JPH0517502B2 - - Google Patents

Info

Publication number
JPH0517502B2
JPH0517502B2 JP62266050A JP26605087A JPH0517502B2 JP H0517502 B2 JPH0517502 B2 JP H0517502B2 JP 62266050 A JP62266050 A JP 62266050A JP 26605087 A JP26605087 A JP 26605087A JP H0517502 B2 JPH0517502 B2 JP H0517502B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
chlorine
concentration
solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62266050A
Other languages
Japanese (ja)
Other versions
JPH01107148A (en
Inventor
Hitoshi Uehara
Hirotaka Takenaka
Yoji Kawami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62266050A priority Critical patent/JPH01107148A/en
Publication of JPH01107148A publication Critical patent/JPH01107148A/en
Publication of JPH0517502B2 publication Critical patent/JPH0517502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、塩素含有塩酸水溶液中の塩酸濃度測
定法に関する。 従来の技術及びその問題点 塩酸電解による塩素製造は、有機物塩素化プロ
セスにおいて、副生塩酸の再利用の手段として国
外では工業的に行われている。近年、有機及び無
機薬品の製造及び上水や排水処理等の中小規模の
塩素需要に対して漏洩事故等の危険性のある塩素
の輸送と備蓄を行わずに、必要量の塩素をオンサ
イト型塩酸電解装置によつて供給しようとの動向
がある。このような塩酸電解装置においては、塩
酸発生効率及び電解槽材料の耐久性向上の観点か
ら陽極液塩酸を酸素発生が起こらない範囲の濃度
に維持しておくことが要求され、塩素含有塩酸中
の塩酸濃度計が必要となる。例えば、電解により
希薄になつた陽極液を排出し、濃厚塩酸を導入す
ることによつて陽極液を自動的に一定範囲の塩酸
濃度に保つバツチ方式電解では、陽極液の排出と
導入を行うべき濃度を検知し、信号を出力するた
めの濃度計を必要とする。 希薄塩酸濃度の測定には、通常、銀−塩化銀電
極が使用される。しかし、銀と塩化銀の両方とも
が、10重量%以上の塩酸に溶けるため、濃厚塩酸
に銀−塩化銀電極を使用することは出来ない。 また、その他の塩素イオン選択性電極も塩素含
有濃厚塩酸に対する耐性を有しない。 塩素含有塩酸のような高腐食性溶液には導電率
計が現在適用できる唯一の濃度計であるが、性能
及び経済面で以下の欠点を有している。すなわ
ち、塩酸の電導度と濃度の関係は直線的ではなく
約20重量%で最大値を有しているため、一つの電
導度値に対応する塩酸濃度は二つ存在する。又、
10重量%から30重量%における電導度の変化が小
さいことと、電導度の温度変化かが大きいことか
ら、電導度から濃度を精度よく求めることは難し
い。このように導電率計による測定法は、特に、
濃厚塩酸の濃度測定法としては精度的に大きな欠
点を有しており、また、測定装置が非常に高価で
ある欠点も有しているため、これに替わる新しい
測定法が要望されている。 問題点を解決するための手段 本発明者は、上記した如き現状に鑑みて、塩素
含有濃厚塩酸水溶液において、塩酸濃度を高精度
で測定するための簡便な方法を見出すべく、鋭意
研究を重ねてきた。その結果、測定対象となる未
知濃度の塩素含有塩酸水溶液と基準液としての既
知濃度の塩素含有塩酸水溶液とを液絡部を介して
接触させた場合に、両溶液に挿入した不溶性電極
間に生じる起電力は、両溶液の液温が同一である
場合には、測定対象液中の塩酸濃度に対して、ほ
ぼ直線的に変化するという特性を見出した。更
に、測定対象液と基準液との液温が異なる場合に
も、簡単な換算式によつて等温度の場合の起電力
に換算できることを見出した。その結果、測定対
象液と基準液との温度差、及び両液中に挿入した
塩素電極間の起電力を測定するという簡単な方法
によつて、任意の液温の塩素含有塩酸水液中の塩
酸濃度を高精度で測定することが可能となるに至
つた。 即ち、本発明は、測定対象の塩素含有塩酸水溶
液と、既知塩酸濃度の塩素含有塩酸水溶液とを、
液絡部を介して接触させ、両溶液に挿入した不溶
性電極間に生じる起電力、及び両溶液の温度差を
測定することを特徴とする塩素含有塩酸水溶液の
塩酸濃度測定法に係る。 本発明では、2重量%(0.5mol/Kg)程度の
塩酸濃度の塩素含有塩酸水溶液から、36重量%
(15mol/Kg)程度の塩酸濃度の塩素含有濃厚塩
酸水溶液まで、広い範囲の濃度の塩素含有塩酸水
溶液の塩酸濃度を精度よく測定することができ
る。特に、本発明方法では、従来法では精度のよ
い測定が困難であつた10重量%(3mol/Kg)程
度以上の高濃度の塩酸水溶液の濃度を精度よく測
定できる点で有利である。塩酸水液中の塩素濃度
は、塩酸水溶液の温度と塩酸濃度における溶解度
であること、即ち、塩素が飽和されていることが
精度よく測定する上で望ましい。しかし、微量の
塩素が存在するだけで、不溶性電極を挿入すると
塩素電極反応が支配的に起こるので、0.01重量%
程度の塩素濃度でも塩酸濃度の測定は可能であ
る。特に、塩酸電解による塩素製造プロセスで
は、電解操作開始後、ただちに塩素濃度が飽和と
なるので安定した塩素電極反応が生じ、精度のよ
い測定ができる。 基準液として用いる塩素含有塩酸水溶液につい
ては、塩酸の蒸気圧が低く、塩酸濃度が変化し難
い濃度範囲である共沸組成の22重量%(8mol/
Kg)程度以下の塩酸濃度であることが好ましく、
また2重量%(0.5mol/Kg)程度以上の塩酸濃
度のものが好適に用いられる。基準液中では、塩
素が微量存在するだけでも測定が可能であるが、
精度よく測定するためには、塩素が飽和している
ことが好ましい。 試料液及び基準液は、0℃〜80℃程度の範囲の
温度で用いることができるが、基準液は、50℃程
度以下の温度とすることが好ましい。 本発明方法では、上記した試料液及び基準液を
液絡部を介して接触させ、両溶液に不溶性電極を
挿入して両電極間に生じる起電力を測定し、更
に、試料液と基準液との間の温度差を測定するこ
とが必要である。 試料液と基準液とを接触させる際に用いる液絡
部の材料は、塩素含有塩酸に耐えることができ、
かつ液の移動の生じない多孔質体、イオン伝導体
等であれば特に限定はなく、各種の焼結ガラス類
やアルミナ、ジルコニア等のセラミツクス類等の
多孔質体やフッ素樹脂系陽イオン交換体等のイオ
ン伝導体を用いることができる。 また、両溶液に挿入する不溶性電極は、塩素含
有塩酸に不溶な導電体であれば特に限定されない
が、例えば、イリジウム、イリジウムでメツキし
たチタン等の金属類や酸化イリジウム、酸化ルテ
ニウム等でコーテイングしたチタン等の金属酸化
物被覆電極を好適に用いることができる。 また、両液間の温度差を求める手段は、特に限
定されず、通常の温度計等を用いて測定してもよ
いが、銅−コンスタンタン熱電対、クロメル−ア
ルメル熱電対などの熱電対を用いることがこれら
の起電力を濃度計への入力信号として利用する上
では、便利である。 本発明方法において、基準液と試料液との間に
生じる塩素電極の起電力、及び両液間の温度差を
測定することによつて、試料液中の塩酸濃度を求
めることのできる理由、及びその算出法を以下に
示す。 温度Ts、塩酸重量モル濃度msである試料液と、
温度Tr、塩酸重量モル濃度mrである基準液とに、
不溶性電極を挿入し、塩素電極反応 2C-2+2e (1) による電池を組むと、その起電力Vは、次式で表
わされる。 V=Es,Ts−Er,Tr−EJ+ET+EH (2) ここで、Es,Tsは塩酸濃度ms、温度Tsの試料液
の塩素電極平衡電位、Er,Trは、塩酸濃度mr、温
度Trの基準液の塩素電極平衡電位、EJは液絡部
での液間電位、ETは温度差による熱拡散起電力、
EHは標準水素電極電位の温度変化による電位で
ある。 Es,Tsはネルンスト式により、 Es,Ts=E°Ts+(RTs/2F)n{Ps,Ts/(γs,Tsms

2} (3) で表すことができる。ここで、E°Tsは温度がTs
の標準塩素電極電位、Rはガス定数、Fはフアラ
デー定数、Ps,Tsは塩素分圧、γs,Tsは塩酸の平均活
量係数である。塩素が塩酸に溶解すると、 C-+C23 - (4) の反応により、C3 -イオンが生成するためC
イオンの一部がC3 -イオンとなり、塩酸中の
-イオン濃度がわずか低下する。しかし、C
3 -イオン生成の塩素含有塩酸の塩素電極平衡電
位に対する寄与は塩素分圧が1atm以下では1mV
以下と算出されるため、C3 -イオンのEs,Tsへの
寄与を無視することができる。 E°Ts,Ps,Ts,γs,Tsについての公知の値を用いる
と、25℃から80℃まで、1mol/Kgから11mol/
Kgまでの任意なTsとmsに対してEs,Tsを計算で求
めることができる。msが一定のとき、Tsの増加
とともにEs,Tsが直線的に減少する傾向が認めら
れ、ある基準温度TpにおけるEs,Tpに対して、温
度係数Aを用いて Es,Ts=Es,Tp+A(Ts−Tp) (5) の近似式を与えることができる。本発明者らによ
ると、基準温度Tpを25℃(298K)とし、80℃程
度以下の温度1〜11mol/Kgの塩酸濃度におい
て、A=−1.35mV/Kの値を用いれば、(5)式で
求めたEs,Tsは±2mV以内で(3)式で求めるEs,Tsと一
致した。すなわち、Es,Tsの温度変化を(5)式で評価
できることを確かめた。従つて、基準温度Tp
基準液温度Trに置き換えることにより Es,Ts−Er,Tr≒(RTr/2F)n{Ps,Tr/(γs,Tr
ms2}−(RTr/2F)n{Pr,Tr/γr,Trmr2}+A
(Ts−Tr) (6) の近似式を与えることができる。ここで、Ps,Tr
γs,Trは、msでTrの条件における塩素分圧と塩酸
の平衡活量係数である。(6)式によつて温度と塩酸
濃度が異なる二つの塩酸溶液における塩素電極平
衡電位の差を両塩酸溶液の温度差と塩酸濃度に関
連付けることができる。 液間電位EJについては、拡散電位の式により EJ≒(RTr/F)∫ms nr(2TH−1)dn(γm)
(7) の関係式を得ることができる。ここでTHは水素
イオンの輸率である。 熱拡散起電力ETと標準水素電極電位の温度変
化EHについては、それぞれを個別にもとめるこ
とが原理的にできない量である。そこで、本発明
者らは等濃度ではあるが温度の異なる二つの水素
電極からなる電池を作り、その起電力を測定し、
ETとEHとの和の温度及び塩酸濃度依存性を実測
した。ETとEHは塩酸濃度が増加すると若干増大
する傾向があるが、濃度変化に対してはほぼ一定
とみなせる測定値を得た。また、温度変化につい
ては、温度上昇とともに直線的に増加した。すな
わち、 ET+EH≒B(Ts−Tr) (8) の関係が得られ、温度係数Bは0.6mV/Kであつ
た。 以上のEs,Ts,EJ,ETとEHについての検討から、
(6),(7)及び(8)式を(2)式に代入し、Vの近似式とし
て、 V≒(RTr/2F)n{Ps,Tr/(γs,Trms2}−
(RTr/2F)n{Pr,Tr/(γr,Trmr2}−(RTr
F)∫ms nr(2TH−1)dn(γm)+(A+B)・(
Ts
−Tr) (9) を得ることができる。上式の右辺は第三項までが
温度Trにある二つの塩素電極からなる電池の起
電力であり、第四項が温度補正の項とみなすこと
ができる。(9)式を整理して、温度Tr、濃度mr
塩酸溶液と、温度Tr、濃度msの塩酸溶液との間
の起電力VTrを次式により定義する。 (RTr/2F)n{Ps,Tr/(γs,Trms2}−
(RTr/2F)n{Pr,Tr/(γr,Trmr2}−(RTr
F)∫ms nr(2TH−1)dn(γm)≒V−(A+B)
(Ts−Tr)≡VTr (10) 上記(10)式の右辺から判る様に、温度Ts、塩酸
濃度msの試料液と温度Tr、塩酸濃度mrの基準液
との間の起電力Vを試料液と基準液が等温度の起
電力VTrに換算することができる。一方、水素イ
オンの輸率(TH)は、温度と塩酸濃度に依存す
るだけでなく、液絡部に用いる材料にも依存する
ので、上記(10)式の左辺の算出は困難である。従つ
て、液絡部に用いる材料の個々の状況に応じて、
温度Tr、塩酸濃度mrの基準液と、温度Tr塩酸濃
度msの試料液との間の起電力VTrをmsの関数とし
て、あらかじめ実験的に求めておくことが必要で
ある。塩素含有塩酸水溶液では、後記実施例1及
び2における第1図及び第2図からも判る様に、
VTrとmsとの間には、ほぼ直線関係が認められ
た。 この様にして、VTrとmsとの関係を求めてお
き、基準液と試料液との温度差Ts−Trと、両液
中に挿入した塩素電極間の起電力Vを測定し、上
記(10)式の右辺、即ち、 VTr=V−(A+B)(Ts−Tr) (10)′ に基いて、VTrを求めれば、予め得られている
VTrとmsとの関係から試料液中の塩酸濃度を求め
ることがきる。上記(10)′式において、Aとしては、
−1.35mV/Kを用い、Bとしては0.6mV/Kを
用いればよい。 尚、Es,Tsとmsの1mol/Kg程度以上の濃厚塩酸
での関係は、濃度の増加とともに平均活量係数が
著しく増加するために、0.1mol/Kg程度以下の
希薄塩酸で成り立つ対数関係ではなく、ほぼ直線
関係になる。この様な関係は、中高濃度塩酸の濃
度測定にとつて望ましい関係である。 発明の効果 本発明方法では、任意の温度及び濃度の塩素含
有塩酸水溶液について、基準液との温度差、及び
基準液と試料液に挿入した不溶性電極間の起電力
を測定することによつて、試料液中の塩酸濃度を
精度よく簡単に求めることができる。また、本発
明方法では、使用する検出素子は、二本の不溶性
電極と熱電対等の温度検出素子のみでよく、非常
に簡便な装置で塩酸濃度を測定することが可能で
ある。 この様に、本発明は、広範囲の塩酸濃度の塩素
含有塩酸水溶液に対して、安価で簡便な装置によ
る高精度な塩酸濃度測定法を提供するものであ
る。 実施例 以下、実施例を示して本発明を更に詳細に説明
する。 実施例 1 基準液として塩酸濃度1mol/Kgで全圧1気圧
での飽和塩素濃度の25℃の塩素含有塩酸水溶液を
使用し、シリカ−アルミナ系多孔質体で片端を封
入された6mmφガラス管を基準液に挿入し、この
焼結体でガラス管内の試料液と基準液との液絡部
を構成し、不溶性電極として0.5mmφイリジウム
線電極を用いて、基準液と試料液がともに25℃の
場合の試料液と基準液の塩素電極間の起電力VTr
と、試料液中の塩酸濃度msとの関係を求めた。
結果を第1図に示す、第1図から、TTrとmsは、
ほぼ直線関係となることが判る。また、塩酸濃度
3mol/Kgの塩素含有塩酸水溶液、及び塩酸濃度
5mol/Kgの塩素含有塩酸水溶液を基準液として
用いて、同様の測定を行なつたところ、各々ms
=3mol/Kg及びms=5mol/KgにおいてVTr=0
となること以外は、msとVTrとは、第1図とほぼ
同様の傾斜を有する直線関係であつた。 試料液として塩酸濃度2,4,6及び8mol/
Kgの塩素含有水溶液を用い、25℃と50℃の各液温
において、基準液との間の塩素電極電位を測定し
た。液温50℃の場合に、起電力の測定値Vから
VTrを算出するに際しては、 VTr=V−(A+B)×(Ts−Tr)において、A
=−1.35mV/K及びB=0.6mV/Kを用いた。 得られたVTrから、第1図を利用して、試料液
の塩酸濃度を算出したところ、使用した試料液の
塩酸濃度とほぼ一致する結果が得られた。 実施例 2 基準液として、1mol/Kgの塩酸濃度で全圧1
気圧での飽和塩素濃度の塩素含有塩酸水溶液を使
用し、液絡部の材料として、陽イオン伝導体であ
るフッ素樹脂系イオン交換膜(商標:Nafion
117、デユポン社製)、不溶性電極としてイリジウ
ムでメッキしたチタン線を用いて、25℃と50℃と
の各温度における基準液と試料液とが等温の場合
の起電力VTrを測定した、結果を第2図に示す。
第2図から、25℃及び50℃のいずれの場合にも
msとVTrとがほぼ直線関係を有することが判る。
また、実施例1と比較して、同じmsにおけるVTr
は、実施例2のほうが大きな値となつたが、これ
は、実施例2で用いた液絡部の材料が陽イオン交
換膜であるために水素イオン輸率THが大きな値
を有するためである。 上記した25℃又は50℃基準液を用いて、各種の
塩酸濃度の塩素含有塩酸水溶液を試料液とし、試
料液と基準液との塩素電極間の起電力V及び両液
間の温度差を測定し、第2図から試料液中の塩酸
濃度を求めた。起電力の測定値Vから等温液間で
の起電力VTrへの換算においては、 VTr=V−(A+B)(Ts−Tr) の換算式において、A=−1.35mV/K,B=
0.6mV/Kを採用した。結果を下記第1表に示
す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for measuring hydrochloric acid concentration in a chlorine-containing aqueous hydrochloric acid solution. BACKGROUND ART Chlorine production by hydrochloric acid electrolysis is carried out industrially overseas as a means of reusing by-product hydrochloric acid in the process of chlorinating organic substances. In recent years, it has become possible to supply the required amount of chlorine on-site for small and medium-sized chlorine needs such as manufacturing organic and inorganic chemicals and water and wastewater treatment, without having to transport and stockpile chlorine, which is at risk of leakage accidents. There is a trend toward supplying it through hydrochloric acid electrolyzers. In such hydrochloric acid electrolysis equipment, it is required to maintain the concentration of anolyte solution hydrochloric acid within a range where oxygen generation does not occur, from the viewpoint of improving hydrochloric acid generation efficiency and durability of electrolytic cell materials. A hydrochloric acid concentration meter is required. For example, in batch electrolysis, where the anolyte that has become diluted by electrolysis is drained and concentrated hydrochloric acid is introduced, the anolyte is automatically maintained within a certain range of hydrochloric acid concentration, the anolyte should be drained and introduced. A densitometer is required to detect the concentration and output a signal. A silver-silver chloride electrode is usually used to measure dilute hydrochloric acid concentration. However, silver-silver chloride electrodes cannot be used in concentrated hydrochloric acid because both silver and silver chloride are soluble in hydrochloric acid with a concentration of 10% or more by weight. Further, other chloride ion selective electrodes do not have resistance to chlorine-containing concentrated hydrochloric acid. Conductivity meters are currently the only concentration meters that can be applied to highly corrosive solutions such as chlorine-containing hydrochloric acid, but they have the following drawbacks in terms of performance and economy. That is, since the relationship between the conductivity and concentration of hydrochloric acid is not linear and has a maximum value at about 20% by weight, there are two concentrations of hydrochloric acid corresponding to one conductivity value. or,
It is difficult to accurately determine the concentration from the conductivity because the change in conductivity from 10% by weight to 30% by weight is small and the change in conductivity with temperature is large. In this way, the measurement method using a conductivity meter, in particular,
This method for measuring the concentration of concentrated hydrochloric acid has a major drawback in terms of accuracy, and also has the drawback that the measuring device is very expensive, so there is a need for a new measuring method to replace it. Means for Solving the Problems In view of the current situation as described above, the present inventor has conducted extensive research in order to find a simple method for measuring the concentration of hydrochloric acid with high accuracy in a concentrated aqueous solution of hydrochloric acid containing chlorine. Ta. As a result, when a chlorine-containing aqueous hydrochloric acid solution with an unknown concentration to be measured and a chlorine-containing aqueous hydrochloric acid solution with a known concentration as a reference solution are brought into contact via a liquid junction, a phenomenon occurs between the insoluble electrode inserted into both solutions. It has been found that the electromotive force changes almost linearly with the hydrochloric acid concentration in the liquid to be measured when the liquid temperatures of both solutions are the same. Furthermore, it has been found that even when the temperature of the liquid to be measured and the reference liquid are different, the electromotive force can be converted to the electromotive force when the temperature is the same using a simple conversion formula. As a result, by a simple method of measuring the temperature difference between the measurement target liquid and the reference liquid and the electromotive force between the chlorine electrodes inserted in both liquids, we found that It has now become possible to measure hydrochloric acid concentration with high accuracy. That is, in the present invention, a chlorine-containing aqueous hydrochloric acid solution to be measured and a chlorine-containing aqueous hydrochloric acid solution having a known concentration of hydrochloric acid,
The present invention relates to a method for measuring the concentration of hydrochloric acid in a chlorine-containing aqueous hydrochloric acid solution, which is characterized by measuring the electromotive force generated between insoluble electrodes that are brought into contact via a liquid junction and inserted into both solutions, and the temperature difference between the two solutions. In the present invention, from a chlorine-containing aqueous hydrochloric acid solution with a hydrochloric acid concentration of about 2% by weight (0.5mol/Kg), to 36% by weight
It is possible to accurately measure the hydrochloric acid concentration of chlorine-containing aqueous hydrochloric acid solutions with a wide range of concentrations, including concentrated chlorine-containing aqueous hydrochloric acid solutions with a hydrochloric acid concentration of about (15 mol/Kg). In particular, the method of the present invention is advantageous in that it is possible to accurately measure the concentration of a high concentration aqueous hydrochloric acid solution of about 10% by weight (3 mol/Kg) or more, which was difficult to measure accurately using conventional methods. In order to accurately measure the chlorine concentration in the hydrochloric acid aqueous solution, it is desirable that the solubility of the hydrochloric acid aqueous solution at the temperature and the hydrochloric acid concentration, that is, that the chlorine is saturated. However, even if only a small amount of chlorine is present, when an insoluble electrode is inserted, the chlorine electrode reaction will occur dominantly, so 0.01% by weight
Hydrochloric acid concentration can be measured even at moderate chlorine concentrations. In particular, in the chlorine production process using hydrochloric acid electrolysis, the chlorine concentration becomes saturated immediately after the start of the electrolytic operation, so a stable chlorine electrode reaction occurs and accurate measurements can be made. Regarding the chlorine-containing hydrochloric acid aqueous solution used as the reference solution, the vapor pressure of hydrochloric acid is low, and the concentration range of hydrochloric acid is difficult to change.
It is preferable that the hydrochloric acid concentration is below the level of
Moreover, those having a hydrochloric acid concentration of about 2% by weight (0.5 mol/Kg) or more are preferably used. Although it is possible to measure even a trace amount of chlorine in the standard solution,
For accurate measurement, it is preferable that the sample be saturated with chlorine. The sample liquid and the reference liquid can be used at a temperature in the range of about 0°C to 80°C, but the temperature of the reference liquid is preferably about 50°C or lower. In the method of the present invention, the above-described sample solution and reference solution are brought into contact via a liquid junction, an insoluble electrode is inserted into both solutions, and the electromotive force generated between the two electrodes is measured. It is necessary to measure the temperature difference between The material of the liquid junction used when bringing the sample solution and reference solution into contact can withstand chlorine-containing hydrochloric acid.
There is no particular limitation as long as it is a porous material, ion conductor, etc. that does not cause liquid movement, and porous materials such as various sintered glasses, ceramics such as alumina and zirconia, and fluororesin-based cation exchangers can be used. Ion conductors such as can be used. In addition, the insoluble electrode inserted into both solutions is not particularly limited as long as it is a conductor that is insoluble in chlorine-containing hydrochloric acid, but for example, it can be made of a metal such as iridium, titanium plated with iridium, or coated with iridium oxide, ruthenium oxide, etc. Electrodes coated with metal oxides such as titanium can be suitably used. The means for determining the temperature difference between the two liquids is not particularly limited, and may be measured using an ordinary thermometer, but a thermocouple such as a copper-constantan thermocouple or a chromel-alumel thermocouple may be used. This is convenient when using these electromotive forces as input signals to the densitometer. In the method of the present invention, the reason why the concentration of hydrochloric acid in the sample solution can be determined by measuring the electromotive force of the chlorine electrode generated between the reference solution and the sample solution and the temperature difference between the two solutions, and The calculation method is shown below. A sample solution having a temperature T s and a hydrochloric acid molar concentration m s ;
with a reference solution having a temperature T r and a molar concentration m r of hydrochloric acid,
When an insoluble electrode is inserted and a battery based on the chlorine electrode reaction 2C - C 2 +2e (1) is assembled, the electromotive force V is expressed by the following equation. V=E s,Ts −E r,Tr −E J +E T +E H (2) Here, E s,Ts is the equilibrium potential of the chlorine electrode of the sample solution at the hydrochloric acid concentration m s and the temperature T s , and E r,Tr is the chlorine electrode equilibrium potential of the reference solution with hydrochloric acid concentration m r and temperature T r , E J is the liquid junction potential at the liquid junction, E T is the thermal diffusion electromotive force due to the temperature difference,
E H is the potential due to temperature change in the standard hydrogen electrode potential. E s,Ts is calculated using the Nernst formula, E s,Ts = E° Ts + (RT s /2F)n{P s,Ts / (γ s,Ts m s
)
2 } (3). Here, E° Ts is the standard chlorine electrode potential at temperature T s , R is the gas constant, F is Faraday's constant, P s,Ts is the chlorine partial pressure, and γ s,Ts is the average activity coefficient of hydrochloric acid. . When chlorine is dissolved in hydrochloric acid, a C 3 - ion is produced by the reaction C - +C 2 C 3 - (4).
Some of the - ions become C 3 - ions, and the C - ion concentration in hydrochloric acid decreases slightly. However, C
3 - The contribution of ion generation to the chlorine electrode equilibrium potential of chlorine-containing hydrochloric acid is 1 mV when the chlorine partial pressure is less than 1 atm.
Since it is calculated as follows, the contribution of C 3 - ions to E s,Ts can be ignored. Using known values for E° Ts , P s,Ts , γ s,Ts, from 25°C to 80°C, from 1 mol/Kg to 11 mol/Kg.
E s and Ts can be calculated for any T s and m s up to Kg. When m s is constant, it is recognized that E s,Ts tends to decrease linearly as T s increases, and for E s,Tp at a certain reference temperature T p , using temperature coefficient A, E s, An approximate expression of Ts = E s,Tp + A (T s - T p ) (5) can be given. According to the present inventors, if the reference temperature T p is 25°C (298K) and the value of A = -1.35mV/K is used at a temperature of about 80°C or less and a hydrochloric acid concentration of 1 to 11 mol/Kg, (5 ) E s,Ts obtained from equation (3) agreed with E s,Ts obtained from equation (3) within ±2 mV. In other words, it was confirmed that the temperature change in E s,Ts can be evaluated using equation (5). Therefore, by replacing the reference temperature T p with the reference liquid temperature T r , E s,Ts −E r,Tr ≒ (RT r /2F)n{P s,Tr / (γ s,Tr
m s ) 2 }-(RT r /2F)n{P r,Trr,Tr m r ) 2 }+A
An approximate expression of (T s −T r ) (6) can be given. Here, P s,Tr and γ s,Tr are the equilibrium activity coefficients of chlorine partial pressure and hydrochloric acid under the conditions of Tr in m s . Using equation (6), the difference in chlorine electrode equilibrium potential between two hydrochloric acid solutions with different temperatures and hydrochloric acid concentrations can be related to the temperature difference and hydrochloric acid concentration between the two hydrochloric acid solutions. Regarding the liquid junction potential E J , according to the diffusion potential equation, E J ≒ (RT r /F)∫ ms nr (2T H −1) dn (γm)
We can obtain the relational expression (7). Here, T H is the transport number of hydrogen ions. The thermal diffusion electromotive force E T and the temperature change E H in the standard hydrogen electrode potential are quantities that cannot be determined individually in principle. Therefore, the present inventors created a battery consisting of two hydrogen electrodes with equal concentrations but different temperatures, and measured the electromotive force.
The temperature and hydrochloric acid concentration dependence of the sum of E T and E H was actually measured. E T and E H tend to increase slightly as the hydrochloric acid concentration increases, but we obtained measured values that can be regarded as almost constant against changes in concentration. Furthermore, the temperature change increased linearly as the temperature increased. That is, the following relationship was obtained: E T +E H ≈B (T s - T r ) (8), and the temperature coefficient B was 0.6 mV/K. From the above consideration of E s, Ts , E J , E T and E H ,
Substituting equations (6), (7), and (8) into equation (2), the approximate equation for V is V≒(RT r /2F)n{P s,Tr /(γ s,Tr m s ) 2 }−
(RT r /2F)n{P r,Tr /(γ r,Tr m r ) 2 }−(RT r /
F)∫ ms nr (2T H −1)dn(γm)+(A+B)・(
T s
−T r ) (9) can be obtained. On the right side of the above equation, the third term is the electromotive force of the battery consisting of two chlorine electrodes at temperature T r , and the fourth term can be regarded as the temperature correction term. By rearranging equation (9), the electromotive force V Tr between a hydrochloric acid solution at temperature T r and concentration m r and a hydrochloric acid solution at temperature T r and concentration m s is defined by the following equation. (RT r /2F)n{P s,Tr /(γ s,Tr m s ) 2 }−
(RT r /2F)n{P r,Tr /(γ r,Tr m r ) 2 }−(RT r /
F)∫ ms nr (2T H −1)dn(γm)≒V−(A+B)
(T s − T r )≡V Tr (10) As can be seen from the right side of equation (10) above, the relationship between the sample solution at temperature T s and hydrochloric acid concentration m s and the reference solution at temperature T r and hydrochloric acid concentration m r The electromotive force V between can be converted into an electromotive force V Tr when the sample liquid and the reference liquid are at the same temperature. On the other hand, the transfer number of hydrogen ions (T H ) depends not only on the temperature and the concentration of hydrochloric acid but also on the material used for the liquid junction, so it is difficult to calculate the left-hand side of the above equation (10). Therefore, depending on the individual circumstances of the material used for the liquid junction,
It is necessary to experimentally determine in advance the electromotive force V Tr between the reference solution at temperature T r and hydrochloric acid concentration m r and the sample solution at temperature T r and hydrochloric acid concentration m s as a function of m s . . In a chlorine-containing hydrochloric acid aqueous solution, as can be seen from FIGS. 1 and 2 in Examples 1 and 2 below,
An almost linear relationship was observed between V Tr and m s . In this way, find the relationship between V Tr and m s , and measure the temperature difference T s − T r between the reference solution and sample solution and the electromotive force V between the chlorine electrode inserted in both solutions. , if we calculate V Tr based on the right side of equation (10) above, that is, V Tr = V−(A+B)(T s −Tr ) (10)′, we can obtain the value obtained in advance.
The concentration of hydrochloric acid in the sample solution can be determined from the relationship between V Tr and m s . In the above formula (10)′, A is
-1.35mV/K may be used, and 0.6mV/K may be used as B. Note that the relationship between E s,Ts and m s in concentrated hydrochloric acid of about 1 mol/Kg or more is logarithmic, which holds true for dilute hydrochloric acid of about 0.1 mol/Kg or less, because the average activity coefficient increases significantly with increasing concentration. It's not a relationship, it's almost a linear relationship. Such a relationship is a desirable relationship for measuring the concentration of medium to high concentration hydrochloric acid. Effects of the Invention In the method of the present invention, for a chlorine-containing hydrochloric acid aqueous solution at any temperature and concentration, by measuring the temperature difference with the reference solution and the electromotive force between the reference solution and an insoluble electrode inserted in the sample solution, The concentration of hydrochloric acid in a sample solution can be easily determined with high accuracy. Furthermore, in the method of the present invention, the detection elements used are only two insoluble electrodes and a temperature detection element such as a thermocouple, making it possible to measure the hydrochloric acid concentration with a very simple device. In this manner, the present invention provides a highly accurate method for measuring hydrochloric acid concentration using an inexpensive and simple device for aqueous chlorine-containing hydrochloric acid solutions having a wide range of hydrochloric acid concentrations. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 A chlorine-containing aqueous hydrochloric acid solution at 25°C with a saturated chlorine concentration of 1 mol/Kg and a total pressure of 1 atm was used as a reference solution, and a 6 mmφ glass tube sealed at one end with a silica-alumina porous material was used. This sintered body constitutes a liquid junction between the sample liquid and the reference liquid in the glass tube, and a 0.5 mmφ iridium wire electrode is used as the insoluble electrode. The electromotive force between the chlorine electrodes of the sample solution and reference solution V Tr
The relationship between this and the hydrochloric acid concentration m s in the sample solution was determined.
The results are shown in Figure 1. From Figure 1, T Tr and m s are:
It can be seen that there is an almost linear relationship. Also, hydrochloric acid concentration
3mol/Kg chlorine-containing hydrochloric acid aqueous solution and hydrochloric acid concentration
When similar measurements were performed using a 5 mol/Kg chlorine-containing hydrochloric acid aqueous solution as the standard solution, each m s
V Tr =0 at =3mol/Kg and m s =5mol/Kg
Other than that, m s and V Tr had a linear relationship with almost the same slope as in FIG. Hydrochloric acid concentration 2, 4, 6 and 8 mol/sample solution
Using a chlorine-containing aqueous solution of Kg, the chlorine electrode potential was measured at each liquid temperature of 25°C and 50°C with respect to the reference solution. When the liquid temperature is 50℃, from the measured value of electromotive force V
When calculating V Tr , in V Tr = V - (A + B) × (T s - T r ), A
= -1.35 mV/K and B = 0.6 mV/K were used. When the hydrochloric acid concentration of the sample solution was calculated from the obtained V Tr using FIG. 1, a result was obtained that almost matched the hydrochloric acid concentration of the sample solution used. Example 2 As a reference solution, a total pressure of 1 with a hydrochloric acid concentration of 1 mol/Kg
A chlorine-containing hydrochloric acid aqueous solution with a saturated chlorine concentration at atmospheric pressure is used, and a fluororesin-based ion exchange membrane (trademark: Nafion), which is a cation conductor, is used as the material for the liquid junction.
117 (manufactured by Dupont), using a titanium wire plated with iridium as an insoluble electrode, the electromotive force V Tr was measured at each temperature of 25°C and 50°C when the reference solution and sample solution were at the same temperature. is shown in Figure 2.
From Figure 2, in both cases of 25℃ and 50℃
It can be seen that m s and V Tr have an almost linear relationship.
Also, compared to Example 1, V Tr at the same m s
The value was larger in Example 2, but this is because the material of the liquid junction used in Example 2 was a cation exchange membrane, so the hydrogen ion transfer number T H had a large value. be. Using the 25℃ or 50℃ standard solution mentioned above, measure the electromotive force V between the chlorine electrodes of the sample solution and the reference solution and the temperature difference between the two solutions using chlorine-containing hydrochloric acid aqueous solutions with various hydrochloric acid concentrations as sample solutions. Then, the concentration of hydrochloric acid in the sample solution was determined from FIG. When converting the measured value V of electromotive force to the electromotive force V Tr between isothermal liquids, in the conversion formula V Tr = V - (A + B) (T s - T r ), A = -1.35 mV/K, B=
0.6mV/K was adopted. The results are shown in Table 1 below.

【表】 第1表から明らかなように、試料液中の塩酸濃
度の化学分析値と、本発明方法による測定値と
は、ほぼ一致しており、本発明方法が有効である
ことが判る。 実施例 3 塩酸電解装置における陽極液の塩酸濃度の検出
及び陽極液管理を目的として、本発明方法を適用
した濃度計を塩酸電解システム中に設けた。塩酸
電解システムの概略図を第3図に示す。 該システムでは、電極面積50cm2の電解セル1の
上部に内容積約5の陽極液貯蔵槽兼気液分離器
2を設置し、また、電解槽の陰極側に陰極側気液
分離器3を設けた。陽極液貯蔵槽2と電解セル1
の間の陽極液循環ライン中に約10cm3の液溜4を設
け、ここにイリジウム線電極を挿入して試料液の
塩素電極5とした。 一方、シリカ−アルミナ系セラミツクス多孔質
焼結体からなる液絡部6を介して、基準液として
の塩素が飽和した1mol/Kgの塩酸水溶液7を陽
極液貯蔵槽2中の陽極液と接触させ、塩素飽和塩
酸水溶液7中にイリジウム線電極を挿入し、基準
液塩素電極8を形成させた。濃度制御器(図示せ
ず)に、試料液塩素電極と5と基準液塩素電極8
間の起電力Vを入力し、また銅−コンスタンタン
熱電対9を用いて、両液間の温度差による熱電対
起電力VTを導入した。濃度制御器においてVTr
式 VTr=V+K・VT (11) に基づいて演算し、VTrを陽極液塩酸濃度指標と
して記録計に出力させると共に、陽極液の自動導
入と排出のための電圧信号として利用した。上記
(11)式において、Kは温度補正係数であり、銅−
コンスタンタン熱電対の温度係数23.3K/mv、
前記(10)式におけるA=−1.35mv/K,B=
0.6mv/Kに基づいて、K=17.5の値を用いた。 塩酸水溶液の電解試験は、3カ月以上連続して
行ない、その間補給塩酸入口10からの塩酸の導
入と、廃塩酸出口11からの塩酸の排出を行なつ
た。電解試験の間、本発明方法を適用した濃度計
によつて陽極液の塩酸濃度が安定計にモニターさ
れるとともに、その排出と導入が自動的に行なわ
れ、陽極液の自動管理が異常なく行なわれた。
[Table] As is clear from Table 1, the chemically analyzed value of the hydrochloric acid concentration in the sample solution and the value measured by the method of the present invention are almost in agreement, indicating that the method of the present invention is effective. Example 3 A concentration meter to which the method of the present invention is applied was installed in a hydrochloric acid electrolysis system for the purpose of detecting the concentration of hydrochloric acid in the anolyte and managing the anolyte in the hydrochloric acid electrolysis system. A schematic diagram of the hydrochloric acid electrolysis system is shown in Figure 3. In this system, an anolyte storage tank/gas-liquid separator 2 with an internal volume of approximately 5 is installed above an electrolytic cell 1 with an electrode area of 50 cm 2 , and a cathode-side gas-liquid separator 3 is installed on the cathode side of the electrolytic cell. Established. Anolyte storage tank 2 and electrolytic cell 1
A liquid reservoir 4 of approximately 10 cm 3 was provided in the anolyte circulation line between the two, and an iridium wire electrode was inserted therein to serve as a chlorine electrode 5 for the sample liquid. On the other hand, a 1 mol/Kg aqueous hydrochloric acid solution 7 saturated with chlorine as a reference solution is brought into contact with the anolyte in the anolyte storage tank 2 through a liquid junction 6 made of porous sintered silica-alumina ceramics. An iridium wire electrode was inserted into a chlorine-saturated hydrochloric acid aqueous solution 7 to form a reference liquid chlorine electrode 8. A sample liquid chlorine electrode 5 and a reference liquid chlorine electrode 8 are attached to the concentration controller (not shown).
A thermocouple electromotive force V T due to the temperature difference between the two liquids was introduced using a copper-constantan thermocouple 9. The concentration controller calculates V Tr based on the formula V Tr = V + K・V T (11), outputs V Tr to the recorder as an indicator of anolyte hydrochloric acid concentration, and also calculates V Tr for automatic introduction and discharge of anolyte. It was used as a voltage signal. In the above equation (11), K is the temperature correction coefficient, and
Constantan thermocouple temperature coefficient 23.3K/mv,
A=-1.35mv/K, B= in the above equation (10)
Based on 0.6mv/K, a value of K=17.5 was used. The electrolytic test of an aqueous hydrochloric acid solution was conducted continuously for three months or more, during which time hydrochloric acid was introduced through the supply hydrochloric acid inlet 10 and hydrochloric acid was discharged through the waste hydrochloric acid outlet 11. During the electrolytic test, the concentration of hydrochloric acid in the anolyte was monitored by a densitometer using the method of the present invention, and its discharge and introduction were performed automatically, ensuring that the anolyte was automatically managed without any abnormality. It was.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるVTrとmsとの関係
を示すグラフ、第2図は実施例2におけるVTr
msとの関係を示すグラフ、第3図は本発明方法
に基づく濃度計を設けた塩酸電解システムの概略
図である。 1……電解セル、2……陽極液貯蔵槽、3……
陰極側気液分離器、4……試料液、5……試料液
塩素電極、6……液絡部、7……基準液、8……
基準液塩素電極、9……熱電対、10……補給用
塩酸導入口、11……廃塩酸出口。
FIG. 1 is a graph showing the relationship between V Tr and m s in Example 1, and FIG. 2 is a graph showing the relationship between V Tr and m s in Example 2.
A graph showing the relationship between m s and FIG. 3 is a schematic diagram of a hydrochloric acid electrolysis system equipped with a concentration meter based on the method of the present invention. 1... Electrolytic cell, 2... Anolyte storage tank, 3...
Cathode side gas-liquid separator, 4...Sample liquid, 5...Sample liquid chlorine electrode, 6...Liquid junction, 7...Reference liquid, 8...
Reference liquid chlorine electrode, 9... thermocouple, 10... replenishment hydrochloric acid inlet, 11... waste hydrochloric acid outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 測定対象の塩素含有塩酸水溶液と既知塩酸濃
度の塩素含有塩酸水溶液とを、液絡部を介して接
触させ、両溶液に挿入した不溶性電極間に生じる
起電力、及び両溶液の温度差を測定することを特
徴とする塩素含有塩酸水溶液の塩酸濃度測定法。
1 The chlorine-containing aqueous hydrochloric acid solution to be measured and the chlorine-containing aqueous hydrochloric acid solution with a known hydrochloric acid concentration are brought into contact via a liquid junction, and the electromotive force generated between the insoluble electrodes inserted into both solutions and the temperature difference between the two solutions are measured. A method for measuring the concentration of hydrochloric acid in a chlorine-containing hydrochloric acid aqueous solution.
JP62266050A 1987-10-20 1987-10-20 Concentration measuring method of hydrochloric acid in solution of hydrochloric acid containing chlorine Granted JPH01107148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266050A JPH01107148A (en) 1987-10-20 1987-10-20 Concentration measuring method of hydrochloric acid in solution of hydrochloric acid containing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266050A JPH01107148A (en) 1987-10-20 1987-10-20 Concentration measuring method of hydrochloric acid in solution of hydrochloric acid containing chlorine

Publications (2)

Publication Number Publication Date
JPH01107148A JPH01107148A (en) 1989-04-25
JPH0517502B2 true JPH0517502B2 (en) 1993-03-09

Family

ID=17425690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266050A Granted JPH01107148A (en) 1987-10-20 1987-10-20 Concentration measuring method of hydrochloric acid in solution of hydrochloric acid containing chlorine

Country Status (1)

Country Link
JP (1) JPH01107148A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583642B1 (en) * 1999-05-03 2006-05-26 삼성전자주식회사 SYSTEM FOR MEASURING HCl IN BCl3
JP4815324B2 (en) * 2006-10-23 2011-11-16 株式会社堀場製作所 Liquid junction and reference electrode

Also Published As

Publication number Publication date
JPH01107148A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
US3380905A (en) Electrolytic sensor with anodic depolarization
JP3028131B2 (en) Amperometric titration method
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
CA1039810A (en) Dissolved oxygen probe
CN104155355A (en) Oxygen sensor
EP0974834A2 (en) Gas sensor with solid and liquid electrolytes connected in series between first and second electrodes
CN108061745A (en) A kind of method for surveying feed solution system oxidation-reduction potential using current-vs-time and open circuit potential combined techniques
KR100974564B1 (en) Reference Electrode With Self-Calibrated Function And Automatic Electrochemical Potential Correction Apparatus Using The Same
Bosch et al. Simple and robust external reference electrodes for high-temperature electrochemical measurements
US4163698A (en) In situ reference electrode for diaphragm cells
US7459067B2 (en) Semi-permanent reference electrode
CN110873741A (en) Three-parameter intelligent compensation correction electrochemical online dissolved oxygen sensor
CN110057895A (en) The optimization method of two electrode Clark type oligodynamical lambda sensor polarization parameters
US20070227908A1 (en) Electrochemical cell sensor
JPH0517502B2 (en)
Beck et al. The potentials of the mercurous sulphate/mercury electrode
CN106018512A (en) Dissolved oxygen sensor
US4090924A (en) Method to determine the suitability of diaphragm for use in an electrolytic cell
CN210572087U (en) Residual chlorine sensor based on electrochemical principle
CA1114018A (en) Method for detecting the fouling of a membrane covered electrochemical cell
US20100140088A1 (en) Reference electrode having self-calibration function and apparatus for automatically correcting electrochemical potential correction apparatus using the same
Lito et al. Meeting the requirements of the silver/silver chloride reference electrode
Longhi et al. Verification of the approximate equitransference of the aqueous potassium chloride salt bridge at high concentrations
JP2004125668A (en) Oxidation-reduction potential measuring instrument
Light et al. Evaluation of the zirconia pH sensor at 95° C

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term