JPH0517292B2 - - Google Patents

Info

Publication number
JPH0517292B2
JPH0517292B2 JP60072918A JP7291885A JPH0517292B2 JP H0517292 B2 JPH0517292 B2 JP H0517292B2 JP 60072918 A JP60072918 A JP 60072918A JP 7291885 A JP7291885 A JP 7291885A JP H0517292 B2 JPH0517292 B2 JP H0517292B2
Authority
JP
Japan
Prior art keywords
copper alloy
corrosion resistance
film
silicate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60072918A
Other languages
Japanese (ja)
Other versions
JPS61231131A (en
Inventor
Shoji Umibe
Kenki Minamoto
Sadayasu Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7291885A priority Critical patent/JPS61231131A/en
Publication of JPS61231131A publication Critical patent/JPS61231131A/en
Publication of JPH0517292B2 publication Critical patent/JPH0517292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、給水・給湯用配管材等として優れた
耐食性(殊に耐孔食性および耐潰食性)と耐Cu
イオン溶出性を備えた銅合金管に関するものであ
る。 [従来の技術] 給水・給湯用等の配管材料としては耐食性及び
加工性の優れた脱酸銅が汎用されている。しかし
ながら脱酸銅にしても十分に要求特性を満たして
いるとは言え、水質によつては徐々にCuイオン
が溶出し青水発生の問題を生ずることがある。即
ち配管からのCuイオン溶出量が多くなつて上水
の水質基準値(Cu:1.0ppm)を超えると、Cuイ
オンにより洗濯物等が青く着色するといつた問題
が生じてくる。但し使用期間が経過するにつれて
表面に酸化皮膜が形成されCuイオンの溶出が無
くなることが知られている。しかしながら給水・
給湯用管の内面にその様な酸化銅皮膜が形成され
るまでには1〜2年といつた長期間を要し、その
間のCuイオンの溶出の問題は回避できない。一
方、また別の条件では局部的に腐食によつて孔が
あく現象即ち孔食現象が現われることがあり、こ
の場合には、短期間のうちに管壁が貫通されて水
洩れ事故を招来する。殊に孔食は酸留塩素濃度の
高い軟水の温水中において発生し易く解決が急が
れている。 本発明者等はこうした状況のもとでCuイオン
の溶出及び孔食を確実に阻止する技術について検
討し、先に特許出願を行なつた(特願昭59−
258303号)。 即ちこの先願発明は、合金元素として適量の
Al及びSnを含有させることによつて耐孔食性を
改善し、また銅合金管の内面にシリケート皮膜を
形成することによつて耐Cuイオン溶出性を高め
たものである。 即ち水中、殊に温水中で銅管の内面に最初に形
成される酸化皮膜はCu2Oであり、このCu2O皮膜
が内面に万遍なく形成されている限りCuイオン
の溶出及び孔食は生じ難い。しかし酸化剤(残留
塩素)濃度の高い温水中においては、Cu2Oは短
期間のうちにCuOにまで酸化され該酸化皮膜の大
部分はCuOに変換してしまう。 CuO皮膜は自然電位が高くて孔食発生電位を容
易に越えるので孔食発生に至る。従つて孔食を無
くす為には銅管の内面を常にCu2O皮膜で被つて
おけばよいのであるが、Cu2Oは前述の様に短期
間でCuOに変換してしまう。従つて銅表面に形成
される酸化銅皮膜の構成々分をCu2O>CuOの状
態で安定に維持させる方策が要望される。この点
上記先願発明では、合金元素としてAl:0.01〜
1.5%及びSn:0.03〜2.5%[但し(Al+Sn)≧0.1
%]を含有させることによりかなりの達成度で
Cu2O皮膜を安定化し、耐孔食性を改善している。
但しAl及Snの添加だけでは耐孔食性が完全とい
えないので、更に銅合金中に含まれる酸素量を
100ppm以下に規制し、これにより高レベルの耐
孔食性を得ることに成功している。またCuイオ
ンの溶出をより完全に防止する為に上記構成に加
えて銅合金管の内面に10〜100000Åの厚さでシリ
ケート皮膜を形成する方法も提案している。尚シ
リケート皮膜の厚さが10Å未満の場合にはCuイ
オンの溶出を1ppm以下に抑えることができず、
一方100000Åを超えると皮膜が厚くなり過ぎる為
に管にたわみ等の外力が作用したときに皮膜に亀
裂乃至剥離が生じ易くなるところから、シリケー
ト皮膜の厚さは10Å以上100000Å以下が好ましい
としている。ところが本発明者等がその後更に研
究を進めるうち、前記先願発明に係る銅合金管に
おいては、管内に流体を高流速で流すと、脱酸銅
の場合と同様に潰食と呼ばれる一種のエロージヨ
ン現象が発生するという新たな問題を残している
ことが明らかになつてきた。 [発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたもの
であつて耐孔食性および耐Cuイオン発生性が改
善されるだけでなく、耐潰食性にも優れた耐食性
銅合金管を提供しようとするものである。 [問題点を解決するための手段] 上記目的を達成した本発明は、下記の元素を必
須成分として含む他、 Al:0.01〜1.5% Sn:0.03〜2.5% 但し(Al+Sn)≧0.1% Zn、Fe、Ni、Co、Cr、Caからなる群から選
択される1種又は2種以上を下記条件を満足する
様に含有し、且つ酸素含有量が100ppm以下に規
制され、残部がCu及び不可避不純物からなる銅
合金を管状に成形してなるところに第1発明の要
旨があり、さらに上記に加えて、銅合金管の内面
に厚さ10〜100000Åのシリケート皮膜を形成して
なるところに第2発明の要旨が存在する。 Zn:0.1〜10% Fe、Ni、Co、、Cr、、Caの内1種又は2種以
上:夫々0.005〜1.0%で合計2%以下。 [作 用] Al及びSnを含有させる理由は前述の通りであ
り、これによつて銅合金管内面のCu2O皮膜を安
定化させることができ、耐孔食性および耐Cuイ
オン溶出性を相当に改善することができる。 また酸素含有量を100ppm以下に規定すること
により前述した如く高レベルの耐孔食性を得るこ
とができる。尚本発明を実施するに当たつては、
酸素含有量を100ppm以下に規制することを目的
として溶製段階でP、Mg、B等の脱酸剤を使用
することが多いが、これら脱酸性元素の一部は不
純物として合金中に歩留り、加工性を阻害する恐
れがある。従つて材料の加工性を考慮するとこれ
ら脱酸剤の添加は多くても0.5%、好ましくは0.1
%以下に抑えることが望ましい。 次に本発明においては、Zn、Fe、Ni、Co、、
Cr、、Caからなる群から選択される1種または2
種以上を適正量添加する必要がある。即ちZnは、
銅合金管内に液体を高流速で流した際に発生する
潰食現象を抑制する作用があり、こうしたZnの
作用は銅合金中に0.1〜10%含有させることによ
つて有効に発揮される。しかして添加量が0.1%
未満では耐潰食性改善効果が十分に発揮されず、
一方添加量が10%を超えると当該合金管の応力腐
食割れ感受性が高くなる。またZnと同様の耐潰
食性改善効果を有する元素としてFe、Ni、Co、、
Cr、、Caを挙げることができ、これらから選択さ
れる1種又は2種以上の元素を夫々0.005〜1.0%
含有させることによつても耐潰食性を改善するこ
とができる。但しこれらの元素が夫々単独で1.0
%を超え、或は合計で2.0%を超えると、材料の
加工性が著しく阻害される。尚一般に銅合金の機
械的性質は脱酸銅と略同等であり、加工し易いと
いう利点がある反面機械的強度がやや不足する
為、より高い機械的強度が求められる用途に適用
する場合は脱酸銅と同様厚肉とする必要がある。
この点上述のFe、Ni、Co、、Cr、、Caの各成分を
上記規定量配合すると、機械的性質を飛躍的に向
上させるという効果を併せて享受することができ
る。 上記の構成要件を充足する銅合金管は前述の様
な作用を有しており、従来の耐食性銅合金管に比
べて卓越した耐孔食性並びに耐潰食性を発揮す
る。しかしながら使用開始初期の酸化銅皮膜(以
下特記しない限りCu2O>CuOの酸化銅皮膜を意
味する)が形成が不完全である時期においては、
若干量のCuイオンが溶出することは否めない。
そこで使用開始期からCuイオンの溶出を実用上
問題にならない程度まで軽減する為には、前述の
如く上記銅合金管の内面に適当な厚さのシリケー
ト皮膜を形成しておくのがよい。 シリケート皮膜を形成させる化合物の具体例と
してはリチウムシリケート、ナトリウムシリケー
ト、カリウムシリケート、アミンシリケート、エ
チルシリケート、コロイダルシリカ等が挙げられ
るが、本発明で特にシリケート系を選択した理由
は次の通りである。 ろう付け時等の加熱によつて皮膜が劣化する
ことがなく、且つ有害ガスを生じない。 使用中に皮膜が剥離する場合、極めて微細
(100μm以下)な破片となつて溶出していくの
で管やバルブ等を閉塞する恐れがなく、且つ人
体に全く無害である。 シリケート皮膜は親水性で且つ多孔質である
為、該皮膜の下部(即ち銅合金素材の表面)で
は酸化銅皮膜が徐々に成長していく。しかもシ
リケート皮膜自体は水に可溶性であり、人体に
無害なSiO2となつて徐々に水中に溶出してい
くが、シリケート皮膜による表面皮覆効果が失
なわれた時点(シリケート皮膜が溶出してしま
つた時点)ではすでに耐食性の酸化銅皮膜の形
成が完了している為、使用の初期からCuイオ
ンの溶出を実用上問題にならない程度に軽減す
ることができる。 そして上記の様なシリケート皮膜の効果を有効
に発揮させ、殊に使用開始期におけるCuイオン
の溶出量を1ppm未満に抑える為には、膜厚を10
〜100000Åとしなければならない。その理由は前
述の通りである。尚シリケート皮膜の形成法は特
に限定されないが、最も一般的なのは製管工程で
銅合金管内面に付着した潤滑油を脱脂剤により除
去した後、前記シリケート系化合物の単独若しく
は2種以上を水に希釈して管内面に塗布し、加熱
炉或は熱風乾燥炉等で100〜200℃に数分乃至数十
分加熱し脱水する方法である。 ところで通常の脱酸銅管の場合、上記の様な方
法でシリケート皮膜を形成しても該皮膜を強固に
密着させることができず、3か月程度の通水で皮
膜の約5割が剥離して表面保護効果が有効に発揮
されない。しかしながら前述の如く適量のAlを
添加した銅合金管を使用するとシリケート皮膜の
密着性は飛躍的に向上し、シリケート皮膜の表面
保護効果が最大限有効に発揮される。この理由
は、銅合金中のAlとシリケート皮膜中のSiが接
合界面で共有結合を起こす為と考えられる。即ち
本明細書に開示する第2の発明(内面にシリケー
ト皮膜を形成した耐食性銅合金管)において管素
材中に配合されるAlは、前述の如くSnとの共存
による酸化銅皮膜組成の安定化(Cu2O>CuO)
に加えて、シリケート皮膜の密着性向上という重
要な機能を発揮するものである。 [実施例] 実施例 1 第1表に示す化学成分の合金を高周波溶解炉を
用いて溶製し、得られた5Kgの鋳塊を熱間圧延に
よつて厚さ8mmの板材とした。この板材を500℃
×30分の焼鈍に付した後冷間圧延することによ
り、厚さが0.6mmの銅合金板を得た。 これらの試料について、回転円板式潰食促進試
験により耐潰食性を、又浸漬試験により耐孔食性
を夫々調べた。結果を第2表に示す。尚試験条件
は第3表に示す通りとした。
[Industrial Field of Application] The present invention provides excellent corrosion resistance (particularly pitting corrosion resistance and crushing corrosion resistance) and Cu resistance as piping materials for water supply and hot water supply, etc.
This invention relates to a copper alloy tube with ion elution properties. [Prior Art] Deoxidized copper, which has excellent corrosion resistance and workability, is widely used as a piping material for water supply, hot water supply, etc. However, although deoxidized copper satisfies the required properties, depending on the water quality, Cu ions may gradually elute, causing the problem of blue water formation. That is, when the amount of Cu ions eluted from pipes increases and exceeds the water quality standard value for tap water (Cu: 1.0 ppm), problems such as the Cu ions coloring laundry etc. blue arise. However, it is known that as the period of use passes, an oxide film is formed on the surface and Cu ions no longer elute. However, water supply
It takes a long period of time, such as one to two years, for such a copper oxide film to be formed on the inner surface of a hot water supply pipe, and the problem of Cu ion elution cannot be avoided during that time. On the other hand, under other conditions, a phenomenon in which pitting occurs locally due to corrosion may occur, and in this case, the pipe wall is penetrated within a short period of time, resulting in a water leakage accident. . Pitting corrosion is particularly likely to occur in warm, soft water with a high concentration of chlorine chloride, and a solution is urgently needed. Under these circumstances, the present inventors investigated a technology to reliably prevent the elution of Cu ions and pitting corrosion, and filed a patent application (Japanese Patent Application No.
No. 258303). In other words, this prior invention uses an appropriate amount of alloying elements.
Pitting corrosion resistance is improved by containing Al and Sn, and Cu ion elution resistance is enhanced by forming a silicate film on the inner surface of the copper alloy tube. In other words, the first oxide film that forms on the inner surface of a copper pipe in water, especially in hot water, is Cu 2 O, and as long as this Cu 2 O film is evenly formed on the inner surface, Cu ion elution and pitting corrosion will not occur. is unlikely to occur. However, in hot water with a high concentration of oxidizing agent (residual chlorine), Cu 2 O is oxidized to CuO in a short period of time, and most of the oxide film is converted to CuO. The CuO film has a high natural potential that easily exceeds the pitting corrosion potential, leading to pitting corrosion. Therefore, in order to eliminate pitting corrosion, the inner surface of the copper tube should always be covered with a Cu 2 O film, but as mentioned above, Cu 2 O converts to CuO in a short period of time. Therefore, there is a need for a method for stably maintaining the components of the copper oxide film formed on the copper surface in a state where Cu 2 O>CuO. In this regard, in the above-mentioned prior invention, Al as an alloying element: 0.01~
1.5% and Sn: 0.03 to 2.5% [However, (Al + Sn) ≧0.1
%] with a considerable degree of achievement.
It stabilizes the Cu 2 O film and improves pitting corrosion resistance.
However, since pitting corrosion resistance cannot be achieved completely with the addition of Al and Sn, it is necessary to further increase the amount of oxygen contained in the copper alloy.
By regulating the content to 100ppm or less, we have successfully achieved a high level of pitting corrosion resistance. In addition to the above structure, in order to more completely prevent the elution of Cu ions, we have also proposed a method of forming a silicate film with a thickness of 10 to 100,000 Å on the inner surface of the copper alloy tube. Furthermore, if the thickness of the silicate film is less than 10 Å, the elution of Cu ions cannot be suppressed to less than 1 ppm.
On the other hand, if the thickness exceeds 100,000 Å, the film becomes too thick and is likely to crack or peel when an external force such as bending is applied to the pipe. However, as the present inventors proceeded with their research further, they found that in the copper alloy pipe according to the prior invention, when fluid is flowed at a high flow rate inside the pipe, a type of erosion called erosion occurs, as in the case of deoxidized copper. It has become clear that new problems remain, such as the occurrence of phenomena. [Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and provides corrosion resistance that not only improves pitting corrosion resistance and Cu ion generation resistance, but also has excellent crushing corrosion resistance. The aim is to provide copper alloy pipes. [Means for Solving the Problems] The present invention, which has achieved the above object, contains the following elements as essential components: Al: 0.01 to 1.5% Sn: 0.03 to 2.5%, provided that (Al+Sn)≧0.1% Zn, Contains one or more selected from the group consisting of Fe, Ni, Co, Cr, and Ca so as to satisfy the following conditions, and the oxygen content is regulated to 100 ppm or less, with the remainder being Cu and unavoidable impurities. The gist of the first invention is that it is formed by forming a copper alloy consisting of There is a gist of the invention. Zn: 0.1-10% One or more of Fe, Ni, Co, Cr, Ca: 0.005-1.0% each, total 2% or less. [Function] The reason for containing Al and Sn is as mentioned above. This can stabilize the Cu 2 O film on the inner surface of the copper alloy tube, and significantly improves pitting corrosion resistance and Cu ion elution resistance. can be improved. Furthermore, by regulating the oxygen content to 100 ppm or less, a high level of pitting corrosion resistance can be obtained as described above. In carrying out the present invention,
Deoxidizing agents such as P, Mg, and B are often used in the melting stage to control the oxygen content to 100 ppm or less, but some of these deoxidizing elements remain in the alloy as impurities. It may impede processability. Therefore, considering the processability of the material, the addition of these deoxidizing agents is at most 0.5%, preferably 0.1%.
It is desirable to keep it below %. Next, in the present invention, Zn, Fe, Ni, Co,...
One or two selected from the group consisting of Cr, Ca
It is necessary to add an appropriate amount of seeds or more. That is, Zn is
Zn has the effect of suppressing the erosion phenomenon that occurs when a liquid flows at a high flow rate into a copper alloy pipe, and this effect of Zn is effectively exhibited by containing 0.1 to 10% in the copper alloy. However, the amount added is 0.1%
If it is less than that, the effect of improving crushing corrosion resistance will not be sufficiently exhibited.
On the other hand, if the amount added exceeds 10%, the stress corrosion cracking susceptibility of the alloy tube increases. In addition, elements such as Fe, Ni, Co, etc. that have the same effect on improving corrosion resistance as Zn
Examples include Cr, Ca, and 0.005 to 1.0% of one or more elements selected from these.
Also by containing it, the crushing corrosion resistance can be improved. However, each of these elements individually has a value of 1.0
% or the total amount exceeds 2.0%, the processability of the material is significantly inhibited. In general, the mechanical properties of copper alloys are almost the same as deoxidized copper, and while they have the advantage of being easy to process, they are somewhat lacking in mechanical strength, so when used in applications that require higher mechanical strength, deoxidized copper is recommended. Like acid copper, it needs to be thick.
In this regard, when each of the above-mentioned components Fe, Ni, Co, Cr, and Ca is blended in the specified amounts, it is possible to enjoy the effect of dramatically improving mechanical properties. A copper alloy tube that satisfies the above-mentioned structural requirements has the above-mentioned effects, and exhibits superior pitting corrosion resistance and crushing corrosion resistance compared to conventional corrosion-resistant copper alloy tubes. However, at the beginning of use, when the copper oxide film (unless otherwise specified, copper oxide film with Cu 2 O > CuO) is incompletely formed,
It is undeniable that some amount of Cu ions will be eluted.
Therefore, in order to reduce the elution of Cu ions to a level that does not pose a practical problem from the beginning of use, it is preferable to form a silicate film of an appropriate thickness on the inner surface of the copper alloy tube as described above. Specific examples of compounds that form a silicate film include lithium silicate, sodium silicate, potassium silicate, amine silicate, ethyl silicate, colloidal silica, etc., but the reason why silicate-based compounds were particularly selected in the present invention is as follows. . The coating does not deteriorate due to heating during brazing, etc., and no harmful gases are generated. When the film peels off during use, it elutes into extremely fine (100 μm or less) fragments, so there is no risk of clogging pipes, valves, etc., and it is completely harmless to the human body. Since the silicate film is hydrophilic and porous, a copper oxide film gradually grows under the film (ie, on the surface of the copper alloy material). Moreover, the silicate film itself is soluble in water, and gradually dissolves into water as SiO 2 , which is harmless to the human body. Since the formation of a corrosion-resistant copper oxide film has already been completed at the time of initial use, the elution of Cu ions can be reduced to a level that does not pose a practical problem from the beginning of use. In order to effectively demonstrate the effects of the silicate film as described above, and to suppress the amount of Cu ion elution to less than 1 ppm, especially at the beginning of use, the film thickness must be increased to 10
Must be ~100000Å. The reason is as described above. The method for forming the silicate film is not particularly limited, but the most common method is to remove lubricating oil adhering to the inner surface of the copper alloy pipe during the pipe manufacturing process with a degreaser, and then add one or more of the silicate compounds to water. This method involves diluting the solution, applying it to the inner surface of the tube, and dehydrating it by heating it at 100 to 200°C for several minutes to several tens of minutes in a heating furnace or hot air drying oven. By the way, in the case of ordinary deoxidized copper pipes, even if a silicate film is formed using the method described above, it is not possible to firmly adhere the film, and about 50% of the film peels off after about 3 months of water flow. surface protection effect cannot be effectively exerted. However, as mentioned above, when a copper alloy tube containing an appropriate amount of Al is used, the adhesion of the silicate film is dramatically improved, and the surface protection effect of the silicate film is maximized. The reason for this is thought to be that Al in the copper alloy and Si in the silicate film form a covalent bond at the bonding interface. That is, in the second invention disclosed in this specification (corrosion-resistant copper alloy tube with a silicate coating formed on the inner surface), Al mixed into the tube material stabilizes the composition of the copper oxide coating by coexisting with Sn as described above. ( Cu2O >CuO)
In addition, it also performs the important function of improving the adhesion of silicate films. [Examples] Example 1 An alloy having the chemical components shown in Table 1 was melted using a high frequency melting furnace, and the obtained ingot weighing 5 kg was hot rolled into a plate material having a thickness of 8 mm. Heat this board to 500℃
A copper alloy plate with a thickness of 0.6 mm was obtained by annealing for 30 minutes and then cold rolling. These samples were examined for their crushing corrosion resistance by a rotating disk type corrosion acceleration test, and their pitting corrosion resistance by an immersion test. The results are shown in Table 2. The test conditions were as shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表に示す様に、No.1〜5は耐潰食性向上成
分としてZnを適正量添加した実施例であり、優
れた耐孔食性を有するばかりでなく、耐潰食性に
ついても優れた値を示している。No.6〜13は耐潰
食性向上成分としてFe、Ni、Co、、Cr、、Caのい
ずれか1種又は2種以上を適正量添加した実施例
であり、耐孔食性および耐潰食性共に優れた値が
得られた。No.14〜20は耐潰食性向上成分として
Fe、Ni、Co、、Cr、、Caのいずれか1種又は2種
以上並びにZnを適正量添加した実施例で、耐孔
食性が優れると共に、前記実施例より一層優れた
耐潰食性を示している。またNo.6〜20については
Fe、Ni、Co、、Cr、、Caを適正量添加したことの
副次効果として機械的性質が顕著に改善されてい
る。 実施例 2 第4表に示す化学成分の銅合金を用いて22.2mm
φ×0.81mmt×1000mmの供試管を製造し、実施
例1の耐孔食性試験に用いたものと同じ水質のモ
デル給湯水を使用して流速2m/secで通水実験を
行ない、通水開始からのCuイオン溶出量の変化
を求めた。但しCuイオン溶出量は所定の測定期
に各供試管内にモデル給湯水を充満して24時間放
置し、この間に該給湯水中に溶出したCuイオン
を定量することによつて求めた。
[Table] As shown in Table 1, Nos. 1 to 5 are examples in which an appropriate amount of Zn was added as a component for improving crushing corrosion resistance. Shows excellent value. Nos. 6 to 13 are examples in which an appropriate amount of one or more of Fe, Ni, Co, Cr, and Ca was added as a crushing corrosion resistance improving component, and both pitting corrosion resistance and crushing corrosion resistance were improved. Excellent values were obtained. No. 14 to 20 are used as crushing corrosion resistance improving ingredients.
Examples in which one or more of Fe, Ni, Co, Cr, Ca and appropriate amounts of Zn were added showed excellent pitting corrosion resistance and even better crushing corrosion resistance than the previous examples. ing. Regarding No. 6 to 20,
As a side effect of adding appropriate amounts of Fe, Ni, Co, Cr, and Ca, mechanical properties are significantly improved. Example 2 22.2mm using copper alloy with the chemical composition shown in Table 4
A test tube of φ x 0.81 mm t x 1000 mm was manufactured, and a water flow experiment was conducted at a flow rate of 2 m/sec using model hot water of the same quality as that used for the pitting corrosion resistance test in Example 1. Changes in the amount of Cu ion elution from the start were determined. However, the amount of Cu ions eluted was determined by filling each test tube with model hot water during a predetermined measurement period, leaving it for 24 hours, and quantifying the Cu ions eluted into the hot water during this period.

【表】 結果は第1図に示す通りであり、合金成分が適
正である管の内面に適当な厚さのシリケート皮膜
を形成したもの(符号:A,C)では、通水開始
からCuイオンの溶出量を極めて低レベルに抑え
ることができた。しかしシリケート皮膜を形成し
なかつたもの(符号:B,D,F)については、
合金成分の如何を問わず通水初期には高いレベル
のCuイオンが溶出した。またシリケート皮膜を
形成した場合でも、合金成分が適正でないもの
(符号:E)ではシリケート皮膜の密着性が低く
皮膜の寿命が短いので、Cuイオンの溶出抑制効
果が不十分であつた。 [発明の効果] 本発明は以上の様に構成されており、適正量の
Al及びSnを含有させると共に酸素量を制限する
ことによつて卓越した耐孔食性を得ることができ
る。またZn、Fe、Co、、Cr、、Caよりなる群から
選択される成分を適正量含有させることによつて
優れた耐潰食性を得ることができる。特にFe、
Co、、Cr、、Caのいずれかを選択した場合には、
耐潰食性改善効果に加えて機械的性質を大幅に改
善することができ、高い機械的性質が要求される
用途においても管を薄肉化することができる。し
かも銅合金管の内面にシリケート皮膜を形成する
ことにより通水初期におけるCuイオンの溶出量
を大幅に低減することができ、青水発生等の水質
劣化を確実に防止することができる。
[Table] The results are shown in Figure 1. In tubes with appropriate alloy composition and a silicate film of appropriate thickness formed on the inner surface (codes: A and C), Cu ions were released from the start of water flow. We were able to suppress the elution amount to an extremely low level. However, for those that did not form a silicate film (codes: B, D, F),
Regardless of the alloy composition, a high level of Cu ions were eluted at the beginning of water passage. Furthermore, even when a silicate film is formed, if the alloy composition is not appropriate (code: E), the adhesion of the silicate film is low and the life of the film is short, so that the effect of suppressing elution of Cu ions is insufficient. [Effect of the invention] The present invention is configured as described above, and a suitable amount of
By containing Al and Sn and limiting the amount of oxygen, excellent pitting corrosion resistance can be obtained. In addition, excellent corrosion resistance can be obtained by containing an appropriate amount of a component selected from the group consisting of Zn, Fe, Co, Cr, and Ca. Especially Fe,
If you select Co, Cr, or Ca,
In addition to the effect of improving crushing corrosion resistance, mechanical properties can be significantly improved, and pipes can be made thinner even in applications that require high mechanical properties. Moreover, by forming a silicate film on the inner surface of the copper alloy pipe, the amount of Cu ions eluted during the initial stage of water flow can be significantly reduced, and water quality deterioration such as generation of blue water can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通水期間とCuイオン溶出量の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the water flow period and the amount of Cu ion elution.

Claims (1)

【特許請求の範囲】 1 下記の元素を必須成分として含む他、 Al:0.01〜1.5%(重量%:以下同じ) Sn:0.03〜2.5% 但し(Al+Sn)≧0.1% Zn、Fe、Ni、Co、Cr、Caからなる群から選
択される1種又は2種以上を下記条件を満足する
様に含有し、且つ酸素含有量が100ppm以下に規
制され、残部がCi及び不可避不純物からなる銅合
金を管状に成形してなることを特徴とする耐食性
銅合金管。 Zn:0.1〜10% Fe、Ni、Co、Cr、Caの内1種又は2種以
上:夫々0.005〜1.0%で合計2%以下。 2 下記の元素を必須成分として含む他、 Al:0.01〜1.5% Sn:0.03〜2.5% 但し(Al+Sn)≧0.1% Zn、Fe、Ni、Co、Cr、Caからなる群から選択
される1種又は2種以上を下記条件を満足する様
に含有し、且つ酸素含有量が100ppm以下に規制
され、残部がCu及び不可避不純物からなる銅合
金管の内面に、厚さ10〜100000Åのシリケート被
膜を形成してなることを特徴とする耐食性銅合金
管。 Zn:0.1〜10% Fe、Ni、Co、Cr、Caの内1種又は2種以
上:夫々0.005〜1.0%で合計2%以下。
[Scope of Claims] 1 In addition to containing the following elements as essential components, Al: 0.01 to 1.5% (weight %: the same hereinafter) Sn: 0.03 to 2.5%, provided that (Al+Sn)≧0.1% Zn, Fe, Ni, Co Copper alloy containing one or more selected from the group consisting of , Cr, and Ca in a manner that satisfies the following conditions, and whose oxygen content is regulated to 100 ppm or less, with the remainder consisting of Ci and unavoidable impurities. A corrosion-resistant copper alloy tube characterized by being formed into a tubular shape. Zn: 0.1-10% One or more of Fe, Ni, Co, Cr, Ca: 0.005-1.0% each, total 2% or less. 2 In addition to containing the following elements as essential components, Al: 0.01-1.5% Sn: 0.03-2.5% However, (Al+Sn) ≧0.1% One element selected from the group consisting of Zn, Fe, Ni, Co, Cr, and Ca. Or, a silicate coating with a thickness of 10 to 100,000 Å is applied to the inner surface of a copper alloy tube that contains two or more types so as to satisfy the following conditions, and the oxygen content is regulated to 100 ppm or less, with the remainder consisting of Cu and unavoidable impurities. A corrosion-resistant copper alloy tube characterized by forming. Zn: 0.1-10% One or more of Fe, Ni, Co, Cr, Ca: 0.005-1.0% each, total 2% or less.
JP7291885A 1985-04-05 1985-04-05 Corrosion resistant copper alloy pipe Granted JPS61231131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7291885A JPS61231131A (en) 1985-04-05 1985-04-05 Corrosion resistant copper alloy pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7291885A JPS61231131A (en) 1985-04-05 1985-04-05 Corrosion resistant copper alloy pipe

Publications (2)

Publication Number Publication Date
JPS61231131A JPS61231131A (en) 1986-10-15
JPH0517292B2 true JPH0517292B2 (en) 1993-03-08

Family

ID=13503211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7291885A Granted JPS61231131A (en) 1985-04-05 1985-04-05 Corrosion resistant copper alloy pipe

Country Status (1)

Country Link
JP (1) JPS61231131A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213487C1 (en) * 1992-04-24 1993-11-18 Wieland Werke Ag Use of a copper-aluminum-zinc alloy as a corrosion-resistant material
JP4118814B2 (en) 2002-01-30 2008-07-16 日鉱金属株式会社 Copper alloy sputtering target and method of manufacturing the same
JP4794802B2 (en) 2002-11-21 2011-10-19 Jx日鉱日石金属株式会社 Copper alloy sputtering target and semiconductor device wiring
KR100700885B1 (en) 2003-03-17 2007-03-29 닛코킨조쿠 가부시키가이샤 Copper alloy sputtering target process for producing the same and semiconductor element wiring
JP6029296B2 (en) * 2012-03-08 2016-11-24 Jx金属株式会社 Cu-Zn-Sn-Ca alloy for electrical and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078519A (en) * 1973-11-14 1975-06-26
JPS534718A (en) * 1976-07-05 1978-01-17 Mitsubishi Metal Corp Anticorrosive copper alloy having superior hot workability
JPS59222542A (en) * 1983-05-31 1984-12-14 Hitachi Cable Ltd Fin material for radiator
JPS59226142A (en) * 1983-06-06 1984-12-19 Nippon Mining Co Ltd Copper alloy with superior corrosion resistance
JPS59229450A (en) * 1983-06-10 1984-12-22 Nippon Mining Co Ltd Copper alloy with superior corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078519A (en) * 1973-11-14 1975-06-26
JPS534718A (en) * 1976-07-05 1978-01-17 Mitsubishi Metal Corp Anticorrosive copper alloy having superior hot workability
JPS59222542A (en) * 1983-05-31 1984-12-14 Hitachi Cable Ltd Fin material for radiator
JPS59222541A (en) * 1983-05-31 1984-12-14 Hitachi Cable Ltd Fin material for radiator for car
JPS59226142A (en) * 1983-06-06 1984-12-19 Nippon Mining Co Ltd Copper alloy with superior corrosion resistance
JPS59229450A (en) * 1983-06-10 1984-12-22 Nippon Mining Co Ltd Copper alloy with superior corrosion resistance

Also Published As

Publication number Publication date
JPS61231131A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
JPH0517292B2 (en)
JPS61136648A (en) Corrosion resistant copper alloy pipe
JP3797152B2 (en) Alloy excellent in corrosion resistance, member for semiconductor manufacturing apparatus using the same, and method for manufacturing the same
JPH07166270A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH07166271A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH0790427A (en) Copper alloy excellent in resistance to ant's lair-form corrosion
WO1996028686A1 (en) Copper alloy pipe for water/hot water supply equipped with protective film on its inner surface, production thereof, and heat-exchanger for hot water supply
JP3374398B2 (en) Pitting corrosion resistant copper alloy piping for hot and cold water supply
JPH06184673A (en) Pitting corrosion resistant copper alloy piping for feeding water and hot water
JP2835271B2 (en) Copper alloy tube with inner protective film for hot and cold water supply and method for producing the same
JPH0790428A (en) Copper alloy excellent in resistance to ant's lair-form corrosion
JPH06184670A (en) Pitting corrosion resistant copper alloy piping for feeding water and hot water
JPH03229836A (en) Corrosion-resistant copper alloy tube
JPH04246141A (en) Copper-base alloy for heat exchanger
JPH07166272A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH0372699B2 (en)
JPH0377776A (en) Brazing sheet for aluminum heat exchanger
JPH0771734B2 (en) Heat exchange casting having excellent cooling ability and method for producing the same
JPH025569B2 (en)
JPH0258333B2 (en)
JPH05156410A (en) Stainless steel for high-temperature high-concentration sulfuric acid
JPS61183432A (en) Mandrel made of co-base alloy for glass tube forming
JPH07118865A (en) Copper alloy pipe with protected film on inner surface for supplying cold water and hot water and its manufacture
JPH085282A (en) Composite tube and heat pipe made of the same tube
JPS6189498A (en) Cooling water pipe of water cooling type aluminum alloy heat exchanger