JPH0517376A - Hydrogenation of crude naphthalenes - Google Patents

Hydrogenation of crude naphthalenes

Info

Publication number
JPH0517376A
JPH0517376A JP16996491A JP16996491A JPH0517376A JP H0517376 A JPH0517376 A JP H0517376A JP 16996491 A JP16996491 A JP 16996491A JP 16996491 A JP16996491 A JP 16996491A JP H0517376 A JPH0517376 A JP H0517376A
Authority
JP
Japan
Prior art keywords
naphthalene
hydrogenation
containing component
crude
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16996491A
Other languages
Japanese (ja)
Inventor
Nobuyasu Kanda
伸靖 神田
Jisaku Tanimichi
治作 谷道
Kenichi Nagata
健一 永田
Koichi Kono
光一 河野
Yasuhiro Suda
康裕 須田
Mitsuaki Yamada
光昭 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Osaka Gas Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Osaka Gas Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP16996491A priority Critical patent/JPH0517376A/en
Publication of JPH0517376A publication Critical patent/JPH0517376A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To hydrogenate a crude naphthalene to be a pretreatment for producing high-purity naphthalene in high yield. CONSTITUTION:In hydrogenating a crude naphthalene to decompose and remove impurities therewith comprising a sulfur-containing component, a nitrogen- containing component, an oxygen-containing component and a neutral component such as tetralin or olefins, etc., or to convert into compounds readily separable from naphthalene, the sulfur-containing component and the nitrogen-containing component are hydrogenated or partially hydrogenated under 0-20kg/cm<2>.G reaction pressure. Loss of naphthalene in a hydrogenating process can extremely be reduced and yield of purified naphthalene is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粗ナフタリン類の水素化
処理方法に関し、より詳細には防虫剤、染料中間物、有
機顔料の原料、高機能プラスチクスの原料、高機能繊維
の原料、機能性ポリマーの原料、医薬品原料、界面活性
剤原料等として用いられる高品質の精製ナフタリン及び
精製アルキルナフタリンを製造するための前処理方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating crude naphthalene compounds, and more particularly, to a insect repellent, a dye intermediate, a raw material for organic pigments, a raw material for high-performance plastics, a raw material for high-performance fibers and functionality The present invention relates to a pretreatment method for producing high-quality purified naphthalene and purified alkylnaphthalene used as raw materials for polymers, raw materials for pharmaceuticals, raw materials for surfactants, and the like.

【0002】[0002]

【従来の技術】ナフタリン類の精製法には蒸留法、圧搾
法、冷却晶析法、圧力晶析法、酸・アルカリ処理法、吸
着法、白土処理法等があるが、これらの方法は全て前処
理または後処理工程として水素化処理を含んでいる。こ
の水素化の目的は、上記の各分離方法において分離の妨
げとなる不純物、例えばナフタリンと沸点の近い成分、
固溶体を形成する成分等を分解除去することであり、含
硫黄成分の大部分を硫化水素まで分解し、また含窒素成
分の大部分をアンモニアまで分解するような水素化処理
を採用していた。具体的には、特に反応圧力が、従来法
においては全て20kg/cm2・ G 以上であった。このよう
な条件では、水素化処理工程における脱硫率及び脱窒素
率は高いが、同時にナフタリン自体も水素化されてテト
ラリンとなる割合が高く (一般に5〜10%) 、ナフタリ
ンの歩留りが減少するという欠点も合わせ持っていた。
また、生成するテトラリンは中性の不純物であるため、
簡便な酸・アルカリ処理や吸着法では除去できないとい
う問題もあった。
BACKGROUND OF THE INVENTION There are distillation methods, squeezing methods, cooling crystallization methods, pressure crystallization methods, acid / alkali treatment methods, adsorption methods, clay treatment methods, etc. as methods for purifying naphthalene compounds. A hydrotreatment is included as a pre-treatment or a post-treatment process. The purpose of this hydrogenation is to impure the separation in each of the above separation methods, for example, a component having a boiling point close to that of naphthalene,
It was to decompose and remove components forming a solid solution, and a hydrogenation treatment was adopted in which most of the sulfur-containing components were decomposed to hydrogen sulfide and most of the nitrogen-containing components were decomposed to ammonia. Specifically, the reaction pressure was 20 kg / cm 2 · G or higher in all of the conventional methods. Under such conditions, the desulfurization rate and denitrification rate in the hydrotreating step are high, but at the same time, the proportion of naphthalene itself hydrogenated to tetralin is high (generally 5 to 10%), and the yield of naphthalene decreases. I also had some drawbacks.
In addition, since the tetralin produced is a neutral impurity,
There is also a problem that it cannot be removed by a simple acid / alkali treatment or adsorption method.

【0003】[0003]

【発明が解決しようとする課題】上記従来実施されてい
る水素化処理条件では、粗製ナフタリン、粗製アルキル
ナフタリン、及びこれらを含むコールタール、石炭液化
油等の蒸留カット分またはその脱酸油等 (本明細書で
は、これらを総称して粗ナフタリン類と云う) 中の不純
物を水素化または水素化分解しようとすると、ナフタリ
ンの核水素化も避けられなかった。また、ナフタリン核
の水素化を抑制しようとすると、不純物が残留しその後
の分離工程での分離効率を低下させるという弊害があっ
た。
Under the above-mentioned conventional hydrotreating conditions, crude naphthalene, crude alkylnaphthalene, and distillation tar fractions such as coal tar and coal liquefied oil containing these or deoxidized oil thereof ( In the present specification, when these impurities are collectively referred to as crude naphthalenes), the nuclear hydrogenation of naphthalene is unavoidable when hydrogenating or hydrocracking the impurities. Further, when trying to suppress the hydrogenation of the naphthalene nuclei, there is a problem that impurities remain and the separation efficiency in the subsequent separation step is reduced.

【0004】本発明は、ナフタリン核の水素化を抑制し
ながら、不純物、特にオレフィン成分、含窒素成分、含
硫黄成分を選択的に水素化、または水素化分解すること
によって、水素化工程中でまたはその後段の処理工程で
の不純物の分離を容易にし、純度の高いナフタリンを高
収率で製造するための前処理方法を提供することを目的
とする。
According to the present invention, while suppressing the hydrogenation of naphthalene nuclei, impurities, particularly olefin components, nitrogen-containing components and sulfur-containing components are selectively hydrogenated or hydrocracked, thereby performing the hydrogenation process. Alternatively, it is an object of the present invention to provide a pretreatment method for facilitating the separation of impurities in the subsequent treatment step and producing high-purity naphthalene in a high yield.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明は、粗ナフタリン類を水素化処理して該粗ナフタリン
類に含まれる含硫黄成分、含窒素成分、含酸素成分およ
びテトラリン、オレフィン類等の中性成分等から成る不
純物を分解除去、またはナフタリンとの分離が容易な化
合物へ転換するに当り、反応圧力0〜20kg/cm2・ G で
前記含硫黄成分および含窒素成分を部分水素化すること
を特徴とするものである。
Means for Solving the Problems The present invention, which achieves the above object, provides a sulfur-containing component, a nitrogen-containing component, an oxygen-containing component, tetralin, and olefins contained in the crude naphthalene obtained by hydrotreating the crude naphthalene. In the process of decomposing and removing impurities consisting of neutral components, etc., or converting to compounds that can be easily separated from naphthalene, the sulfur-containing components and nitrogen-containing components are partially hydrogenated at a reaction pressure of 0 to 20 kg / cm 2 · G. It is characterized by

【0006】本発明においては、前述した粗ナフタリン
類が水素化処理の対象となる。水素化触媒としては、従
来から使用されているNi、Co、W、Mo、Fe、Pt、Ru、P
d、Rh、Si、Ge、Sn、Pb等VIa族、VIII族またはIVb族
の金属またはその酸化物、硫化物の1種、または2種以
上の混合触媒、またはそれらをアルミナ、シリカ、ゼオ
ライト、活性炭の担体に担持してなる触媒のいづれも使
用することができる。好ましくは、低温・低圧での活性
の高い触媒、たとえばアルミナ担持のニッケル・モリブ
デン触媒、アルミナ担持のコバルト・モリブデン触媒、
アルミナ担持のルテニウム触媒、活性炭担持の白金触媒
等である。また反応圧力は0〜20kg/cm2・ G 、好まし
くは5〜10kg/cm2・ G であり、反応温度は100〜300
℃、空塔速度 (LHSV) は0.2〜5H-1、水素/ナフタリ
ン流量比(G/L) は50〜2000NM3/M3 である。
In the present invention, the above-mentioned crude naphthalene compounds are subject to hydrotreatment. As a hydrogenation catalyst, Ni, Co, W, Mo, Fe, Pt, Ru, P, which have been conventionally used, are used.
d, Rh, Si, Ge, Sn, Pb and other VIa group, VIII or IVb group metals or their oxides, one or more mixed catalysts of sulfides, or mixed catalysts thereof with alumina, silica, zeolite, It is possible to use any of the catalysts supported on a carrier of activated carbon. Preferably, a catalyst having high activity at low temperature and low pressure, for example, an alumina-supported nickel-molybdenum catalyst, an alumina-supported cobalt-molybdenum catalyst,
Examples thereof include a ruthenium catalyst supported on alumina and a platinum catalyst supported on activated carbon. The reaction pressure is 0 to 20 kg / cm 2 · G, preferably 5 to 10 kg / cm 2 · G, and the reaction temperature is 100 to 300.
The superficial velocity (LHSV) is 0.2 to 5 H -1 , and the hydrogen / naphthalene flow rate ratio (G / L) is 50 to 2000 NM 3 / M 3 .

【0007】上記のような反応条件において、ナフタリ
ン核水素化率1.0%以下、脱硫率20〜95% (但し、部分
水素化を含めた含硫黄成分の水素化率は40〜100%) 、
脱窒素率10〜80% (但し、部分水素化を含めた含窒素成
分の水素化率は50〜100%)、脱酸素率20〜90%、オレ
フィン水素化率80〜100%となるように、粗ナフタリン
類を水素化処理する。
Under the above reaction conditions, the naphthalene nucleus hydrogenation rate is 1.0% or less and the desulfurization rate is 20 to 95% (however, the hydrogenation rate of the sulfur-containing component including partial hydrogenation is 40 to 100%). ,
Denitrification rate 10 to 80% (however, hydrogenation rate of nitrogen-containing components including partial hydrogenation is 50 to 100%), deoxygenation rate 20 to 90%, olefin hydrogenation rate 80 to 100% Hydrotreating the crude naphthalene compounds.

【0008】すなわち本発明においては、脱硫率、脱窒
素率をそれほど高くしなくても、含硫黄成分および含窒
素成分の部分水素化率を高くし、且つオレフィンの水素
化率を高くするものである。この結果、本発明によれ
ば、ナフタリンの核水素化率が1.0%以下に抑えられ、
ナフタリンの核水素化反応よりも、ヘテロ環の水素化反
応の選択性が高い。従って、ナフタリン自体が水素化さ
れテトラリンとなる反応を著しく抑制でき、ナフタリン
の歩留りを向上させることができる。また、同時にナフ
タリンの核水素化に伴う水素消費量を低減させることが
できる。以下、本発明の実施例を述べる。
That is, in the present invention, even if the desulfurization rate and the denitrification rate are not so high, the partial hydrogenation rate of the sulfur-containing component and the nitrogen-containing component is increased and the hydrogenation rate of the olefin is increased. is there. As a result, according to the present invention, the nuclear hydrogenation rate of naphthalene can be suppressed to 1.0% or less,
The selectivity of the heterocyclic hydrogenation reaction is higher than that of the naphthalene nuclear hydrogenation reaction. Therefore, the reaction of naphthalene itself being hydrogenated to tetralin can be significantly suppressed, and the yield of naphthalene can be improved. At the same time, it is possible to reduce the hydrogen consumption amount accompanying the nuclear hydrogenation of naphthalene. Examples of the present invention will be described below.

【0009】[0009]

【実施例】【Example】

実施例1 コールタールの蒸留分別によって得られた粗ナフタリン
(95%ナフタリン:組成を表1に示す) を、固定床反応
器を備えた連続式水素化設備を用いて水素化処理した。
設備のプロセスフローダイヤグラムを図1に示す。この
図1において、原料 (1) の粗ナフタリンは溶融槽
(2) で溶融された後、計量槽 (3) に移され、循環ポ
ンプ (4) 及びフィードポンプ (5) によって系内に供
給される。一方、水素 (6) は水素調圧弁 (7) を経て
粗ナフタリンと合流する。粗ナフタリンは、水素と共に
予熱器 (8) で加熱された後、水素化反応器 (9) にて
水素化される。水素化されたナフタリンは冷却された
後、気液分離器 (10) で液相として分離され、レットダ
ウン弁 (11) で常圧の製品受槽 (12) に製品(13) とし
て抜き出される。また、ガスはミストセパレータ (14)
でミストドレン (15) を除去された後、循環ガスコンプ
レッサー(16) によって循環される。また、系内を一定
圧に保つため、調圧弁 (17) より余剰ガス (18) が放出
される。尚、水素元圧が低い場合は、水素調圧弁 (7)
の前に水素メークアップコンプレッサーを入れることも
できる。
Example 1 Crude naphthalene obtained by distillation fractionation of coal tar
(95% naphthalene: composition shown in Table 1) was hydrotreated using a continuous hydrogenation equipment equipped with a fixed bed reactor.
The process flow diagram of the equipment is shown in Fig. 1. In FIG. 1, the raw material (1), crude naphthalene, is a melting tank.
After being melted in (2), it is transferred to the measuring tank (3) and supplied into the system by the circulation pump (4) and the feed pump (5). On the other hand, hydrogen (6) merges with crude naphthalene via the hydrogen pressure regulating valve (7). The crude naphthalene is heated with hydrogen in the preheater (8) and then hydrogenated in the hydrogenation reactor (9). After the hydrogenated naphthalene is cooled, it is separated as a liquid phase by a gas-liquid separator (10) and is discharged as a product (13) by a letdown valve (11) into a product receiving tank (12) at atmospheric pressure. Also, gas is a mist separator (14)
After the mist drain (15) has been removed at, it is circulated by the circulating gas compressor (16). Further, in order to keep the pressure inside the system at a constant level, excess gas (18) is released from the pressure regulating valve (17). If the hydrogen source pressure is low, the hydrogen pressure regulator (7)
You can also put a hydrogen makeup compressor in front of.

【0010】反応条件は表2に示したように、反応圧力
6kg/cm2・ G 、反応温度 240、または 260℃、空塔速
度 (LHSV) 2H-1、G/L (水素/ナフタリン流量比)
200〜800NM3/M3 とした。水素化触媒としてはアルミナ
に担持したニッケル・モリブデン触媒を予備硫化して用
いた。これらの条件で水素化されたナフタリンをガスク
ロマトグラフ及びGC−MSにより定性及び定量分析し
た。各水素化ナフタリンの組成を表3に示す。次に、水
素化処理工程でのナフタリンの核水素化率 (即ち、ナフ
タリンの損失率) 、代表的な不純物の水素化率、及び水
素消費量を表4に示す。ベンゾチオフェン及びキノリン
の場合は、それらが部分水素化も含めてどれだけ水素化
されたかを示す水素化率と、ヘテロ環が完全に水素化分
解されて、硫黄と窒素が各々硫化水素、またはアンモニ
アとして除去された割合を示す分解率との両方を示し
た。ここで各水素化率と分解率は以下のように定義し
た。また、水素消費量は入出口の水素ガス流量と水素濃
度より算出した。
As shown in Table 2, reaction conditions are as follows: reaction pressure 6 kg / cm 2 · G, reaction temperature 240, or 260 ° C., superficial velocity (LHSV) 2H -1 , G / L (hydrogen / naphthalene flow rate ratio). )
It was set to 200 to 800 NM 3 / M 3 . As the hydrogenation catalyst, a nickel-molybdenum catalyst supported on alumina was pre-sulfidized and used. The naphthalene hydrogenated under these conditions was qualitatively and quantitatively analyzed by gas chromatography and GC-MS. The composition of each hydrogenated naphthalene is shown in Table 3. Next, Table 4 shows the nuclear hydrogenation rate of naphthalene (that is, the naphthalene loss rate) in the hydrotreatment step, the hydrogenation rate of typical impurities, and the hydrogen consumption. In the case of benzothiophene and quinoline, the hydrogenation rate indicating how much they were hydrogenated, including partial hydrogenation, and the complete heterolysis of the heterocycle, sulfur and nitrogen are hydrogen sulfide or ammonia, respectively. Both the rate of decomposition and the rate of decomposition are shown. Here, each hydrogenation rate and decomposition rate were defined as follows. The hydrogen consumption was calculated from the hydrogen gas flow rate at the inlet and outlet and the hydrogen concentration.

【0011】 ナフタリン核水素化率 :(t-T/p)/(n+t-T/p) ×10
0 オレフィン水素化率 : (1-i・p/I)×100 ベンゾチオフェン水素化率: (1-b・p/B)×100 ベンゾチオフェン分解率 : (1-(b+bH)p/B)×100 キノリン水素化率 : (1-b・p/Q)×100 キノリン分解率 : (1-(q+qH)p/Q)×100 p :製品 (水素化ナフタリン) /原料 (粗ナフタリ
ン)(wt/wt) T :原料中のテトラリン含有率 (%) t :製品中のテトラリン含有率 (%) n :製品中のナフタリン含有率 (%) I :原料中の1,2,3-及び1,2,4-メチルインデン含有率
(%) i :製品中の1,2,3-及び1,2,4-メチルインデン含有率
(%) B :原料中のベンゾチオフェン含有率 (%) b :製品中のベンゾチオフェン含有率 (%) bH :製品中のジヒドロベンゾチオフェン含有率 (%) Q :原料中のキノリン含有率 (%) q :製品中のキノリン含有率 (%) qH :製品中のテトラヒドロキノリン含有率 (%) 表3及び表4より、不純物の水素化あるいは水素化分解
を適度に制御する本発明の水素化処理方法によれば、ナ
フタレンの損失を1%以下に抑え、即ち中性不純物であ
るテトラリンの生成を1%以下に抑え、また水素消費量
も抑制できることがわかる。
Naphthalene nuclear hydrogenation rate: (tT / p) / (n + tT / p) × 10
0 Olefin hydrogenation rate: (1-i ・ p / I) × 100 Benzothiophene hydrogenation rate: (1-b ・ p / B) × 100 Benzothiophene decomposition rate: (1- (b + b H ) p / B) × 100 Quinoline hydrogenation rate: (1-b ・ p / Q) × 100 Quinoline decomposition rate: (1- (q + q H ) p / Q) × 100 p: Product (hydrogenated naphthalene) / raw material ( Crude naphthalene) (wt / wt) T: Tetralin content in raw material (%) t: Tetralin content in product (%) n: Naphthalene content in product (%) I: 1,2 in raw material 3- and 1,2,4-methylindene content
(%) I: Content of 1,2,3- and 1,2,4-methylindene in the product
(%) B: Benzothiophene content in the raw material (%) b: Benzothiophene content in the product (%) b H : Dihydrobenzothiophene content in the product (%) Q: Quinoline content in the raw material ( %) Q: Quinoline content in the product (%) q H : Tetrahydroquinoline content in the product (%) From Tables 3 and 4, the hydrogen of the present invention that appropriately controls hydrogenation or hydrogenolysis of impurities According to the chemical treatment method, the loss of naphthalene can be suppressed to 1% or less, that is, the production of tetralin, which is a neutral impurity, can be suppressed to 1% or less, and the hydrogen consumption can be suppressed.

【0012】次に、このように本発明に従って得られた
実施例1−1から1−3の水素化ナフタリンを、さらに
白土処理、単蒸留、及び圧搾処理をすることによって、
いずれの場合も、純度99.9%以上の精製ナフタリンを得
ることができた。また、その最終的な精製ナフタリン収
率は、いずれの場合も、原料の95%ナフタリン中に含ま
れていたナフタリンをベースとして98%以上であった。
Next, the hydrogenated naphthalene of Examples 1-1 to 1-3 thus obtained according to the present invention is further subjected to a clay treatment, a simple distillation, and a compression treatment.
In any case, purified naphthalene with a purity of 99.9% or more could be obtained. In addition, the final purified naphthalene yield was 98% or more based on the naphthalene contained in 95% naphthalene as the raw material in each case.

【0013】尚、水素化処理後の精製処理は、ここでは
一例として、上記の方法によったが、本発明は水素化処
理後の精製方法を規定するものではなく、通常の精製方
法は全て適用可能である。
The refining treatment after the hydrotreating was performed by the above method as an example here, but the present invention does not define the refining method after the hydrotreating, and all the usual refining methods are used. Applicable.

【0014】表1 Table 1

【0015】表2 Table 2

【0016】表3 Table 3

【0017】表4 Table 4

【0018】比較例1 実施例1の場合と同じ95%ナフタリンを、同じ水素化処
理設備で、同じ触媒を用いて反応圧力25kg/cm2・ G 、
反応温度 280℃で水素化処理した。反応条件、水素化ナ
フタリンの組成、各水素化率等を実施例1と同様に表2
から表3に示す。この比較例1の水素化ナフタリンを、
実施例1の場合と同様に精製処理した場合、精製ナフタ
リン純度は99.9%であったが、その収率は原料中のナフ
タリンをベースとして87.5%であった。 実施例2 表5に示した組成の95%ナフタリンを、回分式装置を用
いて水素化処理した。反応条件を表6に示す。ここで、
触媒A、Cはアルミナに担持したニッケル・モリブデン
触媒を予備硫化したもの、触媒Dはアルミナに担持した
コバルト・モリブデン触媒を予備硫化したもの、触媒E
は活性炭に担持した白金触媒、及び触媒E' は触媒Eを
還元処理したものである。得られた各水素化ナフタリン
の組成を表7に、また各成分毎の水素化率と分解率を表
8に示す。これらの結果は、触媒によって、不純物の水
素化を適度に抑制するための反応条件が異なることを示
す。特に、白金触媒はオレフィン水素化反応とキノリン
水素化反応の選択性が高く、反応温度が高くてもナフタ
レン核の水素化がそれほど進まないという特徴のあるこ
とがわかる。
Comparative Example 1 The same 95% naphthalene as in Example 1 was used in the same hydrotreating facility and the same catalyst was used to produce a reaction pressure of 25 kg / cm 2 · G,
It was hydrotreated at a reaction temperature of 280 ° C. The reaction conditions, the composition of hydrogenated naphthalene, the respective hydrogenation rates, etc. are the same as in Example 1 and shown in Table 2.
To Table 3 below. The hydrogenated naphthalene of Comparative Example 1 was
When the purification treatment was carried out in the same manner as in Example 1, the purified naphthalene purity was 99.9%, but the yield was 87.5% based on naphthalene in the raw material. Example 2 95% naphthalene having the composition shown in Table 5 was hydrotreated using a batch apparatus. The reaction conditions are shown in Table 6. here,
Catalysts A and C are pre-sulfated nickel-molybdenum catalysts supported on alumina, catalyst D is pre-sulfated cobalt-molybdenum catalysts supported on alumina, catalyst E
Is a platinum catalyst supported on activated carbon, and catalyst E ′ is a catalyst E subjected to a reduction treatment. The composition of each hydrogenated naphthalene obtained is shown in Table 7, and the hydrogenation rate and decomposition rate of each component are shown in Table 8. These results indicate that the reaction conditions for appropriately suppressing the hydrogenation of impurities differ depending on the catalyst. In particular, the platinum catalyst has high selectivity for the olefin hydrogenation reaction and the quinoline hydrogenation reaction, and it can be seen that the hydrogenation of the naphthalene nucleus does not proceed so much even if the reaction temperature is high.

【0019】表5 Table 5

【0020】 [0020]

【0021】 [0021]

【0022】 [0022]

【0023】比較例2 実施例2と同じ95%ナフタリンを、同じ回分式装置を用
いて、従来のナフタリン類の水素化精製条件で水素化し
た。触媒としては、前述の触媒A、C、Dの他にアルミ
ナに担持したコバルト・モリブデン触媒を予備硫化した
触媒B、及びニッケル、モリブデンと共にケイ素及び鉄
を同時にアルミナに担持した触媒を予備硫化した触媒F
の計5種を用いた。反応条件を表9に、得られた水素化
ナフタリンの組成を表10に、及び各成分毎の水素化率あ
るいは分解率を表11に示す。
Comparative Example 2 The same 95% naphthalene as in Example 2 was hydrogenated using the same batch apparatus under conventional hydrorefining conditions for naphthalene compounds. As the catalyst, in addition to the catalysts A, C, and D described above, a catalyst B obtained by presulfiding a cobalt-molybdenum catalyst supported on alumina, and a catalyst obtained by presulfiding a catalyst simultaneously supporting silicon and iron together with nickel and molybdenum on alumina are used. F
5 types in total were used. The reaction conditions are shown in Table 9, the composition of the obtained hydrogenated naphthalene is shown in Table 10, and the hydrogenation rate or decomposition rate of each component is shown in Table 11.

【0024】 [0024]

【0025】 [0025]

【0026】 [0026]

【0027】[0027]

【発明の効果】実施例1および2と比較例1および2と
の比較から明らかなように、本発明による水素化処理方
法は、ナフタリン精製プロセス中の重要な工程の一つで
ある水素化処理工程におけるナフタリンの損失を著しく
低減させ、即ち最終的な精製ナフタリンの歩留りを向上
させ、且つ水素消費量を低減させることができる。ま
た、本発明の提示する水素化処理条件は、従来の方法と
比較して反応圧力が低いため、動力コストを低減させる
ことができる。さらに、この反応圧力が10kg/cm2・G 未
満である場合は、水素化処理設備が高圧ガス製造設備の
対象外となり、設備コストも低減される。
As is clear from the comparison between Examples 1 and 2 and Comparative Examples 1 and 2, the hydrotreating method according to the present invention is one of the important steps in the naphthalene purification process. The loss of naphthalene in the process can be significantly reduced, that is, the yield of the final purified naphthalene can be improved, and the hydrogen consumption can be reduced. In addition, the hydrotreating conditions proposed by the present invention have a lower reaction pressure as compared with the conventional method, so that the power cost can be reduced. Further, when the reaction pressure is less than 10 kg / cm 2 · G, the hydrotreatment equipment is not included in the high pressure gas production equipment, and the equipment cost is reduced.

【0028】このように本発明はナフタリン類の水素化
処理工程の経済性を向上させることができる。また、そ
れは同時にナフタリン類の精製プロセス全体の経済性を
も向上させるものである。
As described above, the present invention can improve the economical efficiency of the naphthalene hydrotreating process. At the same time, it improves the economic efficiency of the entire naphthalene purification process.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す工程図である。 1 粗ナフタリン類 2 溶融槽 6 水素 8 予熱器 9 水素化反応器 13 水素化ナフタリ
FIG. 1 is a process drawing showing an embodiment of the present invention. 1 Crude Naphthalenes 2 Melting Tank 6 Hydrogen 8 Preheater 9 Hydrogenation Reactor 13 Hydrogenated Naphthalene

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 (72)発明者 永田 健一 千葉県市原市八幡海岸通1番地 三井造船 株式会社千葉事業所内 (72)発明者 河野 光一 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 須田 康裕 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 山田 光昭 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location // C07B 61/00 300 (72) Inventor Kenichi Nagata 1 Yawata Kaigan Dori, Ichihara, Chiba Mitsui Engineering & Shipbuilding Chiba Plant (72) Inventor Koichi Kono 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) In-house Yasuhiro Suda 4-1-1, Hirano-cho, Chuo-ku, Osaka-shi, Osaka No. 2 in Osaka Gas Co., Ltd. (72) Inventor Mitsuaki Yamada 4 1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 粗ナフタリン類を水素化して該粗ナフタ
リン類に含まれる含硫黄成分、含窒素成分、含酸素成分
およびテトラリン、オレイン類等の中性成分等から成る
不純物を分解除去、またはナフタリンとの分離が容易な
化合物へ転換するに当り、反応圧力0〜20kg/cm2・ G
で前記含硫黄成分および含窒素成分を水素化または部分
水素化することを特徴とする粗ナフタリン類の水素化処
理方法。
Claim: What is claimed is: 1. An impurity comprising hydrogenated crude naphthalene, which comprises sulfur-containing components, nitrogen-containing components, oxygen-containing components and neutral components such as tetralin and oleins contained in the crude naphthalene. Reaction pressure 0 to 20 kg / cm 2 · G when decomposing and removing or converting to a compound that can be easily separated from naphthalene
1. A method for hydrotreating crude naphthalene compounds, which comprises hydrogenating or partially hydrogenating the sulfur-containing component and the nitrogen-containing component.
JP16996491A 1991-07-10 1991-07-10 Hydrogenation of crude naphthalenes Pending JPH0517376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16996491A JPH0517376A (en) 1991-07-10 1991-07-10 Hydrogenation of crude naphthalenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16996491A JPH0517376A (en) 1991-07-10 1991-07-10 Hydrogenation of crude naphthalenes

Publications (1)

Publication Number Publication Date
JPH0517376A true JPH0517376A (en) 1993-01-26

Family

ID=15896091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16996491A Pending JPH0517376A (en) 1991-07-10 1991-07-10 Hydrogenation of crude naphthalenes

Country Status (1)

Country Link
JP (1) JPH0517376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174828A (en) * 2014-03-13 2015-10-05 Jfeケミカル株式会社 Naphthalene purification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168625A (en) * 1987-12-24 1989-07-04 Kawasaki Steel Corp Production of purified naphthalene
JPH0374336A (en) * 1989-08-16 1991-03-28 Kawasaki Steel Corp Desulfurization of methylnaphthalene oil
JPH03106837A (en) * 1989-09-19 1991-05-07 Osaka Gas Co Ltd Production of high-purity naphthalene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168625A (en) * 1987-12-24 1989-07-04 Kawasaki Steel Corp Production of purified naphthalene
JPH0374336A (en) * 1989-08-16 1991-03-28 Kawasaki Steel Corp Desulfurization of methylnaphthalene oil
JPH03106837A (en) * 1989-09-19 1991-05-07 Osaka Gas Co Ltd Production of high-purity naphthalene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174828A (en) * 2014-03-13 2015-10-05 Jfeケミカル株式会社 Naphthalene purification method

Similar Documents

Publication Publication Date Title
JP2966985B2 (en) Catalytic hydrotreating method for heavy hydrocarbon oil
KR840001851B1 (en) Process for preparing low pour lubricating oils
KR840001581B1 (en) Manufacture of hydrocracked low pour lubricating oils
US5522983A (en) Hydrocarbon hydroconversion process
CN109689843A (en) The method of gasoline and diesel oil is recycled from Aromatic Hydrocarbon United Plant tower bottom distillate
US3717571A (en) Hydrogen purification and recycle in hydrogenating heavy mineral oils
CN1125960A (en) Method for the hydroisomerisation processing of feedstocks from the fischer-tropsch process
CN105802665B (en) A kind of method for hydrogen cracking and reaction unit of maximum volume production heavy naphtha
JP2002513844A (en) Three-stage hydrogen treatment method including steam stage
EP1926696B1 (en) Method for the separation of polymeric by-products from 1,4-butynediol
JP2023547592A (en) Methods for producing renewable fuels
JP2001523277A (en) Reverse order operation of a hydroprocessing reactor system.
JPS5922756B2 (en) Method for hydrocracking petroleum hydrocarbons contaminated with nitrogen compounds
JPH0782573A (en) Method and apparatus for treating petroleum
JP2002513848A (en) Multi-stage hydrotreatment of middle distillates to avoid hue bodies
JP2004511623A (en) Two-stage hydrogenation and stripping of diesel fuel oil in a single reactor
JP4304353B2 (en) Purification of naphthalene by separation following selective hydrotreating.
CN103059974B (en) Hydrotreatment method for producing food grade solvent naphtha
CN102482594A (en) Process for hydrotreating a hydrocarbon oil
CN1197940C (en) Method for producing good quality diesel oil
CN101492605B (en) Shale oil hydrogenation process
JPH0517376A (en) Hydrogenation of crude naphthalenes
DE69920971T2 (en) STEP-BY-STEP UP-RUN HYDRO-KRACKING PROCESS WITH NON-CATALYTIC REMOVAL OF FIRES FROM THE FIRST STEAMING STAGE
JPH05310612A (en) Purification of oil containing methylnaphthalene
AU614865B2 (en) Process for the hydrocracking of a hydrocarbonaceous feedstock

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960827