film (thickness 2000A) 112 is formed as a surface protection film by the plasma CVD method (FIG. 2B). By removing a predetermined region of the SiN film 112 by etching, S
After forming the opening 113 in the iN film, the wiring electrode (Au / Pt / Ti) 114 is finally formed at a predetermined position by the lift-off method to connect the FET to the first and second resistors ( FIG. 2C).

【0014】上記実施例で示したMMICにおいて第二
のシート抵抗はρs〜5000Ω□であるため、従来例
のSi+ イオンを70KeV 4E12cm-2の条件で
イオン注入し、抵抗層を形成する場合と比べ5倍のρs
が得られる。従って、例えば100KΩのバイアス抵抗
を実現するにはW=10μmの場合L=200μmとな
り、従来と比べ1/5に小形化が可能になる。
In the MMIC shown in the above embodiment, since the second sheet resistance is ρs to 5000 Ω □, Si + ions of the conventional example are ion-implanted under the conditions of 70 KeV 4E12 cm -2 to form the resistance layer. 5 times ρs
Is obtained. Therefore, for example, in order to realize a bias resistance of 100 KΩ, when W = 10 μm, L = 200 μm, and it is possible to reduce the size to 1/5 of the conventional one.

【0015】なお、上記実施例においてp型層を形成す
るイオン注入のイオン種としてZnを用いる場合を例示
したが、本発明は何等これに限定されるものではなくM
g、Be等のp型層を形成するイオン種を用いてもよ
い。また、イオン注入の条件等も必要とされる抵抗値に
応じて適宜選択される。
Although the case where Zn is used as the ion species for ion implantation for forming the p-type layer has been illustrated in the above embodiment, the present invention is not limited to this.
An ionic species that forms a p-type layer such as g or Be may be used. Further, the conditions of ion implantation and the like are appropriately selected according to the required resistance value.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、数十
KΩ以上の抵抗をp型不純物の選択イオン注入により形
成することでn型半導体抵抗と比較して、抵抗の小形化
が可能になり再現性、制御性に優れたバイアス抵抗を有
するMMICを形成することが可能となる。
As described above, according to the present invention, a resistance of several tens KΩ or more is formed by selective ion implantation of p-type impurities, so that the resistance can be made smaller than that of an n-type semiconductor resistance. Therefore, it becomes possible to form an MMIC having a bias resistance excellent in reproducibility and controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は本発明に係る一実施例のMM
ICの製造工程を工程順に示すいずれも断面図。
1A to 1D are MMs of an embodiment according to the present invention.
Sectional drawing which shows the manufacturing process of IC in order of process.

【図2】(a)〜(c)は上記図1に引続き一実施例の
MMICの製造工程を工程順に示すいずれも断面図。
2A to 2C are cross-sectional views each showing the manufacturing process of the MMIC of one embodiment in the order of steps, continuing from FIG.

【図3】(a)〜(c)はn型半導体層を抵抗に用いた
従来例のMMICの製造工程を工程順に示すいずれも断
面図。
3A to 3C are cross-sectional views each showing a manufacturing process of a conventional MMIC using an n-type semiconductor layer as a resistor in the order of processes.

【図4】FETの一例のゲート・バイアス回路。FIG. 4 is a gate bias circuit of an example FET.

【符号の説明】[Explanation of symbols]

100 ホトレジスト 101 半導体基板 102 ソース領域 103 ドレイン領域 104 FETの動作層 105 n形半導体層 106 p形半導体層 109 Pt/AuGe電極 110 Pt/AuZn電極 100 photoresist 101 semiconductor substrate 102 source region 103 drain region 104 FET operating layer 105 n-type semiconductor layer 106 p-type semiconductor layer 109 Pt / AuGe electrode 110 Pt / AuZn electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁性化合物半導体基板上に少なくと
も一つの電界効果トランジスタと、P型半導体層で形成
した抵抗からなるバイアス回路とを具備することを特徴
とするモノリシック・マイクロ波集積回路。
1. A monolithic microwave integrated circuit comprising at least one field effect transistor on a semi-insulating compound semiconductor substrate, and a bias circuit composed of a resistor formed of a P-type semiconductor layer.
JP34163891A 1991-12-25 1991-12-25 Monolithic microwave integrated circuit Pending JPH05175431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34163891A JPH05175431A (en) 1991-12-25 1991-12-25 Monolithic microwave integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34163891A JPH05175431A (en) 1991-12-25 1991-12-25 Monolithic microwave integrated circuit

Publications (1)

Publication Number Publication Date
JPH05175431A true JPH05175431A (en) 1993-07-13

Family

ID=18347646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34163891A Pending JPH05175431A (en) 1991-12-25 1991-12-25 Monolithic microwave integrated circuit

Country Status (1)

Country Link
JP (1) JPH05175431A (en)

Similar Documents

Publication Publication Date Title
JP3827346B2 (en) Logic circuit having negative differential resistance element and manufacturing method thereof
US5739557A (en) Refractory gate heterostructure field effect transistor
KR20030043789A (en) Semiconductor device using a barrier layer
US5780922A (en) Ultra-low phase noise GE MOSFETs
JP3210657B2 (en) Heterojunction bipolar transistor
US7589386B2 (en) Semiconductor device and manufacturing method thereof
US6881639B2 (en) Method of manufacturing semiconductor device
JP3375928B2 (en) Semiconductor device
JP2001156179A (en) Method for manufacturing compound semiconductor integrated circuit
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
US5747838A (en) Ultra-low phase noise GaAs MOSFETs
KR100296705B1 (en) Method for fabricating integrated circuit using hetero-junction bipolar transistor
JPH05175431A (en) Monolithic microwave integrated circuit
US6667538B2 (en) Semiconductor device having semiconductor resistance element and fabrication method thereof
JP2006303393A (en) Semiconductor device and manufacturing method thereof
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH04364047A (en) Monolithic microwave integrated circuit
US20030155619A1 (en) Semiconductor device and manufacturing method
JP2762919B2 (en) Semiconductor element
JPS6357946B2 (en)
JPH04343440A (en) Semiconductor device
JP2002100640A (en) Field effect compound semiconductor device
JPH11214616A (en) Semiconductor resistor element
JP2004111941A (en) Bipolar transistor and method of manufacturing the same
JPH06232168A (en) Field effect transistor and its manufacture