JPH05174368A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH05174368A
JPH05174368A JP33923791A JP33923791A JPH05174368A JP H05174368 A JPH05174368 A JP H05174368A JP 33923791 A JP33923791 A JP 33923791A JP 33923791 A JP33923791 A JP 33923791A JP H05174368 A JPH05174368 A JP H05174368A
Authority
JP
Japan
Prior art keywords
magnetic recording
film
protective film
magnetic
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33923791A
Other languages
Japanese (ja)
Inventor
Junya Tada
準也 多田
Toshiyasu Beppu
敏保 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33923791A priority Critical patent/JPH05174368A/en
Publication of JPH05174368A publication Critical patent/JPH05174368A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magnetic recording medium which has the good adhesion of a protective film to a magnetic recording layer, surface smoothness and wear resistance, has excellent corrosion resistance of the magnetic recording layer and can decrease the damage of a magnetic head. CONSTITUTION:The main parts of the magnetic recording medium are constituted of a substrate 1 consisting of an aluminum alloy, a hardening treated film 2 consisting of an Ni-P alloy, the magnetic recording layer 3 consisting of CoCrTa, and the protective film 4 consisting of amorphous carbon which is formed by a DC sputtering method set with low sputtering conditions and is disorderly arranged with amorphous graphite in amorphous diamond. A lubricating layer 5 is formed on this protective film 4. The above-mentioned amorphous carbon film constituting the protective film 3 exhibits the intermediate properties of the carbon films formed respectively by the conventional DC sputtering method and DVD method and has the excellent film characteristics, such as the above-mentioned adhesion, surface smoothness, wear resistance and corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録層上に保護膜
を備える磁気記録媒体に係り、特に、保護膜の上記磁気
記録層に対する密着性、表面平滑性、耐摩耗性が共に良
好で、かつ、磁気記録層の耐腐食性にも優れ、しかも接
触に伴う磁気ヘッドの損傷が低減できる磁気記録媒体の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium provided with a protective film on a magnetic recording layer, and particularly, the protective film has good adhesion to the magnetic recording layer, surface smoothness and abrasion resistance. In addition, the present invention relates to an improvement in a magnetic recording medium which is excellent in corrosion resistance of the magnetic recording layer and can reduce damage to the magnetic head due to contact.

【0002】[0002]

【従来の技術】情報処理システムにおける外部記憶装置
の中で、CSS方式(コンタクト・スタート・アンド・
ストップ方式)を採用している磁気ディスク装置等に適
用される磁気記録媒体は、この磁気記録媒体と磁気ヘッ
ド面とが操作時に接触するため媒体表面に摩耗や損傷が
発生し易い。
2. Description of the Related Art Among external storage devices in information processing systems, the CSS method (contact start and
A magnetic recording medium applied to a magnetic disk device or the like adopting a (stop system) is liable to be worn or damaged on the medium surface because the magnetic recording medium and the magnetic head surface contact each other during operation.

【0003】また、上記磁気記録層に金属磁性体薄膜が
適用されている磁気記録媒体においては、その記憶装置
の設置環境や取扱い具合により磁気記録層に腐食が起こ
り易いことが知られている。
In addition, it is known that in a magnetic recording medium in which a metal magnetic thin film is applied to the magnetic recording layer, the magnetic recording layer is likely to be corroded depending on the installation environment and handling condition of the storage device.

【0004】そこで、従来においては、カーボン膜、S
iO2 膜、SiN膜、SiAlON膜、及び、ZrO2
膜等で構成された保護膜を上記磁気記録層上に成膜して
磁気記録媒体表面の摩耗や損傷並びに磁気記録層の腐食
等を防止する方法が採られており、更に、上記保護膜の
耐摩耗性を改善する目的でこの保護膜上にフロロカーボ
ン系の潤滑剤を塗布して潤滑層を設けることが広く行わ
れている。
Therefore, in the past, a carbon film, an S
iO 2 film, SiN film, SiAlON film, and ZrO 2
A protective film composed of a film or the like is formed on the magnetic recording layer to prevent abrasion or damage on the surface of the magnetic recording medium and corrosion of the magnetic recording layer. It is widely practiced to apply a fluorocarbon-based lubricant to the protective film to provide a lubricating layer for the purpose of improving wear resistance.

【0005】そして、これ等材料群の中で上記カーボン
膜は他の材料膜に較べて磁気記録層に対する密着力と潤
滑剤の吸収性能が優れているため広く利用されており、
かつ盛んにその開発がなされている。
Among the material groups, the carbon film is widely used because it has excellent adhesion to the magnetic recording layer and absorption of lubricant as compared with other material films.
And the development is being actively done.

【0006】ところで、このカーボン膜を成膜する手段
として、従来、カーボンターゲットを利用しそのガス圧
とスパッタパワーが高めに設定されたDCスパッタリン
グ法と、メタン等炭化水素と水素の混合ガスとアルゴン
ガスを用いて成膜するCVD(化学的気相成長)法が適
用されている。
By the way, as a means for forming this carbon film, conventionally, a DC sputtering method has been used in which a gas pressure and a sputtering power are set to be high by using a carbon target, a mixed gas of hydrocarbon such as methane and hydrogen, and argon. A CVD (Chemical Vapor Deposition) method of forming a film using gas is applied.

【0007】[0007]

【発明が解決しようとする課題】しかし、ガス圧とスパ
ッタパワーが高めに設定されているDCスパッタリング
法で成膜されたカーボン膜はビッカース硬度で700〜
1000程度の非晶質グラファイト構造になり易くディ
スク面内で硬度のバラツキが大きい欠点があり、かつ、
研摩処理されたディスク基板の研摩すじ付近に突起状成
長物が認められる場合が多くその表面平滑性が悪いと共
にその緻密性も悪い欠点があった。このため、磁気記録
層の腐食が起こり易い問題点があり、また、上記CSS
方式において磁気ヘッドの浮上量を低く設定した際にヘ
ッドと上記突起状成長物とが衝突し易くその耐摩耗性が
急激に劣化してしまう問題点があった。
However, the carbon film formed by the DC sputtering method in which the gas pressure and the sputtering power are set to be high is 700 to 700 in Vickers hardness.
There is a drawback that the amorphous graphite structure of about 1000 is apt to occur and the hardness of the disk varies greatly, and
In many cases, protrusion-like growths were observed in the vicinity of the polishing streaks on the polished disk substrate, and the surface smoothness was poor and the compactness was poor. Therefore, there is a problem that corrosion of the magnetic recording layer easily occurs.
In the method, when the flying height of the magnetic head is set to be low, there is a problem that the head and the above-mentioned protrusion-shaped growth material are likely to collide with each other and the wear resistance thereof is rapidly deteriorated.

【0008】他方、CVD法で成膜されたカーボン膜に
ついては、その硬度がビッカース硬度で通常1500以
上ありその耐摩耗性は良好で、かつ、DCスパッタリン
グ法による場合に較べて上記突起状成長物が少なくその
表面平滑性も良好なため磁気ヘッドの浮上量を低く設定
できる利点がある。しかし、高硬度なために磁気ヘット
スライダとカーボン膜とが接触した場合に磁気ヘッドに
損傷を与え易い問題点があり、しかも、DCスパッタリ
ング法で成膜されたカーボン膜に較べて膜応力が大きい
ため磁気記録層との密着性にやや劣り、磁気ヘッドとの
接触によりカーボン膜が部分的に剥離してこの剥離かす
が磁気ヘッドと磁気記録媒体間に介在し磁気記録媒体の
摩耗が急激に進んでしまう問題点があった。
On the other hand, the carbon film formed by the CVD method has a Vickers hardness of usually 1500 or more, and has a good wear resistance, and the above-mentioned protrusion-shaped growth product is larger than that by the DC sputtering method. Is small and the surface smoothness is good, so that the flying height of the magnetic head can be set low. However, due to its high hardness, there is a problem that the magnetic head is easily damaged when the magnetic head slider and the carbon film come into contact with each other, and the film stress is larger than that of the carbon film formed by the DC sputtering method. Therefore, the adhesion to the magnetic recording layer is slightly inferior, and the carbon film is partially peeled off due to contact with the magnetic head, and the debris is present between the magnetic head and the magnetic recording medium, causing rapid wear of the magnetic recording medium. There was a problem that would end up.

【0009】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、カーボン保護膜
の上記磁気記録層に対する密着性、表面平滑性、耐摩耗
性が共に良好で、かつ、磁気記録層の耐腐食性にも優
れ、しかも接触に伴う磁気ヘッドの損傷が低減できる磁
気記録媒体を提供することにある。
The present invention has been made by paying attention to such problems, and its problem is that the adhesion, surface smoothness, and abrasion resistance of the carbon protective film to the magnetic recording layer are good. Another object of the present invention is to provide a magnetic recording medium which is excellent in corrosion resistance of the magnetic recording layer and in which damage to the magnetic head due to contact can be reduced.

【0010】[0010]

【課題を解決するための手段】すなわち請求項1に係る
発明は、磁気記録層とこの磁気記録層上に設けられた保
護膜とを備える磁気記録媒体を前提とし、上記保護膜
が、スパッタリング法にて成膜され非晶質ダイヤモンド
中に非晶質グラファイトが無秩序に並んでいる非晶質カ
ーボン膜により構成されていることを特徴とするもので
あり、また、請求項2に係る発明は請求項1に係る発明
を前提とし、上記非晶質カーボン膜のラマン散乱分光分
析により得られたラマンスペクトルのラマンシフトが1
550〜1620cm-1と1340〜1390cm-1
ピークを有し、かつ、そのピーク強度比(1340〜1
390cm-1/1550〜1620cm-1)が0.3以
下であると共に、高波数側の上記ピークの半値巾が40
0〜500m-1であることを特徴とするものである。
That is, the invention according to claim 1 is premised on a magnetic recording medium having a magnetic recording layer and a protective film provided on the magnetic recording layer, wherein the protective film is formed by a sputtering method. And an amorphous carbon film in which amorphous graphite is randomly arranged in the amorphous diamond. The invention according to claim 2 is characterized in that Based on the invention of Item 1, the Raman spectrum of the amorphous carbon film obtained by Raman scattering spectroscopy has a Raman shift of 1
It has peaks at 550 to 1620 cm -1 and 1340 to 1390 cm -1 , and its peak intensity ratio (1340-1
390cm -1 / 1550~1620cm -1) with is 0.3 or less, the half-value width of the peak of the high frequency side 40
It is characterized by being 0 to 500 m −1 .

【0011】この様な技術的手段において請求項2に係
る発明において特定されるラマンスペクトルを有する非
晶質カーボン膜は、非晶質ダイヤモンド中に非晶質グラ
ファイトが無秩序に並んでいる構造となっている。
By such a technical means, the amorphous carbon film having the Raman spectrum specified in the invention according to claim 2 has a structure in which amorphous graphite is randomly arranged in amorphous diamond. ing.

【0012】そして、この様な構造の非晶質カーボン膜
を成膜するためにはその成膜方式としてDCスパッタリ
ング、RF(高周波)スパッタリング、イオンビームス
パッタリング等のスパッタリング法を適用し、かつ、そ
の成膜時におけるガス圧を通常より低くすると共にその
スパッタパワーも低く設定し、更に、カーボン膜成膜時
におけるディスク基板温度を200〜300℃程度に保
温することにより可能となる。すなわち、磁気記録媒体
を製造する場合、通常、ディスク基板を300℃程度に
予め加熱処理した後、磁気特性を調整するための下地
層、磁気記録層、保護膜などを順次積層する方法が採ら
れているため、保護膜成膜時においてはディスク基板温
度は若干冷めた状態になっている。これに対し、この技
術的手段においては上記磁気記録層を成膜する前に二次
加熱処理を再度行うため、保護膜成膜時におけるディス
ク基板温度は200〜300℃程度に保温されている。
この保温状態下でガス圧とスパッタパワーを低く設定し
てスパッタリング処理を施すことにより、非晶質ダイヤ
モンド中に非晶質グラファイトが無秩序に並んでいる膜
特性(磁気記録層に対する密着性、表面平滑性、耐摩耗
性、耐腐食性)に優れた非晶質カーボン膜の成膜が可能
となる。
In order to form an amorphous carbon film having such a structure, a sputtering method such as DC sputtering, RF (high frequency) sputtering or ion beam sputtering is applied, and This can be achieved by setting the gas pressure at the time of film formation to be lower than usual and also setting the sputtering power at a lower value, and further maintaining the disk substrate temperature at the time of film formation of the carbon film at about 200 to 300 ° C. That is, in the case of manufacturing a magnetic recording medium, usually, a method of preheating a disk substrate to about 300 ° C. and then sequentially laminating an underlayer, a magnetic recording layer, a protective film, etc. for adjusting magnetic characteristics is adopted. Therefore, the disk substrate temperature is slightly cooled when the protective film is formed. On the other hand, in this technical means, since the secondary heat treatment is performed again before forming the magnetic recording layer, the temperature of the disk substrate during the formation of the protective film is kept at about 200 to 300 ° C.
By setting the gas pressure and sputtering power to low values under this heat-retaining condition and performing the sputtering process, the film characteristics of amorphous graphite in which amorphous graphite is randomly arranged (adhesion to the magnetic recording layer, surface smoothness) It is possible to form an amorphous carbon film having excellent properties, abrasion resistance, and corrosion resistance).

【0013】尚、磁気記録媒体のディスク基板について
は従来と同様の材料を適用することができ、例えば、磁
気ディスクとして使用されるものについてはアルミニウ
ム、アルミニウム合金、セラミックス、硬質プラスチッ
ク等から成る円形状の板材や、この表面に無電解メッキ
等によりNi−P合金、Ni−Cu−P合金等の被膜を
形成し上記板材の表面を硬化処理したもの等が適用でき
る。この硬化処理した板材は、公知のように研摩テープ
や研摩液を使用して板材の円周方向にほぼ同心円状の傷
をつける粗面化加工いわゆるテクスチャ加工を施す。ま
た、上記磁気記録層を構成する記録材料としては、γ−
Fe2 3 から成るスパッタリング膜や、Co系、Co
Ni系、CoNiCr系、CoPt系、CoCrTa
系、Fe系等のスパッタリング膜、蒸着膜、メッキ膜等
従来と同様の材料が適用でき、かつ、磁気特性を調整す
るために下地層としてCr、Cr合金等の被膜を設けて
もよい。更に、保護膜の耐摩耗性を改善する潤滑剤につ
いても、従来と同様、フロロカーボン系等の材料が適用
できる。
For the disk substrate of the magnetic recording medium, the same materials as in the prior art can be applied. For example, those used as magnetic disks have a circular shape made of aluminum, aluminum alloy, ceramics, hard plastic or the like. It is possible to apply the plate material described above, or a material in which a coating film of Ni-P alloy, Ni-Cu-P alloy or the like is formed on the surface by electroless plating and the surface of the plate material is cured. As is well known, the hardened plate material is subjected to a so-called roughening process using a polishing tape or a polishing liquid to make substantially concentric scratches in the circumferential direction of the plate material. Further, as the recording material constituting the magnetic recording layer, γ-
Sputtered film made of Fe 2 O 3 , Co-based, Co
Ni-based, CoNiCr-based, CoPt-based, CoCrTa
A conventional material such as a sputtered film, a Fe-based sputtered film, a vapor-deposited film, a plated film can be applied, and a film such as Cr or a Cr alloy may be provided as an underlayer to adjust the magnetic characteristics. Further, as a lubricant for improving the wear resistance of the protective film, a fluorocarbon material or the like can be applied as in the conventional case.

【0014】[0014]

【作用】請求項1〜2に係る発明によれば、磁気記録層
を保護する保護膜がスパッタリング法で成膜され非晶質
ダイヤモンド中に非晶質グラファイトが無秩序に並んだ
構造の非晶質カーボン膜にて構成されている。
According to the present invention, the protective film for protecting the magnetic recording layer is formed by the sputtering method, and the amorphous graphite has a structure in which amorphous graphite is randomly arranged. It is composed of a carbon film.

【0015】そして、かかる構造の非晶質カーボン保護
膜は、ガス圧とスパッタパワーが高めに設定されている
DCスパッタリングにより成膜されたカーボン保護膜と
CVD法で成膜されたカーボン保護膜との中間的な特性
を備えている。
The amorphous carbon protective film having such a structure includes a carbon protective film formed by DC sputtering in which gas pressure and sputtering power are set to be high and a carbon protective film formed by a CVD method. It has the intermediate characteristics of.

【0016】すなわち、上記条件に設定されているDC
スパッタリング法により成膜されたカーボン保護膜に較
べて表面平滑性と耐摩耗性及び緻密性に優れ、他方、C
VD法で成膜されたカーボン保護膜に較べて膜硬度と膜
応力がそれ程高くないため磁気ヘッドとの接触に伴うヘ
ッドの損傷が少なくかつ磁気記録層に対する密着性も優
れている。
That is, the DC set under the above conditions
Excellent surface smoothness, abrasion resistance and compactness compared to carbon protective film formed by sputtering method, while C
Since the film hardness and the film stress are not so high as compared with the carbon protective film formed by the VD method, the head is less damaged due to contact with the magnetic head and the adhesion to the magnetic recording layer is excellent.

【0017】従って、保護膜の磁気記録層に対する密着
性、表面平滑性、及び、耐摩耗性の向上を図ることが可
能となり、かつ、磁気記録層の耐腐食性を飛躍的に向上
できると共に、接触に伴う磁気ヘッドの損傷も低減する
ことが可能となる。
Therefore, the adhesion of the protective film to the magnetic recording layer, the surface smoothness, and the wear resistance can be improved, and the corrosion resistance of the magnetic recording layer can be dramatically improved. It is also possible to reduce damage to the magnetic head due to contact.

【0018】[0018]

【実施例】以下、本発明を磁気ディスクに適用した実施
例について詳細に説明する。
EXAMPLES Examples in which the present invention is applied to a magnetic disk will be described in detail below.

【0019】尚、この磁気ディスクは、図1に示すよう
にアルミニウム合金(Mg:4重量部,Al:96重量
部)から成る基板1と、この基板1上に無電解メッキ法
により成膜されたNi−P合金の硬化処理膜2と、この
硬化処理膜2上にクロムから成る下地層(図示せず)を
介しDCマグネトロンスパッタリング法にて成膜された
厚さ300ÅのCoCrTa磁気記録層3と、この磁気
記録層3上にDCスパッタリング法で成膜されたカーボ
ン保護膜4とでその主要部が構成され、かつ、この保護
膜4上にパーフロロポリエーテルの潤滑層5が形成され
て成るものである。
As shown in FIG. 1, this magnetic disk has a substrate 1 made of an aluminum alloy (Mg: 4 parts by weight, Al: 96 parts by weight) and a film formed on the substrate 1 by electroless plating. The Ni—P alloy hardened film 2 and the CoCrTa magnetic recording layer 3 having a thickness of 300 Å formed by the DC magnetron sputtering method on the hardened film 2 via the underlayer (not shown) made of chromium. And a carbon protective film 4 formed on the magnetic recording layer 3 by a DC sputtering method, the main part of which is formed, and a lubricating layer 5 of perfluoropolyether is formed on the protective film 4. It consists of

【0020】[実施例1]無電解メッキ法にてNi−P
合金の硬化処理膜2が成膜された上記アルミニウム合金
から成る直径3.5インチの基板1に対し、ラップ加工
及びポリッシュ加工を施して表面粗さRmax (基準長さ
内の最高山頂から最深谷底までの高さ)が300Å以下
の表面粗度を有するディスク基板を製造した。
[Example 1] Ni-P by electroless plating
A substrate 1 having a diameter of 3.5 inches and made of the above-mentioned aluminum alloy on which the alloy hardened film 2 is formed is subjected to lapping and polishing to obtain a surface roughness R max (from the highest peak to the deepest within the reference length). A disk substrate having a surface roughness of 300 Å or less) was manufactured.

【0021】この粗さを有する基板1表面に対し、ポリ
エステルベースフィルム上に平均粒径6μmのアルミナ
砥粒が結着されて成る研摩テープを一定の力で押付けて
テクスチャ加工を施し、その表面粗さをRtmで約550
Åに設定した。
On the surface of the substrate 1 having this roughness, a polishing tape made by binding alumina abrasive grains having an average particle size of 6 μm on a polyester base film is pressed with a constant force to perform texture processing, and the surface roughness is obtained. R tm about 550
Set to Å.

【0022】次に、このテクスチャ加工が施された基板
1をDCスパッタリング装置のチャンバー内にセット
し、チャンバー内の圧力が約10-7Torrになるまで真空
ポンプ装置により排気した後、チャンバー内に設置され
たヒーターにより上記基板1を300℃に加熱した。
Next, the textured substrate 1 is set in a chamber of a DC sputtering apparatus, and the chamber is evacuated by a vacuum pump apparatus until the pressure in the chamber reaches about 10 -7 Torr. The substrate 1 was heated to 300 ° C. by the installed heater.

【0023】そして、この基板1上に、DCスパッタリ
ング法により基板温度:300℃,Arガス圧:10 m
Torr,DC投入電力:5W/cm2 の条件下で厚さ50
0ÅのCrを成膜して磁気特性を調整するための下地層
(図示せず)を形成し、かつ、上記基板1を再度ヒータ
ーにより加熱して基板温度を300℃にした後、基板1
とスパッタリング用ターゲットの間に(−150V)の
バイアス電圧を印加して、厚さ300ÅのCoCrTa
磁気記録層3を成膜した。
Then, on this substrate 1, the substrate temperature was 300 ° C. and the Ar gas pressure was 10 m by the DC sputtering method.
Torr, DC input power: thickness 50 under the condition of 5 W / cm 2.
After forming an underlayer (not shown) for adjusting magnetic properties by depositing 0Å Cr, and heating the substrate 1 again by a heater to raise the substrate temperature to 300 ° C., the substrate 1
A bias voltage of (-150V) is applied between the sputtering target and the sputtering target, and CoCrTa with a thickness of 300Å is applied.
The magnetic recording layer 3 was formed.

【0024】次いで、上記基板温度が200〜300℃
に保温されている状態下で非晶質カーボンターゲットを
用いたRFスパッタリング法により上記磁気記録層3上
にカーボン保護膜4を成膜して磁気ディスクを求めた。
Next, the substrate temperature is 200 to 300 ° C.
A magnetic disk was obtained by forming a carbon protective film 4 on the magnetic recording layer 3 by an RF sputtering method using an amorphous carbon target under the condition of being kept warm.

【0025】尚、スパッタリング条件と保護膜の膜厚に
ついては表1に示すように、RFスパッタパワー:0.
8KW,アルゴンガス圧:8mTorr,膜厚:350
Åである。
Regarding the sputtering conditions and the thickness of the protective film, as shown in Table 1, RF sputtering power: 0.
8 kW, argon gas pressure: 8 mTorr, film thickness: 350
It is Å.

【0026】また、このカーボン保護膜4のラマン散乱
分光分析により得られたラマンスペクトルを図2に示
し、このラマンスペクトルのラマンシフトとその半値巾
及びピーク強度比のデータを表1に示す。
FIG. 2 shows the Raman spectrum obtained by the Raman scattering spectroscopic analysis of the carbon protective film 4, and Table 1 shows the Raman shift of the Raman spectrum and its half-value width and peak intensity ratio data.

【0027】そして、これ等のデータからこのカーボン
保護膜4は非晶質ダイヤモンド中に非晶質グラファイト
が無秩序に並んだ非晶質カーボン構造を有していること
が確認された。
From these data, it was confirmed that the carbon protective film 4 had an amorphous carbon structure in which amorphous graphite was randomly arranged in amorphous diamond.

【0028】[実施例2]RFスパッタリング法に代え
て表1に示したDCスパッタリング条件で同じく表1に
示した膜厚のカーボン保護膜4を成膜して磁気ディスク
を求めたことを除き実施例1と略同一である。
[Example 2] Except that a magnetic disk was obtained by forming a carbon protective film 4 of the same thickness shown in Table 1 under the DC sputtering conditions shown in Table 1 instead of the RF sputtering method. This is almost the same as in Example 1.

【0029】尚、このカーボン保護膜4のラマン散乱分
光分析により得られたラマンスペクトルを図2に示すと
共にこのラマンスペクトルのラマンシフトとその半値巾
及びピーク強度比のデータを表1に示す。
The Raman spectrum obtained by the Raman scattering spectroscopic analysis of the carbon protective film 4 is shown in FIG. 2, and the Raman shift of the Raman spectrum and the data of the half width and peak intensity ratio are shown in Table 1.

【0030】そして、これ等のデータからこのカーボン
保護膜4は非晶質ダイヤモンド中に非晶質グラファイト
が無秩序に並んだ非晶質カーボン構造を有していること
が確認された。
From these data, it was confirmed that the carbon protective film 4 had an amorphous carbon structure in which amorphous graphite was randomly arranged in amorphous diamond.

【0031】[比較例1]上記下地層形成後の基板の再
加熱処理を施さないで(すなわち基板温度を200〜3
00℃に保温しない条件で)表1に示したスパッタリン
グ条件(DCスパッタパワー:7.0KW,アルゴンガ
ス圧:15mTorr)で同じく表1に示した膜厚(3
70Å)のカーボン保護膜を成膜して磁気ディスクを求
めたことを除き実施例と略同一である。
[Comparative Example 1] The substrate after the above underlayer was formed was not reheated (that is, the substrate temperature was 200 to 3).
Under the sputtering conditions (DC sputtering power: 7.0 kW, argon gas pressure: 15 mTorr) shown in Table 1 (without heating at 00 ° C.), the film thickness (3
70 Å) A carbon protective film was formed to obtain a magnetic disk, which is substantially the same as the embodiment.

【0032】尚、このカーボン保護膜のラマン散乱分光
分析により得られたラマンスペクトルを図2に示すと共
にこのラマンスペクトルのラマンシフトとその半値巾及
びピーク強度比のデータを表1に示す。
The Raman spectrum obtained by the Raman scattering spectroscopic analysis of this carbon protective film is shown in FIG. 2, and the Raman shift of this Raman spectrum and the data of its half width and peak intensity ratio are shown in Table 1.

【0033】[比較例2]成膜法としてDCスパッタリ
ング法に変えてCVD法を適用し、かつ、上記下地層形
成後の基板の再加熱処理を施さないで(すなわち基板温
度を200〜300℃に保温しない条件で)表1に示し
た適用ガスと適用条件で同じく表1に示した膜厚のカー
ボン保護膜を成膜して磁気ディスクを求めたことを除き
実施例と略同一である。
[Comparative Example 2] The CVD method was applied instead of the DC sputtering method as the film forming method, and the substrate was not reheated after the underlayer was formed (that is, the substrate temperature was 200 to 300 ° C). This example is substantially the same as the example except that a magnetic disk was obtained by forming a carbon protective film having the same film thickness as shown in Table 1 under the applicable gas and condition shown in Table 1 (without heating).

【0034】尚、このカーボン保護膜のラマン散乱分光
分析により得られたラマンスペクトルを図2に示すと共
に、このラマンスペクトルのラマンシフトとその半値巾
及びピーク強度比のデータを表1に示す。
The Raman spectrum obtained by the Raman scattering spectroscopic analysis of this carbon protective film is shown in FIG. 2, and the Raman shift of the Raman spectrum and its half value width and peak intensity ratio data are shown in Table 1.

【0035】[比較例3]カーボンターゲットに変えて
SiO2 ターゲットを適用し、かつ、上記下地層形成後
の基板の再加熱処理を施さないで(すなわち基板温度を
200〜300℃に保温しない条件で)表1に示したス
パッタリング条件で同じく表1に示した膜厚のSiO2
保護膜を成膜して磁気ディスクを求めたことを除き実施
例と略同一である。
[Comparative Example 3] A SiO 2 target was applied instead of the carbon target, and the substrate was not reheated after the underlayer was formed (that is, the substrate temperature was not kept at 200 to 300 ° C.). Under the sputtering conditions shown in Table 1, SiO 2 having the same film thickness shown in Table 1
The procedure is substantially the same as that of the example except that a magnetic disk is obtained by forming a protective film.

【0036】尚、このSiO2 保護膜についてはラマン
散乱分光分析がなされていない。
Raman scattering spectroscopy analysis has not been performed on this SiO 2 protective film.

【0037】[0037]

【表1】 『比較テスト』次に、各実施例並びに各比較例に係る磁
気ディスクについて以下に述べるような各種比較テスト
を行った。
[Table 1] "Comparison Test" Next, various comparison tests as described below were performed on the magnetic disks according to the examples and the comparison examples.

【0038】(1)動摩擦係数テスト 各磁気ディスクの保護膜上にスピンコート法でパーフロ
ロポリエーテル(クライトックス,デュポン社製商品
名)を25Å塗布して潤滑層を形成し、回転スピンドル
にこの磁気ディスクをセットすると共にこの磁気ディス
クの半径20mmの位置に薄膜磁気ヘッド(スライダ材
質:Al2 3 ・TiC,スライダ寸法:長さ3.20
mm、幅:2.66mm,荷重:7.2g重)をおいた後、
磁気ディスクを1rpmで回転させて各磁気ディスクの
1周の動摩擦係数を評価した。
(1) Dynamic friction coefficient test A protective layer of each magnetic disk was coated with 25 Å of perfluoropolyether (trade name, manufactured by Craytox, DuPont) by a spin coating method to form a lubricating layer, and this was applied to a rotary spindle. A thin film magnetic head (slider material: Al 2 O 3 .TiC, slider size: length 3.20) is set at a position with a radius of 20 mm on this magnetic disk.
mm, width: 2.66 mm, load: 7.2 g weight),
The magnetic disk was rotated at 1 rpm, and the dynamic friction coefficient of one revolution of each magnetic disk was evaluated.

【0039】そして、この結果を表2に示す。The results are shown in Table 2.

【0040】(2)CSSテスト また、上記薄膜磁気ヘッドを用い、0rpm(すなわち
薄膜磁気ヘッドが磁気ディスク面に接触している状態)
→3600rpm(すなわち薄膜磁気ヘッドが磁気ディ
スク面から浮上している状態。尚、本試験では浮上量:
0.13μm)→0rpm(すなわち薄膜磁気ヘッドが
再び浮上状態から接触状態に戻る)の工程を30秒の周
期で行ってCSSテスト(コンタクト・スタート・アン
ド・ストップ)を実施し、開始してから5000回後の
摩擦係数、20000回後の摩擦係数、並びに2000
0回後で48時間放置後の摩擦係数をそれぞれ測定し
た。そして、この結果を同じく表2に示す。
(2) CSS Test Using the above thin film magnetic head, 0 rpm (that is, the thin film magnetic head is in contact with the magnetic disk surface)
→ 3600 rpm (that is, the thin film magnetic head is floating above the magnetic disk surface. In this test, the flying height is:
0.13 μm) → 0 rpm (that is, the thin film magnetic head returns from the flying state to the contact state again) in a cycle of 30 seconds to perform a CSS test (contact start and stop), and after starting Friction coefficient after 5000 times, friction coefficient after 20000 times, and 2000
After 0 times, the friction coefficient after standing for 48 hours was measured. The results are also shown in Table 2.

【0041】(3)吸着テスト また、上記薄膜磁気ヘッドを各磁気ディスク面上に接触
させた状態で温度30℃,湿度80%RHの環境下で4
8時間放置した後、磁気ディスクを回転させて磁気ディ
スク起動時における摩擦係数いわゆる吸着力を測定し
た。
(3) Adsorption test Further, with the thin film magnetic head in contact with the surface of each magnetic disk, the temperature is 30 ° C. and the humidity is 80% RH.
After standing for 8 hours, the magnetic disk was rotated and the friction coefficient at the time of starting the magnetic disk, so-called adsorption force was measured.

【0042】そして、この結果を同じく表2に示す。The results are also shown in Table 2.

【0043】(4)耐腐食性テスト 同じく、各磁気ディスクを温度30℃,湿度80%RH
の環境下で48時間放置した後、磁気ディスクの外観検
査並びに信号エラー検査(但し、各実施例並びに比較例
に係る磁気ディスクを2枚用い、ディスク4面当たりの
平均信号エラー個数を測定している)を行い、各磁気デ
ィスクについてその耐腐食性をテストした。
(4) Corrosion resistance test Similarly, each magnetic disk was tested at a temperature of 30 ° C. and a humidity of 80% RH.
After being left for 48 hours under the above environment, magnetic disk appearance inspection and signal error inspection (however, two magnetic disks according to each Example and Comparative Example were used, and the average number of signal errors per disk surface was measured. And the corrosion resistance of each magnetic disk was tested.

【0044】[0044]

【表2】 『評価』 (1)動摩擦係数テスト 表2に示された結果から明らかなように各実施例に係る
磁気ディスクにおいてはその動摩擦係数が0.22以下
と小さく比較例3に係る磁気ディスクに較べて潤滑層形
成後における保護膜の耐摩耗性が良好であることが確認
できた。
[Table 2] "Evaluation" (1) Dynamic friction coefficient test As is clear from the results shown in Table 2, the magnetic disk according to each example has a small dynamic friction coefficient of 0.22 or less as compared with the magnetic disk according to Comparative Example 3. It was confirmed that the wear resistance of the protective film after the formation of the lubricating layer was good.

【0045】尚、比較例1〜2に係る磁気ディスクの動
摩擦係数は0.18〜0.22と実施例1〜2と略同一
の値を示しているが、以下に述べるCSSテストの結果
から明らかなように経時的に摩擦係数が大きくなり経時
劣化が激しいことが確認できる。
The dynamic friction coefficient of the magnetic disks according to Comparative Examples 1 and 2 is 0.18 to 0.22, which is substantially the same as that of Examples 1 and 2, but from the results of the CSS test described below. As is apparent, it can be confirmed that the friction coefficient increases with time and the deterioration with time is severe.

【0046】(2)CSSテスト 表2に示された結果から明らかなように各実施例に係る
磁気ディスクにおいては20000回後の摩擦係数が
0.56以下と小さく、かつ、48時間後の摩擦係数も
0.45以下と小さい。従って、保護膜の経時的劣化が
小さいことが確認できる。
(2) CSS Test As is clear from the results shown in Table 2, in the magnetic disks according to the respective examples, the friction coefficient after 20,000 times was as small as 0.56 and the friction after 48 hours. The coefficient is as small as 0.45 or less. Therefore, it can be confirmed that the deterioration of the protective film with time is small.

【0047】これに対し、比較例1に係る磁気ディスク
においてはそのラマンシフトの高波数側ピーク値の半値
巾が小さく、また、ピーク強度比[強度(1340〜1
390cm-1)/強度(1550〜1620cm-1)]
も0.33と大きく、実施例のカーボン膜と異なり非晶
質グラファィト構造になっているものと思われる。この
ため、動摩擦係数は実施例のそれと大差はないがCSS
テストでの摩擦係数はCSS回数が増えるにつれて増加
しており耐摩耗性に劣ることが確認できた。また、比較
例2に係る磁気ディスクについてもそのラマンシフトの
高波数側ピーク値の半値巾が小さく、またピーク強度比
[強度(1340〜1390cm-1)/強度(1550
〜1620cm-1)]も0.3を越えており各実施例の
カーボン膜とはその構造が異なっていることが確認でき
る。このため、動摩擦係数は実施例に較べて優れている
がCSSテストの摩擦係数はCSS回数が20,000
回を越えた後に大きく上昇し、かつ、磁気ディスクに一
部傷が発生していることから保護膜が経時的に剥離しそ
の密着力が劣っていることが確認できた。また、比較例
3に係る磁気ディスクについては動摩擦係数と共にCS
Sテストの摩擦係数も0.52〜0.92と大きく、耐
摩耗性に劣っていることが確認できた。
On the other hand, in the magnetic disk according to Comparative Example 1, the half-value width of the peak value on the high wavenumber side of the Raman shift is small, and the peak intensity ratio [strength (1340-1.
390 cm -1 ) / strength (1550 to 1620 cm -1 )]
Is as large as 0.33, which seems to have an amorphous graphite structure unlike the carbon film of the example. Therefore, the dynamic friction coefficient is not so different from that of the embodiment, but the CSS
It was confirmed that the friction coefficient in the test increased as the number of CSSs increased and the wear resistance was inferior. Also, in the magnetic disk according to Comparative Example 2, the half-value width of the peak value on the high wave number side of the Raman shift is small, and the peak intensity ratio [strength (1340 to 1390 cm -1 ) / strength (1550
.About.1620 cm −1 )] also exceeds 0.3, and it can be confirmed that the structure is different from the carbon film of each example. For this reason, the coefficient of dynamic friction is superior to the examples, but the coefficient of friction in the CSS test is 20,000 when the CSS count is 20,000.
It was confirmed that the protective film was peeled off over time due to a large rise after exceeding the number of times and partial scratches were generated on the magnetic disk, resulting in poor adhesion. For the magnetic disk according to Comparative Example 3, the dynamic friction coefficient and CS
The friction coefficient in the S test was also large at 0.52 to 0.92, and it was confirmed that the wear resistance was inferior.

【0048】(3)吸着テスト 各実施例に係る磁気ディスクにおいては表2に示された
結果から明らかなようにその摩擦係数が0.45以下と
小さいのに対し比較例に係る磁気ディスクにおいては比
較例2を除きこれより大きな値を示し、特に、SiO2
の保護膜が適用された比較例3に係る磁気ディスクにお
いてはその摩擦係数が1.42と大きな値を示してい
る。
(3) Adsorption Test As is clear from the results shown in Table 2 in the magnetic disks according to the respective examples, the friction coefficient thereof is as small as 0.45 or less, while in the magnetic disks according to the comparative example. Except for Comparative Example 2, it shows a larger value than this, especially SiO 2
In the magnetic disk according to Comparative Example 3 to which the protective film of No. 2 is applied, the friction coefficient thereof is as large as 1.42.

【0049】従って、吸着テストにおいても実施例に係
る磁気ディスクは優れている。
Therefore, the magnetic disk according to the example is also excellent in the adsorption test.

【0050】(4)耐腐食性テスト 各実施例に係る磁気ディスクにおいては磁気記録層の腐
食に伴う信号エラーが認められず、磁気記録層の耐腐食
性が優れていることが確認できた。
(4) Corrosion resistance test No signal error due to corrosion of the magnetic recording layer was observed in the magnetic disks according to the examples, and it was confirmed that the magnetic recording layer had excellent corrosion resistance.

【0051】これに対し、比較例2を除く各比較例の磁
気ディスクにおいては経時的に信号エラー個数が増大し
ておりその耐腐食性が実施例と較べて劣っていることが
確認された
On the other hand, in the magnetic disks of Comparative Examples except Comparative Example 2, it was confirmed that the number of signal errors increased with time and the corrosion resistance thereof was inferior to that of the Examples.

【0052】[0052]

【発明の効果】請求項1〜2に係る発明によれば、保護
膜の磁気記録層に対する密着性、表面平滑性、及び、耐
摩耗性の向上が図れ、かつ、磁気記録層の耐腐食性を飛
躍的に向上できると共に接触に伴う磁気ヘッドの損傷も
低減することが可能となる。
According to the first and second aspects of the present invention, the adhesion of the protective film to the magnetic recording layer, the surface smoothness, and the abrasion resistance can be improved, and the corrosion resistance of the magnetic recording layer can be improved. It is possible to remarkably improve the magnetic field and reduce damage to the magnetic head due to contact.

【0053】従って、磁気ヘッドの寿命を延長できると
共に長期に亘って記録情報を安定して保存できる効果を
有している。
Therefore, the life of the magnetic head can be extended and the recorded information can be stably stored for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る磁気ディスクの断面図。FIG. 1 is a sectional view of a magnetic disk according to an embodiment.

【図2】実施例並びに比較例に係るカーボン保護膜のラ
マンスペクトル図。
FIG. 2 is a Raman spectrum diagram of carbon protective films according to examples and comparative examples.

【符号の説明】[Explanation of symbols]

1 基板 2 硬化処理膜 3 磁気記録層 4 保護膜 5 潤滑層 1 substrate 2 hardening treatment film 3 magnetic recording layer 4 protective film 5 lubrication layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録層とこの磁気記録層上に設けら
れた保護膜とを備える磁気記録媒体において、 上記保護膜が、スパッタリング法にて成膜され非晶質ダ
イヤモンド中に非晶質グラファイトが無秩序に並んでい
る非晶質カーボン膜により構成されていることを特徴と
する磁気記録媒体。
1. A magnetic recording medium comprising a magnetic recording layer and a protective film provided on the magnetic recording layer, wherein the protective film is formed by sputtering to form amorphous graphite in amorphous diamond. The magnetic recording medium is characterized by being composed of an amorphous carbon film in which are randomly arranged.
【請求項2】 上記非晶質カーボン膜のラマン散乱分光
分析により得られたラマンスペクトルのラマンシフト
が、1550〜1620cm-1と1340〜1390c
-1にピークを有し、かつ、そのピーク強度比(134
0〜1390cm-1/1550〜1620cm-1)が
0.3以下であると共に、高波数側の上記ピークの半値
巾が400〜500m-1であることを特徴とする請求項
1記載の磁気記録媒体。
2. Raman shifts of Raman spectra obtained by Raman scattering spectroscopy of the amorphous carbon film are 1550 to 1620 cm −1 and 1340 to 1390c.
It has a peak at m -1 and its peak intensity ratio (134
0~1390cm -1 / 1550~1620cm -1) with is 0.3 or less, the magnetic recording according to claim 1, wherein the half-value width of the peak of the high frequency side is characterized in that it is a 400~500M -1 Medium.
JP33923791A 1991-12-24 1991-12-24 Magnetic recording medium Pending JPH05174368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33923791A JPH05174368A (en) 1991-12-24 1991-12-24 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33923791A JPH05174368A (en) 1991-12-24 1991-12-24 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05174368A true JPH05174368A (en) 1993-07-13

Family

ID=18325552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33923791A Pending JPH05174368A (en) 1991-12-24 1991-12-24 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05174368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89324A1 (en) * 1999-04-13 2002-06-18 Mitsui Mining & Smelting Co Target on sputtering for forming protective film on optical recording media and process for preparing the target
EP2000560A1 (en) 1999-07-08 2008-12-10 Sumitomo Electric Industries, Ltd Hard coating and coated member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89324A1 (en) * 1999-04-13 2002-06-18 Mitsui Mining & Smelting Co Target on sputtering for forming protective film on optical recording media and process for preparing the target
EP2000560A1 (en) 1999-07-08 2008-12-10 Sumitomo Electric Industries, Ltd Hard coating and coated member

Similar Documents

Publication Publication Date Title
US5567512A (en) Thin carbon overcoat and method of its making
US5227211A (en) Magnetic recording disk medium comprising a magnetic thin film and a carbon overcoat having surface nitrogen atoms, a specified carbon structure, and oxygen atoms
US6146737A (en) Magnetic recording medium having a nitrogen-containing barrier layer
JPH0660368A (en) Magnetic recording medium and its production
US6537686B1 (en) Magneto-resistance recording media comprising a silicon nitride corrosion barrier layer and a C-overcoat
US5981018A (en) Magnetic recording media used in a high-density hard disk drive
US20040009372A1 (en) Magnetic recording medium and manufacturing method thereof
JPH0554373A (en) Magnetic recording medium
JPH05174369A (en) Magnetic recording medium
JPH05174368A (en) Magnetic recording medium
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
US6322880B1 (en) Magneto-resistance recording media comprising a foundation layer and a C-overcoat
JP2594534B2 (en) Magnetic storage
US20050074636A1 (en) Magnetic recording medium and method for producing the same
JP3705474B2 (en) Magnetic recording medium
US20040258873A1 (en) Flexible magnetic disc medium
JP2001052327A (en) Magnetic recording medium and magnetic recording apparatus
Lal et al. Asymmetric DC-magnetron sputtered carbon-nitrogen thin-film overcoat for rigid-disk applications
US6340521B1 (en) Magnetic recording medium with protective barrier layer
JPS6379230A (en) Magnetic recording medium
JPH05325164A (en) Magnetic recording medium and its manufacture
JP2513688B2 (en) Magnetic recording media
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JPH05174372A (en) Production of magnetic recording medium
JPH0636270A (en) Magnetic recording medium