JPH0517503B2 - - Google Patents

Info

Publication number
JPH0517503B2
JPH0517503B2 JP540884A JP540884A JPH0517503B2 JP H0517503 B2 JPH0517503 B2 JP H0517503B2 JP 540884 A JP540884 A JP 540884A JP 540884 A JP540884 A JP 540884A JP H0517503 B2 JPH0517503 B2 JP H0517503B2
Authority
JP
Japan
Prior art keywords
magnetic field
phase
minimum value
maximum value
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP540884A
Other languages
Japanese (ja)
Other versions
JPS60147647A (en
Inventor
Tetsuya Hirota
Tatsuo Hiroshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP540884A priority Critical patent/JPS60147647A/en
Publication of JPS60147647A publication Critical patent/JPS60147647A/en
Publication of JPH0517503B2 publication Critical patent/JPH0517503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼管、スラブ等の被検査材の表面に存
する割れ疵、穴状のピツト疵等の表面疵をその性
状に関わりなく正確に検出できる探傷方法及びそ
の実施に使用する装置を提案するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is capable of accurately detecting surface flaws such as cracks and pit flaws existing on the surface of inspected materials such as steel pipes and slabs, regardless of their properties. This paper proposes a possible flaw detection method and the equipment used for its implementation.

〔従来技術〕[Prior art]

金属材の表面疵の探傷方法としては種々の被破
壊検査法が実用化されており、存在が予想される
欠陥に応じて一種若しくは複数種類の方法が適用
されている。
Various destructive inspection methods have been put into practical use as methods for detecting surface flaws in metal materials, and one or more methods are applied depending on the defects expected to exist.

例えば予想される疵の方向がある程度定まつて
いる割れ疵の検出には主として被検査材の表面か
らの漏洩磁束を検出する磁気探傷法が適用され、
厚み方向に延びるだけのビツト疵の検出には渦流
探傷法が適用されている。
For example, magnetic flaw detection, which detects leakage magnetic flux from the surface of the material to be inspected, is mainly applied to detect cracks where the expected direction of the flaw is determined to some extent.
Eddy current flaw detection is applied to detect bit flaws that only extend in the thickness direction.

前者の磁気探傷法は鋼鉄材料等の強磁性体の
表面欠陥の検出に優れている。割れが開口して
いない地きずのような欠陥でも検出できる。欠
陥の位置、表面上の長さの検出が可能であるとい
う長所を有している。
The former magnetic flaw detection method is excellent for detecting surface defects in ferromagnetic materials such as steel materials. Even defects such as ground scratches without open cracks can be detected. It has the advantage that it is possible to detect the position of the defect and its length on the surface.

また、後者の渦流探傷法は探傷結果が直接的
に電気的出力として得られる。非接触であるの
で試験速度が速い。表面欠陥の検出に適してい
る。欠陥、材質、寸法変化等に対しても追従で
き適用範囲が広い。信号と欠陥体積とが略比例
関係になる、等の長所を有している。
Furthermore, in the latter eddy current flaw detection method, the flaw detection results are directly obtained as electrical output. Since it is non-contact, testing speed is fast. Suitable for detecting surface defects. It can also track defects, material changes, dimensional changes, etc., and has a wide range of applications. It has advantages such as a substantially proportional relationship between the signal and the defect volume.

また、上記磁気探傷法では、疵と直角な方向に
磁化した場合には有効であるが、疵と同方向に磁
化した場合には、疵部分には磁極が生じないので
被検査材表面からの漏洩磁束が微少であり、探傷
が不可能であつた。しかし現在では下記に示す様
に、複数の磁場を利用する方法で疵の方向に関係
なく探傷できるようになつてきた。
In addition, the magnetic flaw detection method described above is effective when magnetized in the direction perpendicular to the flaw, but if it is magnetized in the same direction as the flaw, no magnetic pole is generated at the flaw, so there is no magnetic pole from the surface of the material to be inspected. The leakage magnetic flux was so small that flaw detection was impossible. However, as shown below, it has now become possible to detect flaws regardless of their direction by using a method that uses multiple magnetic fields.

例えば第1図に示す様に丸棒鋼1に直接軸方向
の通電を行つて円周方向に磁化し、また、丸棒鋼
1を囲繞するコイルに通電して軸方向に磁化し、
前者にて周方向の表面疵1aを、後者にて軸方向
の表面疵1bを各検出する方法が知られている。
For example, as shown in FIG. 1, a round steel bar 1 is directly energized in the axial direction to magnetize it in the circumferential direction, and a coil surrounding the round bar 1 is energized to be magnetized in the axial direction.
A method is known in which the former detects surface flaws 1a in the circumferential direction, and the latter detects surface flaws 1b in the axial direction.

また、第2図に示す様に管材1′を囲繞する1
対のコイル2,2と、管材1′の直径方向両側に
磁極を対向させた磁石3とをタンデムに配し、前
者にて管材1′の軸方向に磁化し、その磁場にて
円周方向の表面疵1′bを磁場検出器2aにて検
出し、後者にて管材1′の周方向に磁化し、その
磁場にて軸方向の表面疵1′aを磁場検出器3a
にて検出する方法も知られている。
In addition, as shown in FIG.
A pair of coils 2, 2 and magnets 3 with magnetic poles facing each other on both sides of the tube 1' in the diametrical direction are arranged in tandem, and the former magnetizes the tube 1' in the axial direction, and the magnetic field generates magnetization in the circumferential direction. The surface flaw 1'b is detected by the magnetic field detector 2a, and the latter magnetizes the tube material 1' in the circumferential direction, and the magnetic field detects the surface flaw 1'a in the axial direction by the magnetic field detector 3a.
Detection methods are also known.

しかしながら、金属材の表面に発生する疵は割
れ疵以外にピツト疵と呼ばれるものもあり、上記
した磁気探傷ではピツト疵を検出し難い。従つて
ピツト疵の検出が必要な場合は渦流探傷法に依る
必要がある。このために被検査材、その疵性状に
よつては複数の探傷法に依らざるを得ないという
煩わしさがあつた。
However, in addition to cracking defects, there are also defects called pit defects that occur on the surface of metal materials, and it is difficult to detect pit defects by the magnetic flaw detection described above. Therefore, if it is necessary to detect pit flaws, it is necessary to rely on eddy current flaw detection. For this reason, depending on the material to be inspected and the nature of the flaw, it is necessary to use a plurality of flaw detection methods, which is cumbersome.

そして、複数の探傷法を適用する場合には、被
検査材のパスラインに割れ疵、ピツト疵夫々専用
の探傷装置を設置する必要があり、このため設備
が大型化しそのコストが高くなり、また、各探傷
装置にて独立的に検査を行うものであるので検査
コストが高くなるという難点があつた。また上記
の如く従来の磁気探傷法においては被検査材の磁
化手段が大型のものとなり、その検出部の被検査
材への追随性が悪く精度の良い検出が行えないと
う難点もあつた。
When multiple flaw detection methods are applied, it is necessary to install dedicated flaw detection equipment for cracks and pit flaws on the pass line of the inspected material, which increases the size of the equipment and increases the cost. However, since each flaw detection device performs the inspection independently, there was a drawback that the inspection cost was high. Further, as mentioned above, in the conventional magnetic flaw detection method, the means for magnetizing the material to be inspected is large, and the detection part has a poor ability to follow the material to be inspected, making it difficult to perform accurate detection.

〔目的〕〔the purpose〕

本発明は斯かる事情に鑑みてなされたものであ
り、被検査材の表面に沿う方向の同一線上に軸心
を位置せしめた2つのコイルに、それらの波形の
極大値(又は極小値)の位相同士が一致するよう
に、また、一方の極大値(又は極小値)の位相と
他方の極小値(又は極大値)の位相とが一致する
ように相異なる周波数の励磁電流を通電すること
により、両コイルと対向する被検査材の表面部分
に、これに沿う向きとなる磁場及びこれに直交す
る向きとなる磁場を周期的に形成せしめ、これら
の磁場の磁束変化を両コイル間に設けた磁場検出
器にて同期的に検出することとして、磁気探傷、
渦流探傷を間欠的に行わしめる如くになし、割れ
疵、ピツト疵等の疵の種類に関係なく正確な検出
が行える探傷方法及びその実施に使用する装置を
提供することを目的とする。
The present invention was made in view of the above circumstances, and consists of two coils whose axes are located on the same line along the surface of the material to be inspected, and the maximum value (or minimum value) of their waveforms can be measured. By applying excitation currents of different frequencies so that the phases match each other, and so that the phase of one local maximum value (or minimum value) and the phase of the other local minimum value (or maximum value) match. , a magnetic field oriented along this and a magnetic field oriented perpendicular to this are periodically formed on the surface of the material to be inspected facing both coils, and magnetic flux changes of these magnetic fields are provided between both coils. Magnetic flaw detection is a method of synchronous detection using a magnetic field detector.
It is an object of the present invention to provide a flaw detection method that performs eddy current flaw detection intermittently and can accurately detect flaws such as cracks and pit flaws regardless of the type thereof, and an apparatus used for carrying out the flaw detection method.

〔発明の構成〕[Structure of the invention]

本発明に係る探傷方法は、夫々の軸心が被検査
材の表面に沿う同一線上にあるように並設した2
つのコイルの一方に適宜の周波数の、他のコイル
に前記周波数の整数倍の励磁電流を、一方の励磁
電流の波形の極大値(又は極小値)の位相が他方
の励磁電流の波形の極大値及び極小値と実質的に
一致する期間が在るように位相調節して通電し、
前記被検査材の表面の両コイルと対向する部分
に、これに沿う向きとなる磁場及びこれに直交す
る向きとなる磁場を夫々周期的に形成せしめ、こ
の部分に設けた磁場検出器にて各磁場形成時の磁
束変化を検出することを特徴とする。
In the flaw detection method according to the present invention, two
An excitation current of an appropriate frequency is applied to one of the two coils, and an excitation current of an integral multiple of the frequency is applied to the other coil, so that the phase of the maximum value (or minimum value) of the waveform of one excitation current is the maximum value of the waveform of the other excitation current. and energizing while adjusting the phase so that there is a period that substantially coincides with the minimum value,
A magnetic field oriented along the surface of the material to be inspected facing both coils and a magnetic field oriented perpendicular thereto are periodically formed, respectively, and a magnetic field detector provided at this portion is used to detect each of the coils. It is characterized by detecting changes in magnetic flux when a magnetic field is formed.

〔原理〕〔principle〕

先ず本発明の原理について説明する。第3図に
示す様に軸長方向に位相される被検査材たる鋼管
11の中心の真上から左右方向に同一距離離隔し
た位置には、夫々励磁コイル31a,31bを配
置してある。両励磁コイル31a,31bの軸心
は鋼管11の接線方向を向き、同一の軸心を共有
している。両励磁コイル31a,31b配置位置
の中央であつて、鋼管11の最上側面から僅かに
上方に離隔した位置には感磁ダイオードからなる
磁場検出器32を設けてある。
First, the principle of the present invention will be explained. As shown in FIG. 3, excitation coils 31a and 31b are respectively arranged at positions spaced apart from each other by the same distance in the left-right direction from directly above the center of the steel pipe 11, which is a material to be inspected, which is phased in the axial direction. The axes of both excitation coils 31a and 31b face the tangential direction of the steel pipe 11, and share the same axis. A magnetic field detector 32 made of a magnetosensitive diode is provided at the center of the excitation coils 31a, 31b at a position slightly upwardly separated from the uppermost side surface of the steel pipe 11.

このような構成において、コイル31aには第
4図aに示す如き周波数fなる励磁電流を第1発
振器41aから通電する。また、コイル31bに
は一例として第2発振器41bから第4図bに示
す如き倍周波数2fの励磁電流を、その電流波形の
極大値(又は極小値)の位相が周波数fの励磁電
流の波形の極大値(又は極小値)の位相と一致
し、また、その極大値(又は極小値)の位相が周
波数fの励磁電流の極小値(又は極大値)の位相
と一致する期間が在るように通電する。即ち第4
図に示す様に励磁コイル31bに通電される周波
数2fの励磁電流の位相が励磁コイル31aに通電
される周波数fの励磁電流の位相よりも45°だけ
遅れる(又は135°だけ遅れる)ように通電するの
である。コイル31a,31bの巻回方向が同一
であるとすると、両電流の極大値(又は極小値)
が一致する期間では鋼管11の表面における両電
流による磁場の方向は同一になる。この場合に両
励磁コイル31a,31bの下方に位置する鋼管
11の表層部には第5図aに示す如く鋼管11の
表面に沿う磁場(以下同方向磁場という)が形成
される。一方、周波数fの電流の極小値(又は極
大値)の位相と周波数2fの電流の極大値(又は極
小値)の位相とが一致する期間では鋼管11の表
面における両電流による磁場の方向は逆になる。
従つて、この場合に両励磁コイル31a,31b
間には第5図bに示す如く鋼管11の表面に対し
て垂直となる磁場(以下異方向磁場という)が形
成され、この異方向磁場より両励磁コイル31
a,31bの下方に位置する鋼管11の表面には
該磁場を中心とする渦電流が発生せしめられるこ
とになる。このような同方向磁場及び異方向磁場
は第4図に示す如く周波数fの励磁電流の波形に
応じて周期的に現れる。
In this configuration, the coil 31a is supplied with an exciting current having a frequency f as shown in FIG. 4a from the first oscillator 41a. Further, as an example, the coil 31b is supplied with an excitation current of double frequency 2f from the second oscillator 41b as shown in FIG. There is a period in which the phase of the maximum value (or minimum value) matches the phase of the maximum value (or minimum value), and the phase of the maximum value (or minimum value) matches the phase of the minimum value (or maximum value) of the excitation current of frequency f. Turn on electricity. That is, the fourth
As shown in the figure, the current is applied so that the phase of the excitation current of frequency 2f applied to the excitation coil 31b lags the phase of the excitation current of frequency f applied to the excitation coil 31a by 45 degrees (or 135 degrees). That's what I do. Assuming that the winding directions of the coils 31a and 31b are the same, the maximum value (or minimum value) of both currents
During the period in which the two currents match, the directions of the magnetic fields due to both currents on the surface of the steel pipe 11 become the same. In this case, a magnetic field along the surface of the steel pipe 11 (hereinafter referred to as a co-directional magnetic field) is formed in the surface layer of the steel pipe 11 located below both excitation coils 31a and 31b, as shown in FIG. 5a. On the other hand, during the period in which the phase of the minimum value (or maximum value) of the current with frequency f and the phase of the maximum value (or minimum value) of the current with frequency 2f match, the directions of the magnetic fields due to both currents on the surface of the steel pipe 11 are opposite. become.
Therefore, in this case, both excitation coils 31a, 31b
As shown in FIG. 5b, a magnetic field perpendicular to the surface of the steel pipe 11 (hereinafter referred to as a different direction magnetic field) is formed between the two excitation coils 31.
An eddy current centered on the magnetic field is generated on the surface of the steel pipe 11 located below the magnetic field a and 31b. Such magnetic fields in the same direction and magnetic fields in different directions appear periodically in accordance with the waveform of the excitation current of frequency f, as shown in FIG.

而して、同方向磁場形成時に鋼管11の表面に
割れ疵C〔第5図a参照〕が存在する場合は当該
割れ疵部にて同方向磁場から磁束が第5図aに示
す如く漏洩する。この漏洩磁束は鋼管11の表面
に垂直な方向の磁界を検出する磁場検出器32に
て検出されることになる。
Therefore, if a crack C [see Fig. 5a] exists on the surface of the steel pipe 11 when a codirectional magnetic field is formed, magnetic flux leaks from the codirectional magnetic field at the crack as shown in Fig. 5a. . This leakage magnetic flux is detected by a magnetic field detector 32 that detects a magnetic field in a direction perpendicular to the surface of the steel pipe 11.

一方、異方向磁場形成時に鋼管11の表面にピ
ツト疵P〔第5図b参照〕が存在する場合は当該
ピツト疵部にて渦電流の向きが乱れ、それに伴な
い渦電流による磁場が乱れ、これが磁場検出器3
2にて検出される。そして、これら磁場検出器3
2の同方向磁場形成時及び異方向磁場形成時の出
力は該磁場検出器32に接続された同期検波回路
43a及び43bにて夫々同期検波される。これ
により割れ疵C及びピツト疵Pの検出及び弁別が
可能となるのである。なお、両励磁電流の極大値
(又は極小値)の位相同士又は一方の極大値(又
は極小値)の位相と他方の極小値(又は極大値)
の位相を完全に一致せしめる必要はなく、同方向
磁場及び異方向磁場を形成することができるだけ
の範囲内にあればよい。
On the other hand, if a pit flaw P (see Fig. 5b) exists on the surface of the steel pipe 11 when a magnetic field is formed in a different direction, the direction of the eddy current is disturbed at the pit flaw, and the magnetic field due to the eddy current is accordingly disturbed. This is magnetic field detector 3
Detected at 2. And these magnetic field detectors 3
The outputs when the two magnetic fields are generated in the same direction and when the magnetic fields are generated in different directions are synchronously detected by synchronous detection circuits 43a and 43b connected to the magnetic field detector 32, respectively. This makes it possible to detect and differentiate cracks C and pit defects P. In addition, the phases of the local maximum values (or local minimum values) of both excitation currents or the phase of one local maximum value (or local minimum value) and the other local minimum value (or local maximum value)
It is not necessary for the phases of the two to match completely, but it is sufficient that the phases are within a range that can form a magnetic field in the same direction and a magnetic field in different directions.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて
詳述する。第6図は本発明に係る探傷方法の実施
に使用する装置の検出部周りの構造を示す模式的
正面図、第7図はその左側面図、第8図は検出部
の検出器ホルダ周りを拡大して示す正面断面図、
第9図はその左側半断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. Fig. 6 is a schematic front view showing the structure around the detection part of the device used to implement the flaw detection method according to the present invention, Fig. 7 is a left side view thereof, and Fig. 8 is a schematic front view showing the structure around the detector holder of the detection part. An enlarged front sectional view,
FIG. 9 is a left half sectional view thereof.

図中11は鋼管であつて、図示しない搬送装置
により軸心回転されつつ軸長方向に移送される。
鋼管11の移送域の上方には鋼管11の移送方向
に適長離隔した1対のアーム12,12が図示し
ない駆動手段により鉛直面内での回動自在に枢支
されている。アーム12,12の先端部には本発
明装置の検出部Aが鉛直面内での回動自在に枢支
されている。検出部Aは鋼管11がその下方に移
送されて来て、その先端部が通過した時点でアー
ム12,12の下方への回動により下降せしめら
れ鋼管11の上側面に当接せしめられ本発明の探
傷が行われる。鋼管11が検出部Aの下方にない
場合はアーム12,12の上方への回動により所
定の退避位置迄上昇せしめられる。なお、アーム
12,12の鉛直方向への回動は鋼管11の移送
域に設置された図示しないフオトセンサの管端検
知信号により行われる。
In the figure, reference numeral 11 denotes a steel pipe, which is rotated about its axis and transported in the axial direction by a transport device (not shown).
Above the transfer area of the steel pipe 11, a pair of arms 12, 12 which are spaced apart by an appropriate length in the transfer direction of the steel pipe 11 are pivotally supported by a drive means (not shown) so as to be rotatable in a vertical plane. A detection unit A of the device of the present invention is pivotally supported at the tips of the arms 12, 12 so as to be rotatable in a vertical plane. The detection part A is moved downward when the steel pipe 11 is transferred, and when the tip thereof passes, the arms 12 and 12 are rotated downward to lower the detection part A and come into contact with the upper surface of the steel pipe 11. flaw detection is carried out. If the steel pipe 11 is not below the detection part A, the arms 12 and 12 are rotated upward to be raised to a predetermined retracted position. The vertical rotation of the arms 12, 12 is performed by a tube end detection signal from a photo sensor (not shown) installed in the transfer area of the steel tube 11.

次に検出部Aについて説明する。アーム12,
12の先端部には矩形状の検出部取付板13が水
平連結ピン14,14により左右方向への揺動可
能に枢支連結されている。取付板13の下面の左
側には円筒状の追従ローラ支持部材15,15が
垂設されており、その先端に側面視倒立U字状の
追従ローラ支承部材15a,15aを備えてい
る。取付板13下方の右側には該取付板13の下
面に垂設された支持部材13aを介して同様の追
従ローラ支持部材16(図面では手前側のみ現わ
れている)がその長手方向を水平方向として取付
けられている。その先端には追従ローラ支承部材
15aと同様の追従ローラ支承部材16aを左方
に向けて備えている。各支承部材15a,15
a,16aには追従ローラ17,17…を鋼管1
1の軸心と平行な軸心回りの回転自在に軸支して
あり、追従ローラ17,17…の鋼管11の外周
面転接位置は鋼管11の中心を通る鉛直面に関し
て左右対称となつている。各追従ローラ17,1
7…は軸心回転する鋼管11の上側面上に転接
し、検出部Aの鋼管11に対する追随を可能なら
しめている。
Next, the detection section A will be explained. Arm 12,
A rectangular detection unit mounting plate 13 is pivotally connected to the distal end of the detection unit 12 by horizontal connecting pins 14, 14 so as to be swingable in the left-right direction. Cylindrical follow-up roller support members 15, 15 are vertically disposed on the left side of the lower surface of the mounting plate 13, and follow-up roller support members 15a, 15a each having an inverted U-shape in side view are provided at their tips. On the lower right side of the mounting plate 13, a similar follow-up roller support member 16 (only the front side is visible in the drawing) is connected via a support member 13a vertically provided on the lower surface of the mounting plate 13, with its longitudinal direction being the horizontal direction. installed. A follow-up roller support member 16a similar to the follow-up roller support member 15a is provided at its tip facing leftward. Each support member 15a, 15
a, 16a, follow rollers 17, 17... are attached to the steel pipe 1.
The following rollers 17, 17, . There is. Each follower roller 17,1
7... are in rolling contact with the upper surface of the steel pipe 11 rotating on its axis, allowing the detection part A to follow the steel pipe 11.

取付板13の下面中央には側面視U字状の支持
部材18が取付けられている。支持部材18の底
面中央には筒状のベアリングハウジング19がそ
の長手方向を上下方向として嵌着されており、該
ベアリングハウジング19にはスラストベアリン
グ20を同心的に嵌合してある。スラストベアリ
ング20には摺動軸21を内嵌してあり、その上
端には円板状のストツパ22を固着してあり、摺
動軸21のスラストベアリング20からの抜けを
防止している。摺動軸21の下端部は少し大径の
鍔部21aとしてあり、この鍔部21aとベアリ
ングハウジング19との間に摺動軸21を下方へ
付勢すべく摺動軸21に囲繞させてコイルバネ2
8を介装してある。該鍔部21aの下端には長方
形状のスプリング受板23が固着されており、該
スプリング受板23の下面には正面視門形のホル
ダ支承部材24が固着されている。支承部材24
の両側壁には夫々ベアリング25,25を軸心方
向を左右方向として嵌合してある。支承部材24
間には、支承部材24よりも左右方向長さが少し
短かく前後方向長さが長い、下面が開口した直方
体状のホルダカバー26が遊嵌されており、その
左右側壁中央部に設けた軸部26a,26aをベ
アリング25,25の内輪に嵌着してある。これ
によりホルダカバー26はベアリング25,25
の軸心回りの回動が自在となつている。スプリン
グ受板23〜ホルダカバー26間の所定の位置に
はスプリング27,27を係着して、ホルダカバ
ー26を下方に向けて付勢している。スプリング
27,27、コイルバネ28は鋼管11に曲り、
変形等が存在する場合の検出部Aのベアリング2
5,25の軸心回り及び上下方向への振動を吸収
するためのものであり、これにより検出部Aの鋼
管11に対する追随性の向上を図つている。
A support member 18 having a U-shape in side view is attached to the center of the lower surface of the mounting plate 13 . A cylindrical bearing housing 19 is fitted into the center of the bottom surface of the support member 18 with its longitudinal direction facing up and down, and a thrust bearing 20 is fitted concentrically into the bearing housing 19. A sliding shaft 21 is fitted inside the thrust bearing 20, and a disc-shaped stopper 22 is fixed to the upper end of the thrust bearing 20 to prevent the sliding shaft 21 from coming off from the thrust bearing 20. The lower end of the sliding shaft 21 has a flange 21a with a slightly larger diameter, and a coil spring is attached between the flange 21a and the bearing housing 19 and surrounded by the sliding shaft 21 in order to bias the sliding shaft 21 downward. 2
8 has been inserted. A rectangular spring receiving plate 23 is fixed to the lower end of the flange 21a, and a holder support member 24 having a gate shape in front view is fixed to the lower surface of the spring receiving plate 23. Support member 24
Bearings 25, 25 are fitted into both side walls, respectively, with the axial direction being the left and right direction. Support member 24
A rectangular parallelepiped-shaped holder cover 26 with an open lower surface, which is slightly shorter in the left-right direction and longer in the front-rear direction than the support member 24, is loosely fitted between the supporting members 24, and a shaft provided at the center of the left and right side walls of the holder cover 26 is loosely fitted therebetween. The parts 26a, 26a are fitted into the inner rings of the bearings 25, 25. As a result, the holder cover 26 is attached to the bearings 25, 25.
It can freely rotate around its axis. Springs 27, 27 are engaged at predetermined positions between the spring receiving plate 23 and the holder cover 26 to urge the holder cover 26 downward. The springs 27, 27 and the coil spring 28 are bent into the steel pipe 11,
Bearing 2 of detection part A when there is deformation etc.
This is to absorb vibrations around the axes 5 and 25 and in the vertical direction, thereby improving the ability of the detection section A to follow the steel pipe 11.

ホルダカバー26の下縁には平面視寸法がホル
ダカバー26と同様の検出器ホルダ29が着脱自
在に取付けられている。検出器ホルダ29の左右
対称の位置には前後方向に長い側面視額縁状のコ
イルボビン30a,30bを配設してある。コイ
ルボビン30a,30bはその軸心方向が左右方
向となる様にしてあり、その周縁の溝に励磁コイ
ル31a,31bを巻回してある。励磁コイル3
1a,31bの前後方向長さは次に述べる磁場検
出器32,32…の個数又は鋼管11の送り速度
により定まる探傷域を考慮して適宜の長さに選定
されている。
A detector holder 29, which has the same dimensions as the holder cover 26 in plan view, is detachably attached to the lower edge of the holder cover 26. Coil bobbins 30a and 30b, which have a frame-like shape when viewed from the side and are long in the front-rear direction, are arranged at symmetrical positions on the detector holder 29. The coil bobbins 30a and 30b are arranged such that their axial center directions are in the left-right direction, and excitation coils 31a and 31b are wound in grooves on their peripheries. Excitation coil 3
The longitudinal lengths of 1a and 31b are selected to be appropriate lengths in consideration of the flaw detection area determined by the number of magnetic field detectors 32, 32, etc. or the feed rate of the steel pipe 11, which will be described below.

励磁コイル31a,31b間中央には8個(図
面では4個のみ現われている)の磁場検出器3
2,32…をコイル31a,31bの前後方向長
さに応じて一連配置してあり、探傷域の拡大を図
つている。磁場検出器32,32…は検出素子と
して感磁ダイオードを用いており、励磁コイル3
1a,31bにより鋼管11の表面に周期的に形
成される既述した如き同方向磁場及び異方向磁場
の磁束変化を検出し、各磁場検出器32,32…
に接続されたコネクタ33,33…を介して所定
の電気信号を後述する信号処理回路B(第10図
参照)に入力する。検出器ホルダ29の下面には
正面視で上部が開口されたコの字状のガイドシユ
ー34が取付けられている。ガイドシユー34は
耐摩耗性に富む材料、例えばセラミツクスからな
るものであつて検出器ホルダ29の摩耗を防止す
るためのものである。
Eight (only four are shown in the drawing) magnetic field detectors 3 are located in the center between the excitation coils 31a and 31b.
2, 32... are arranged in series according to the length of the coils 31a, 31b in the front-rear direction, thereby expanding the flaw detection area. The magnetic field detectors 32, 32... use magnetically sensitive diodes as detection elements, and the excitation coil 3
The magnetic field detectors 32, 32...
A predetermined electrical signal is input to a signal processing circuit B (see FIG. 10), which will be described later, through connectors 33, 33, . . . A U-shaped guide shoe 34 with an open top when viewed from the front is attached to the lower surface of the detector holder 29. The guide shoe 34 is made of a highly wear-resistant material, such as ceramics, and is used to prevent the detector holder 29 from being worn.

次に信号処理回路Bについて第10図に基づき
説明する。第10図は信号処理回路Bのブロツク
図である。コイル31aには第1発振器41aか
ら第11図aに示す如き周波数2.5kHzの高周波電
流が通電され、また、コイル31bには第2発振
器41bから前記周波数の倍周波数の第11図b
に示す如き5kHzの高周波電流が通電される。な
お、コイル31bに通電される高周波電流の周波
数はコイル31aに通電される周波数の倍周波数
のものに限るものではなく、既述した如く極大値
(又は極小値)の位相同士又は一方の極大値(又
は極小値)の位相と他方の極小値(又は極大値)
の位相とが一致する期間が周期的に現れる条件を
満たす、整数倍の周波数のものであればよい。
Next, the signal processing circuit B will be explained based on FIG. FIG. 10 is a block diagram of the signal processing circuit B. The coil 31a is supplied with a high frequency current of 2.5 kHz as shown in FIG. 11a from the first oscillator 41a, and the coil 31b is supplied with a high frequency current of 2.5 kHz as shown in FIG. 11a from the second oscillator 41b as shown in FIG.
A high frequency current of 5 kHz as shown in is applied. Note that the frequency of the high-frequency current applied to the coil 31b is not limited to a frequency that is twice the frequency applied to the coil 31a, and as described above, the frequency of the high-frequency current applied to the coil 31b is not limited to a frequency that is a multiple of the frequency applied to the coil 31a. (or local minimum value) phase and the other local minimum value (or local maximum value)
It is sufficient if the frequency is an integer multiple and satisfies the condition that a period in which the phase of

42は移相器であつて、第1発振器41a出力
を利用して第2発振器41b出力の位相調節を行
うために使用される。即ち、第11図aに示す電
流波形の極大値(又は極小値)の位相と第11図
bに示す電流波形の極大値(又は極小値)の位相
とが一致する期間が在るように、また、第11図
aの電流波形の極小値(又は極大値)の位相と第
11図bの電流波形の極大値(又は極小値)の位
相とが一致する期間が在るように位相調節するも
のであり、このように倍周波を用い極大値(又は
極小値)の位相同士又は一方の極大値(又は極小
値)の位相と他方の極小値(又は極大値)の位相
を一致させるには、第2発振器41b出力を第1
発振器41a出力に対して45°遅らせる。
A phase shifter 42 is used to adjust the phase of the output of the second oscillator 41b using the output of the first oscillator 41a. That is, so that there is a period in which the phase of the maximum value (or minimum value) of the current waveform shown in FIG. 11a matches the phase of the maximum value (or minimum value) of the current waveform shown in FIG. 11b, In addition, the phase is adjusted so that there is a period in which the phase of the minimum value (or maximum value) of the current waveform in FIG. 11a matches the phase of the maximum value (or minimum value) of the current waveform in FIG. 11b. In this way, in order to match the phases of the maximum values (or minimum values) or the phase of one maximum value (or minimum value) and the phase of the other minimum value (or maximum value) using frequency doublers, , the output of the second oscillator 41b is
It is delayed by 45 degrees with respect to the output of the oscillator 41a.

これにより、第11図a,bの電流波形の極大
値(又は極小値)の位相が一致する期間では鋼管
11の表面に同方向磁場が形成され、また、第1
1図a,bの電流波形の極小値(又は極大値)の
位相と極大値(又は極小値)の位相とが一致する
期間では異方向磁場が形成されることになる。各
磁場検出器32,32…はこれらの磁場の磁束変
化を検出し、この磁束変化に応じた電気信号を同
期検波回路43a及び43bに夫々出力する。同
期検波回路43aには第1発振器41aから第1
1図cに示す如く第11図a,bの電流波形の極
大値が一致する期間に現れる適幅の同期パルスが
入力されるようになつており、該同期パルスが入
力される都度磁場検出器32,32…からの入力
信号を同期検波し、同方向磁場の磁束変化を検出
する。この検波結果は第12図aに示す様な極大
値及び極小値を有する磁気探傷型の信号波形とし
て得られる。この検波結果はレコーダ44aにて
記録され、また、比較器45aに入力される。比
較器45aには第12図aに二点鎖線で示す如く
割れ疵Cの有害、無害の判断基準となる閾値が設
定されており、同期検波回路43aからの入力信
号の極大値が該閾値よりも大なる場合は有害疵検
出信号として図示しないマーキング装置に入力さ
せる。これにより鋼管11にはマーキングが施さ
れる。
As a result, a magnetic field in the same direction is formed on the surface of the steel pipe 11 during the period in which the phases of the maximum values (or minimum values) of the current waveforms shown in FIGS.
Magnetic fields in different directions are formed during a period in which the phase of the minimum value (or maximum value) and the phase of the maximum value (or minimum value) of the current waveforms shown in FIGS. 1a and 1b match. Each of the magnetic field detectors 32, 32, . . . detects changes in magnetic flux of these magnetic fields, and outputs electric signals corresponding to the changes in magnetic flux to synchronous detection circuits 43a and 43b, respectively. The synchronous detection circuit 43a receives signals from the first oscillator 41a to the first
As shown in Figure 1c, a synchronization pulse of an appropriate width that appears during the period when the maximum values of the current waveforms in Figure 11a and b match is input, and each time the synchronization pulse is input, the magnetic field detector The input signals from 32, 32, . The detection result is obtained as a magnetic flaw detection type signal waveform having maximum and minimum values as shown in FIG. 12a. This detection result is recorded by the recorder 44a and is also input to the comparator 45a. A threshold value is set in the comparator 45a as a criterion for determining whether the crack C is harmful or harmless, as shown by the two-dot chain line in FIG. If it is large, it is inputted to a marking device (not shown) as a harmful flaw detection signal. As a result, the steel pipe 11 is marked.

一方、同期検波回路43bには第2発振器41
bから第11図dに示す如く第11図aの電流波
形の極小値の位相と第11図bの電流波形の極大
値の位相とが一致する期間に現れる適幅の同期パ
ルスが入力されるようになつており、該同期パル
スが入力される都度磁場検出器32,32…から
の入力信号を同期検波し、異方向磁場の磁束変化
を検出する。この検波結果は第12図bに示す様
な極小値のみを有する渦流探傷型の信号波形とし
て得られる。この検波結果はレコーダ44bにて
記録され、また、比較器45bに入力される。比
較器45bには第12図bに二点鎖線で示す如き
ピツト疵Pの有害、無害の判断基準となる閾値が
設定されており、同期検波43bからの入力信号
の極小値が該閾値よりも小なる場合は有害疵検出
信号をマーキング装置に入力させる。これにより
鋼管11にはマーキングが施される。
On the other hand, the second oscillator 41 is connected to the synchronous detection circuit 43b.
As shown in FIG. 11b to FIG. 11d, a synchronization pulse of an appropriate width is input that appears during the period in which the phase of the minimum value of the current waveform in FIG. 11a and the phase of the maximum value of the current waveform in FIG. 11b match. Each time the synchronization pulse is input, input signals from the magnetic field detectors 32, 32, . . . are synchronously detected, and changes in magnetic flux of magnetic fields in different directions are detected. The detection result is obtained as an eddy current flaw detection type signal waveform having only the minimum value as shown in FIG. 12b. This detection result is recorded by the recorder 44b and is also input to the comparator 45b. A threshold value is set in the comparator 45b as a criterion for determining whether the pit flaw P is harmful or harmless, as shown by the two-dot chain line in FIG. If it is smaller, a harmful flaw detection signal is input to the marking device. As a result, the steel pipe 11 is marked.

次に本発明の効果を実施例に基づき明らかにす
る。第13図は割れ疵C、ピツト疵Pに相応する
人工欠陥を本発明により検出した場合の検出結果
を示すグラフである。第13図aは割れ疵Cに相
応する人工欠陥を検出した場合の磁場検出器の同
方向磁場、異方向磁場における磁束変化の検出に
係る出力レベルを縦軸に、また、割れ疵Cの深さ
を横軸にとつて示すグラフである。グラフから明
らかな様に割れ疵Cにあつては、磁場検出器の出
力レベルは同方向磁場の検出レベルが異方向磁場
のそれよりも十分大きく現れるので両者の弁別が
明瞭に行なえる。
Next, the effects of the present invention will be explained based on examples. FIG. 13 is a graph showing the detection results when artificial defects corresponding to cracks C and pit defects P are detected by the present invention. Figure 13a shows the output level of the magnetic field detector for detecting changes in magnetic flux in the same direction magnetic field and different direction magnetic field when an artificial defect corresponding to the crack C is detected, and the depth of the crack C as the vertical axis. This is a graph showing the horizontal axis. As is clear from the graph, in the case of crack C, the output level of the magnetic field detector for the magnetic field in the same direction appears to be sufficiently higher than that for the magnetic field in the different direction, so that the two can be clearly distinguished.

第13図bはピツト疵Pに相応する人工欠陥を
検出した場合の磁場検出器の同方向磁場、異方向
磁場における磁束変化の検出に係る出力レベルを
縦軸に、また、ピツト疵Pの深さを横軸にとつて
示すグラフである。グラフから明らかなようにピ
ツト疵Pにあつては、異方向磁場の検出レベルが
同方向磁場のそれよりも十分大きく現れるので両
者の弁別が明瞭に行なえる。
Fig. 13b shows the output level of the magnetic field detector for detecting magnetic flux changes in the same direction magnetic field and the different direction magnetic field when an artificial defect corresponding to the pit flaw P is detected, and the depth of the pit flaw P is plotted on the vertical axis. This is a graph showing the horizontal axis. As is clear from the graph, in the case of pit flaws P, the detection level of the magnetic field in the different direction appears sufficiently higher than that of the magnetic field in the same direction, so that the two can be clearly distinguished.

第14図は本発明により深さの異なる割れ疵、
ピツト疵を探傷した結果を示すチヤートである。
第14図aは同方向磁場、bは異方向磁場の磁束
変化を示すものであり、縦軸は夫々の検出レベル
を示している。グラフから明らかな様に両者の弁
別が可能である。また、疵深さと検出レベルが比
例関係にあるので疵深さが定量的に求まる。 な
お、上述の実施例では本発明を鋼管に適用する場
合について述べたが、スラブ等の鋼材についても
適用でき、更には鋼材以外の他の金属材について
も適用できることは勿論である。
FIG. 14 shows cracks with different depths according to the present invention.
This is a chart showing the results of pit flaw detection.
FIG. 14a shows the magnetic flux change of the same direction magnetic field, and b shows the magnetic flux change of the different direction magnetic field, and the vertical axis shows the detection level of each. As is clear from the graph, it is possible to distinguish between the two. Furthermore, since the flaw depth and the detection level are in a proportional relationship, the flaw depth can be determined quantitatively. In addition, although the above-mentioned embodiment described the case where the present invention is applied to a steel pipe, it goes without saying that it can also be applied to steel materials such as slabs, and furthermore, it can be applied to other metal materials other than steel materials.

〔効果〕〔effect〕

以上詳述した如く本発明による場合は、被検査
材の表面に沿う同一線上にあるよう並設した2つ
のコイルの一方に適宜の周波数の、他方のコイル
に前記周波数の整数倍の励磁電流を、一方の励磁
電流の波形の極大値(又は極小値)の位相が他方
の励磁電流の波形の極大値の位相及び極小値の位
相と実質的に一致する期間が在るように位相調節
して通電することとしたから、被検査材の表面に
同方向磁場及び異方向磁場を周期的に形成せし
め、疵が存する場合の同方向磁場及び異方向磁場
の磁束の変化を磁場検出器にて検出するものであ
るので、疵の性状に関係なく、即ち割れ疵、ピツ
ト疵等の疵の種類に関係なく正確な検出が行え、
従来方法の如く疵の種類に応じて複数の探傷法を
適用する必要がなく、設備コスト、検査コストの
低減が図れる。更には、検出部を小型軽量化でき
るので被検査材表面への追随性の向上が図れ、精
度の良い検出が可能となる等、本発明は優れた効
果を奏する。
As detailed above, in the case of the present invention, an excitation current of an appropriate frequency is applied to one of the two coils arranged in parallel on the same line along the surface of the material to be inspected, and an excitation current of an integral multiple of the frequency is applied to the other coil. , the phase is adjusted so that there is a period in which the phase of the maximum value (or minimum value) of the waveform of one excitation current substantially matches the phase of the maximum value and the phase of the minimum value of the waveform of the other excitation current. Since it was decided to energize, a magnetic field in the same direction and a magnetic field in different directions are periodically formed on the surface of the material to be inspected, and a magnetic field detector detects changes in the magnetic flux of the magnetic fields in the same direction and different directions when a flaw exists. Therefore, accurate detection can be performed regardless of the nature of the flaw, that is, regardless of the type of flaw such as cracks or pit flaws.
Unlike conventional methods, there is no need to apply multiple flaw detection methods depending on the type of flaw, and equipment costs and inspection costs can be reduced. Furthermore, since the detection unit can be made smaller and lighter, the ability to follow the surface of the material to be inspected can be improved, and highly accurate detection becomes possible, and the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従来方法の実施状態を示す模式
図、第3〜5図は本発明の原理説明図、第6図は
本発明装置の検出部周りの構造を示す模式的正面
図、第7図はその左側面図、第8図は検出器ホル
ダ周りを拡大して示す正面断面図、第9図はその
左側半断面図、第10図は信号処理回路のブロツ
ク図、第11図はその動作説明のための信号波形
図、第12図は同期検波回路の検出結果を示すグ
ラフ、第13図は本発明により割れ疵、ピツト疵
に相応する人工欠陥を検出した場合の結果を示す
グラフ、第14図は本発明により深さの異なる割
れ疵、ピツト疵を探傷した結果を示すチヤートで
ある。 11……鋼管、31a,31b……励磁コイ
ル、32,32……磁場検出器、41a……第1
発振器、41b……第2発振器、42……移相
器、43a,43b……同期検波回路、A……検
出部、B……信号処理回路。
Figures 1 and 2 are schematic diagrams showing the implementation state of the conventional method, Figures 3 to 5 are explanatory diagrams of the principle of the present invention, Figure 6 is a schematic front view showing the structure around the detection section of the device of the present invention, Fig. 7 is a left side view, Fig. 8 is a front sectional view showing an enlarged view of the detector holder, Fig. 9 is a left half sectional view thereof, Fig. 10 is a block diagram of the signal processing circuit, and Fig. 11 is a front sectional view showing the area around the detector holder. A signal waveform diagram for explaining the operation, FIG. 12 is a graph showing the detection results of the synchronous detection circuit, and FIG. 13 is a graph showing the results when artificial defects corresponding to cracks and pit defects are detected by the present invention. , FIG. 14 is a chart showing the results of detecting cracks and pit defects of different depths according to the present invention. 11... Steel pipe, 31a, 31b... Excitation coil, 32, 32... Magnetic field detector, 41a... First
Oscillator, 41b...second oscillator, 42...phase shifter, 43a, 43b...synchronous detection circuit, A...detection section, B...signal processing circuit.

Claims (1)

【特許請求の範囲】 1 夫々の軸心が被検査材の表面に沿う同一線上
にあるように並設した2つのコイルの一方に適宜
の周波数の、他方のコイルに前記周波数の整数倍
の励磁電流を、一方の励磁電流の波形の極大値
(又は極小値)の位相が他方の励磁電流の波形の
極大値の位相及び極小値の位相と実質的に一致す
る期間が在るように位相調節して通電し、前記被
検査材の表面の両コイルと対向する部分に、これ
に沿う向きとなる磁場及びこれに直交する向きと
なる磁場を夫々周期的に形成せしめ、この部分に
臨ませた磁場検出器にて各磁場形成時の磁束変化
を検出することを特徴とする探傷方法。 2 夫々の軸心が被検査材の表面に沿う同一線上
にあるように並設した第1、第2コイルと、 該第1コイルに適宜の周波数の第1励磁電流を
通電する第1発振器と、 前記第2コイルに前記周波数の整数倍の周波数
の第2励磁電流を、その波形の極大値(又は極小
値)の位相が前記第1励磁電流の波形の極大値及
び極小値の位相と実質的に一致する期間が在るよ
うに通電する第2発振器と、 前記第1、第2コイル間に設けて、被検査材の
表面に臨ませる磁場検出器と、 第1、第2励磁電流の波形の極大値又は極小値
の位相が実質的に一致する期間の磁場検出器の出
力を同期検出する第1検出回路と、 第1励磁電流の波形の極大値(又は極小値)の
位相が第2励磁電流の波形の極小値(又は極大
値)の位相と実質的に一致する期間の磁場検出器
の出力を同期検出する第2検出回路とを具備する
ことを特徴とする探傷装置。
[Scope of Claims] 1. Two coils are arranged in parallel so that their axes are on the same line along the surface of the material to be inspected, one of which is excited with an appropriate frequency, and the other coil is excited with an integral multiple of the frequency. The phase of the current is adjusted so that there is a period in which the phase of the maximum value (or minimum value) of the waveform of one excitation current substantially matches the phase of the maximum value and the phase of the minimum value of the waveform of the other excitation current. energized to periodically form a magnetic field along the surface of the material to be inspected, and a magnetic field perpendicular to the coils, respectively, on the surface of the material to be inspected, facing the coils. A flaw detection method characterized by detecting changes in magnetic flux when each magnetic field is formed using a magnetic field detector. 2. first and second coils arranged in parallel so that their axes are on the same line along the surface of the material to be inspected; and a first oscillator that supplies a first excitation current of an appropriate frequency to the first coil. , A second excitation current having a frequency that is an integral multiple of the frequency is applied to the second coil, and the phase of the maximum value (or minimum value) of the waveform thereof is substantially the same as the phase of the maximum value and minimum value of the waveform of the first excitation current. a second oscillator that is energized so that the periods coincide with each other; a magnetic field detector that is provided between the first and second coils and faces the surface of the material to be inspected; a first detection circuit that synchronously detects the output of the magnetic field detector during a period in which the phases of the maximum value or the minimum value of the waveform substantially coincide; 2. A flaw detection apparatus comprising: a second detection circuit that synchronously detects the output of the magnetic field detector during a period that substantially coincides with the phase of the minimum value (or maximum value) of the waveform of the excitation current.
JP540884A 1984-01-13 1984-01-13 Method and device for flaw detection Granted JPS60147647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP540884A JPS60147647A (en) 1984-01-13 1984-01-13 Method and device for flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP540884A JPS60147647A (en) 1984-01-13 1984-01-13 Method and device for flaw detection

Publications (2)

Publication Number Publication Date
JPS60147647A JPS60147647A (en) 1985-08-03
JPH0517503B2 true JPH0517503B2 (en) 1993-03-09

Family

ID=11610316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP540884A Granted JPS60147647A (en) 1984-01-13 1984-01-13 Method and device for flaw detection

Country Status (1)

Country Link
JP (1) JPS60147647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663721B2 (en) 2000-02-22 2014-03-04 Suzanne Jaffe Stillman Water containing soluble fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663721B2 (en) 2000-02-22 2014-03-04 Suzanne Jaffe Stillman Water containing soluble fiber

Also Published As

Publication number Publication date
JPS60147647A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
US5130652A (en) AC magnetic flux leakage flaw detecting apparatus for detecting flaws in flat surfaces with rotating leakage detection element
US5751144A (en) Method and device including primary and auxiliary magnetic poles for nondestructive detection of structural faults
US3579099A (en) Improved flaw detection apparatus using specially located hall detector elements
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
US4218651A (en) Apparatus for detecting longitudinal and transverse imperfections in elongated ferrous workpieces
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
JP2011002409A (en) Leak flux flaw detecting device
US3588683A (en) Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect
JPH0335624B2 (en)
US4675605A (en) Eddy current probe and method for flaw detection in metals
JPH0517503B2 (en)
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPH0376707B2 (en)
JPH0249661B2 (en) TANSHOHOHO
JPS60224058A (en) Method and device for flaw detection
US3317824A (en) Method of and apparatus for magnetically inspecting ferromagnetic members for inside and outside surface discontinuities and ascertaining therebetween
JPH0868778A (en) Leakage magnetic flux flaw detector
JP2672912B2 (en) Optical magnetic field flaw detection method
JPS60147648A (en) Method and device for flaw detection
JPS60230052A (en) Method and device for flaw detection
JPS6011492Y2 (en) Automatic magnetic flaw detection equipment inspection equipment
JPH09166582A (en) Electromagnetic flaw detection method
JPH0439031B2 (en)