JPH05172611A - Radiation level meter calibration system - Google Patents

Radiation level meter calibration system

Info

Publication number
JPH05172611A
JPH05172611A JP3342733A JP34273391A JPH05172611A JP H05172611 A JPH05172611 A JP H05172611A JP 3342733 A JP3342733 A JP 3342733A JP 34273391 A JP34273391 A JP 34273391A JP H05172611 A JPH05172611 A JP H05172611A
Authority
JP
Japan
Prior art keywords
vessel
irradiation
liquid
container
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342733A
Other languages
Japanese (ja)
Inventor
Yoshinori Higuchi
善教 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Control Systems Corp
Original Assignee
Hitachi Ltd
Hitachi Naka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Naka Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP3342733A priority Critical patent/JPH05172611A/en
Publication of JPH05172611A publication Critical patent/JPH05172611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To enable conditions of vessel change to be simulated effectively without providing water to the vessel in a bar-shaped detection system by mounting an axis to a line source storage part position at both sides of the line source container and then setting the axis to a rotary mechanism and then rotating it forward and backward in reference to the axis. CONSTITUTION:A specific expression is established regarding a detector output between an exposure and a level to be measured and a detector output is obtained as a sum of a dose of gamma rays reaching a part exposed onto a liquid surface and gamma rays reaching through a liquid. Therefore, when an irradiation part of an irradiation beam can be changed arbitrarily in vessel empty state, a change in the liquid face can be handled equivalently. Namely, when a beam region of b0-u0 is displaced to b1-u1 with an irradiation angle theta being constant while maintaining the irradiation angle O to be constant, an equivalent effect where the liquid face is changed from 10 to 11 can be obtained. In the similar manner, by changing the irradiation beam region to b2-u2 and b3-u3, an effect when the liquid face is changed to levels in 12 and 13 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として化学工業分野で
のベッセル内液面の計測に利用されているγ線棒状検出
レベル計の校正方式に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calibration system for a .gamma.-ray rod detection level meter used mainly for measuring the liquid level in a vessel in the chemical industry field.

【0002】[0002]

【従来の技術】本発明に関する従来技術の問題点を述べ
るに先立ち、現在使用されているこの種の計測方式につ
いて図を用いて説明する。
2. Description of the Related Art Prior to describing the problems of the prior art relating to the present invention, a measuring method of this type currently used will be described with reference to the drawings.

【0003】図2は、その一般的構成を示す。図におい
て、3は通常ベッセルと呼ばれているもので、4の被測
定対象(通常、溶液または粉体)を収納している容器
(通常、金属,断熱材など数層で構成されることが多
い)、2は放射性同位元素(以下RIという)を遮蔽収
納する線源容器、1は3を挾んで2と対向配置されてい
る検出器である。線源容器内蔵のRIからは、検出器に
向かってγ線が照射される。通常、RIは、ベッセルの
長さ方向に沿って多数(通常は10ケ程度)直線的に分
布配置されている。また、個々のRIからのγ線は検出
器に一点集中するように配置されている。このような関
係にあって、個々のRIと検出器を結ぶライン上に被測
定物が存在すると、γ線は被測定物に吸収されて遮断状
態となるが、存在しない場合は、RIからのγ線ビーム
が検出器に達することとなり、従って、ベッセル内の被
測定物のレベルが変化すると、検出器に到達するγ線
が、図示の特性のように変化する(図2(b))。即
ち、検出器でγ線強度を測定することによりベッセル内
の測定対象レベルを計測することができる。
FIG. 2 shows its general configuration. In the figure, 3 is usually called a vessel, and it is composed of several layers such as a container (usually a metal, a heat insulating material) that contains the object to be measured 4 (usually a solution or powder). 2 is a radiation source container that shields and stores a radioisotope (hereinafter referred to as RI), and 1 is a detector that is disposed opposite to 2 with 3 interposed therebetween. From the RI contained in the radiation source container, γ-rays are emitted toward the detector. Usually, RIs are distributed linearly in a large number (usually about 10) along the length direction of the vessel. Further, the γ rays from each RI are arranged so that they are concentrated at one point on the detector. In such a relationship, when the object to be measured is present on the line connecting the individual RI and the detector, the γ-rays are absorbed by the object to be measured to be in the cutoff state. The γ-ray beam reaches the detector. Therefore, when the level of the object to be measured in the vessel changes, the γ-ray reaching the detector changes like the characteristic shown in FIG. 2 (b). That is, the measurement target level in the vessel can be measured by measuring the γ-ray intensity with the detector.

【0004】前記のような放射線応用の測定器におい
て、計器を実用に供するには、放射線強度(通常は計数
率)と測定量(本例の場合は液面)の関係を既知の値で
校正(即ち、検量)することが必要となる。この作業
は、計器を精度良く用いるためには必要条件で重要な作
業となる。通常は、実際のベッセルを用い水を張って実
質的に目盛定めを行うこととなる。しかるに、実際に
は、種々の事情より上記の水張りテストが実施出来ない
ケースが多々あり、効果的且つ有効な代替策がのぞまれ
ることになる。
In order to put the instrument into practical use in the above-mentioned measuring instrument for radiation application, the relationship between the radiation intensity (usually the counting rate) and the measured amount (liquid level in this example) is calibrated with a known value. (I.e., calibration) is required. This work is a necessary and important work in order to use the instrument accurately. Normally, an actual vessel will be used to fill water and the scale will be substantially determined. However, in reality, there are many cases where the above water filling test cannot be carried out due to various circumstances, and an effective and effective alternative is desired.

【0005】校正方式は、計器の測定方式により異なる
が、その一例を現在実用されている方式を例に説明す
る。
The calibration method differs depending on the measuring method of the instrument, but an example will be described by taking the method currently in practical use as an example.

【0006】ベッセル容器内のレベルを連続して測定す
る場合、前述の例に見られるように線源は通常、遮蔽容
器に数ケから10ケ程度測定範囲にわたって分散配置さ
れる。また、遮蔽容器の照射口の向きは、個々の線源か
らの照射ビームが検出器の検出要素に集中するよう照射
角度が付けられている。このような機器構成において、
測定は前述したように各線源からの照射ビームのベッセ
ル内容物による吸収の有無によることから、その測定原
理をふまえた校正方式がのぞまれる。即ち、本方式の場
合は、各容器照射口に照射ビームを遮断し得る鉛ブロッ
クをぶらさげられる構造として、全ての照射口が鉛ブロ
ックにて遮断された場合は、ベッセル内溶液が充満状
態、逆に、全てを開放した場合は、ベッセル空状態が模
擬できることとなる。即ち、これを、一方の照射口から
順次実行することによりベッセル内溶液レベルの増減条
件を模擬することとなり簡易校正が可能となる。
When the level in the vessel container is continuously measured, the radiation sources are usually arranged in a shielded container in a distributed manner over several to ten measurement ranges as seen in the above-mentioned example. Further, the direction of the irradiation port of the shielding container is set so that the irradiation beams from the individual radiation sources are concentrated on the detection elements of the detector. In such a device configuration,
Since the measurement depends on the absorption of the irradiation beam from each radiation source by the vessel contents as described above, a calibration method based on the measurement principle is desired. That is, in the case of this method, as a structure in which a lead block capable of blocking the irradiation beam can be hung on each container irradiation port, when all the irradiation ports are blocked by the lead block, the solution in the vessel is full, In addition, when all of them are opened, the empty vessel state can be simulated. That is, by sequentially performing this from one irradiation port, the increase / decrease condition of the solution level in the vessel is simulated, and the simple calibration becomes possible.

【0007】次に、ここに新たに提案する計測方式の場
合について考えてみる。
Next, let us consider the case of the newly proposed measuring method.

【0008】図1に示すように、6は線源部で、線源は
基本的に1ケで図示のように照射ビームは広角に広げら
れたものを用いている。5の検出器は、従来の点検出と
は異なりベッセルの長さ方向に沿ってライン状(棒状)
となる。従って、本方式による測定結果は、(b)図に
示すように連続した特性で(一般的に指数函数的)従来
方式に比べ、特性の連続性,線源の省力化など、諸々の
特徴を持った方式となる。しかるに、線源が1ケで且つ
広角ビーム状となることから前記した従来方式の校正方
式をそのまま、適用することは装置構成上困難で、これ
に代る有効な手段が必要とされる。なかには、ベッセル
空状態時に空(0%)と、満(100%)状態を計測し、
中間は函数計(指数函数)を選択することのみで行う2
点校正方式(実質的には空時のみを計測する1点校正)
がある。しかし、2点校正は、中間点の吟味を全く行わ
ず単に函数計に依存するというやり方で、校正方式とし
てかなり荒いやり方となり、適正なものとはいえない。
As shown in FIG. 1, reference numeral 6 designates a radiation source, which is basically a single radiation source, and the irradiation beam is widened as shown in the figure. Unlike the conventional point detection, the detector of 5 has a line shape (bar shape) along the length direction of the vessel.
Becomes Therefore, the measurement results obtained by this method have various characteristics such as continuous characteristics (generally exponential function) and continuous characteristics as shown in FIG. It will be the method you have. However, since there is only one source and a wide-angle beam, it is difficult to apply the conventional calibration method as it is because of the apparatus configuration, and an effective means instead of this is required. Among them, when the vessel is empty, the empty (0%) and full (100%) states are measured,
The middle is done only by selecting a function meter (exponential function) 2
Point calibration method (substantially one-point calibration that measures only space time)
There is. However, the two-point calibration is not a proper method because it is a rough calibration method as it is a method that simply depends on a function meter without any examination of the intermediate points.

【0009】[0009]

【発明が解決しようとする課題】前記したように棒状形
の検出方式の場合、基本的に線源が1個で且つ、広角ビ
ーム(水平面より下向きに、或る角度で開いている)と
なっているため、従来方式のように容器照射口に鉛ブロ
ックを取付けて液面レベル変化を模擬することができな
い。
As described above, in the case of the rod-shaped detection method, basically, there is one radiation source and a wide-angle beam (opens at a certain angle downward from the horizontal plane). Therefore, unlike the conventional method, a lead block cannot be attached to the container irradiation port to simulate the liquid level change.

【0010】本発明が解決しようとする課題は、このよ
うな棒状検出方式においても従来方式と同様ベッセルに
水張ることなく、ベッセルレベル変化の条件が模擬でき
る効果的な校正方式の提案である。
The problem to be solved by the present invention is to propose an effective calibration method capable of simulating the condition of the vessel level change even in such a rod-shaped detection method without flooding the vessel like the conventional method.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成させる
ために、線源容器両サイドの線源収納部位置に軸を取付
け、その軸を回転機構にセットして軸中心に前後に回転
できるような構造とする。
In order to achieve the above-mentioned object, a shaft is attached to the position of the radiation source storage portion on both sides of the radiation source container, and the shaft can be set in a rotating mechanism to rotate back and forth around the axis. The structure is as follows.

【0012】容器本体の取付け位置角度を変えることに
より検出要素に照射するビームの範囲を変えることがで
き、ベッセル内液体のレベル変化と等価な効果を与える
ことができる。
By changing the mounting position angle of the container body, the range of the beam irradiating the detection element can be changed, and an effect equivalent to the level change of the liquid in the vessel can be provided.

【0013】回転は、手動でハンドルにて行う。回転位
置は、装置付属の目盛板により条件設定が容易にセット
でき、またその角度をセットできることから、効果の再
現性確保も容易に行える。
The rotation is manually performed by the handle. The rotation position can be easily set by the scale plate attached to the device and its angle can be set, so that reproducibility of the effect can be easily ensured.

【0014】[0014]

【作用】上記目的を達成するには、基本的にベッセル内
液面の変化が模擬できることが必要となる。このため、
レベル変化により棒状の検出面への照射ビームが変化し
て、あたかも照射ビームがベッセル内容物により吸収さ
れると同じ効果が与えられればよい。
In order to achieve the above object, it is basically necessary to be able to simulate changes in the liquid level in the vessel. For this reason,
It suffices that the irradiation beam on the rod-shaped detection surface changes due to the level change, and the same effect as if the irradiation beam is absorbed by the vessel contents is provided.

【0015】それにはまず、線源を収納する容器に線源
収納位置を中心に回転ができるよう両サイドに回転軸を
取付ける。また、容器照射口は、ビームが広角に照射で
きるように下向きにテーパが付いたスリット構造とす
る。
First, a rotating shaft is attached to both sides of a container for storing the radiation source so that the container can rotate around the radiation source storage position. The container irradiation port has a slit structure that is tapered downward so that the beam can be irradiated at a wide angle.

【0016】容器サイドの回転軸は、回転機構部の連結
部に取付けられる。回転機構は手動で回転できるように
ハンドルが付いており、手で容易に回転できるように減
速機構が装着されている。水平面からの傾斜角は、装置
付属の目盛板で直接読み取ることができる。従って、回
転位置の再設定が容易に正確に行える。
The rotating shaft on the container side is attached to the connecting portion of the rotating mechanism. The rotating mechanism has a handle so that it can be rotated manually, and a reduction mechanism is attached so that it can be easily rotated by hand. The inclination angle from the horizontal plane can be directly read by the scale plate attached to the device. Therefore, the rotational position can be reset easily and accurately.

【0017】[0017]

【実施例】本発明にて提案する方式について、図1,図
3を用いて以下説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method proposed by the present invention will be described below with reference to FIGS.

【0018】まず、装置構成について述べる。図1の5
は、棒状検出器で測定しようとするベッセルのレベル方
向に沿って図のように設置される。図中照射ビームを受
けている部分が棒状の検出要素部分である。図1の3の
部分は、4の測定対象(液体、粉体またはスラリーな
ど)を収納している通称ベッセルと呼ばれている収納槽
で一般に金属製の円柱形の容器である。このベッセルを
挾んで検出器と対向した上部の位置に配置されるのが線
源を収納している遮蔽容器6で、シャッタが開かれてい
る稼働状態には、図示のように検出要素全体を下向きに
開かれたビームで照射できるようになっている。このよ
うな装置構成においてベッセル内の液面の変化は、線源
からの照射ビームがベッセル内の測定対象によって吸収
される度合いで測定される。いま、照射線量と測定対象
レベルとの間には、一般に次の関係式が成立する。
First, the device configuration will be described. 1 of FIG.
Are installed as shown along the level direction of the vessel to be measured by the rod-shaped detector. In the figure, the portion receiving the irradiation beam is the rod-shaped detection element portion. A portion 3 in FIG. 1 is a storage tank commonly referred to as a vessel that stores the measurement target 4 (liquid, powder, slurry, etc.), and is generally a metal cylindrical container. The shielding container 6 which houses the radiation source is arranged at an upper position facing the detector with the vessel in between. In the operating state in which the shutter is opened, the entire detection element is placed as shown in the figure. It can be illuminated by a beam that opens downward. In such a device configuration, the change in the liquid level in the vessel is measured by the degree to which the irradiation beam from the radiation source is absorbed by the measurement target in the vessel. Now, the following relational expression is generally established between the irradiation dose and the measurement target level.

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、 y:検出器出力 C:検出器単位長当りの計数効率 (cps)/(mr/
h)・cm I0:検出器上の線源と同じ高さ(x=0)におけるγ
線強度 x:線源の高さを基点として下方へとった距離
(cm) h:液面 (cm) D:タンクの直径 (cm) μm:液体の質量吸収係数 (cm2/g) ρ:液体の密度 (g/cm3) t:液体中のγ線通過長さ (cm) H:検出器の長さ (cm) 数1において、第1項は吸収体による吸収がない線量部
分、第2項が吸収体で吸収される線量部分を表してい
る。
Here, y: detector output C: counting efficiency per detector unit length (cps) / (mr /
h) · cm I 0 : γ at the same height as the source on the detector (x = 0)
Line intensity x: Distance from the source height to the bottom
(Cm) h: Liquid level (cm) D: Tank diameter (cm) μm: Mass absorption coefficient of liquid (cm 2 / g) ρ: Density of liquid (g / cm 3 ) t: γ-ray passage in liquid Length (cm) H: Detector length (cm) In Equation 1, the first term represents the dose portion that is not absorbed by the absorber, and the second term represents the dose portion that is absorbed by the absorber.

【0021】以上の測定原理に基づくレベル計におい
て、これをフィールドでの本運転に用いるにはあらかじ
め目盛定め(検量線)を行っておくことが必要となる。
一般には、装置稼働前にベッセルに水を張り検量線を求
めることを行っているが、種々の事情より水張りテスト
ができない場合もあり効果的な等価テストが実行できる
手段がのぞまれる。
In the level meter based on the above measurement principle, in order to use this for the main operation in the field, it is necessary to set the scale (calibration curve) in advance.
In general, water is filled in the vessel before the operation of the apparatus to obtain the calibration curve. However, due to various circumstances, the water filling test may not be possible, and a means for performing an effective equivalence test is desired.

【0022】本発明は、このような要求に対処する効果
的な手法の提案を行ったものである。即ち、数1からも
明らかなように検出器出力は、液面から上にでた部分へ
到達するγ線量と液体を透過して到達するγ線量の合計
となる。従って、ベッセル空の状態において照射ビーム
の照射部分が任意に変えることができれば、液面の変化
を等価的に取り扱うことができる。即ち、図1において
照射角θを一定のまま通常のビーム広がりb0〜u0に挾
まれたビーム領域(照射角θ)を照射角θ一定のままb
1〜u1に変移させると、液面はl0からl1へ変化させた
と等価な効果を得ることができる。同様にb2〜u2,b
3〜u3と照射ビーム領域を変移させることにより液面を
2,l3レベルへと変化させた効果を得ることができ
る。
The present invention proposes an effective method for coping with such a demand. That is, as is clear from Equation 1, the detector output is the sum of the γ-ray dose reaching the portion above the liquid surface and the γ-ray dose reaching through the liquid. Therefore, if the irradiation portion of the irradiation beam can be arbitrarily changed in the empty vessel state, the change in the liquid surface can be treated equivalently. That is, in FIG. 1, the beam area (irradiation angle θ) sandwiched between the normal beam divergences b 0 to u 0 with the irradiation angle θ kept constant is kept constant b.
When the liquid level is changed from 1 to u 1 , the liquid level can obtain an effect equivalent to changing from l 0 to l 1 . Similarly, b 2 to u 2 , b
It is possible to obtain the effect of changing the liquid surface to the l 2 and l 3 levels by changing the irradiation beam area from 3 to u 3 .

【0023】このような条件を作り得るものとして、図
3に示す装置を提案する。図において、6は線源を収納
する線源容器、7は6を支持する支持台、8は容器回転
軸を受ける軸受部、9は減速機構、10は回転ハンド
ル、11は容器の開閉シャッタ、12は回転角を読み取
る目盛板である。前述したように、容器の回転軸が線源
部位置を中心となるように容器両サイドに取付けられて
おり、この軸を中心として容器本体は、照射方向前後部
に回転するようになっている。回転は、手動ハンドルで
行うが、減速機構が装着されているため容易に回転を与
えることができる。位置が設定されれば、ロックして位
置が校正中変化しないようになっている。付属の目盛板
により初期の設定位置からの変位量がただちに読み取
れ、条件の再設定も容易に行える。
The device shown in FIG. 3 is proposed as a device capable of creating such conditions. In the figure, 6 is a radiation source container for accommodating a radiation source, 7 is a support base for supporting 6, 8 is a bearing portion for receiving the rotation axis of the container, 9 is a reduction mechanism, 10 is a rotating handle, 11 is an opening / closing shutter for the container, Reference numeral 12 is a scale plate for reading the rotation angle. As described above, the rotation axis of the container is attached to both sides of the container such that the position of the radiation source is the center, and the container body is rotated around this axis in the front and rear directions in the irradiation direction. .. The rotation is performed by a manual handle, but the rotation can be easily given because a reduction mechanism is attached. Once the position is set, it is locked to prevent the position from changing during calibration. With the attached scale plate, the amount of displacement from the initial setting position can be read immediately and the conditions can be easily set again.

【0024】[0024]

【発明の効果】本発明による主な効果を下記に列挙す
る。
The main effects of the present invention are listed below.

【0025】(1)棒状検出方式によるγ線レベル計に
おいて検量線を求める際、水張りテストが実行できない
場合でも等価的な効果を与えることが可能で、また、条
件設定が容易に且つ正確に実現できる。
(1) When obtaining a calibration curve in a γ-ray level meter using the rod-shaped detection method, an equivalent effect can be given even if a water filling test cannot be performed, and the condition setting can be easily and accurately realized. it can.

【0026】(2)校正作業が容器の角度設定を行うの
みでよく作業も安全に行える。
(2) The calibration work only requires setting the angle of the container, and the work can be performed safely.

【0027】(3)容器の角度設定は、照射ビームが上
向きの方向のみとなり、不用ビームによる被ばくは、人
より離れた方向となり、特に問題となることはない。
(3) The angle of the container is set only in the upward direction of the irradiation beam, and the exposure due to the unnecessary beam is in the direction away from the person, and there is no particular problem.

【0028】(4)校正条件が任意且つ容易に設定で
き、また条件の再設定も目盛板により容易に行えるな
ど、作業効率も著しく向上する。
(4) The calibration conditions can be set arbitrarily and easily, and the resetting of the conditions can be easily performed by the scale plate, so that the working efficiency is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のレベル計方式の装置構成および検出特性
を示す図である。
FIG. 1 is a diagram showing a device configuration and a detection characteristic of a conventional level meter system.

【図2】棒状検出器によるレベル計方式の装置構成およ
び検出特性を示す図である。
FIG. 2 is a diagram showing a device configuration and a detection characteristic of a level meter system using a rod-shaped detector.

【図3】回転機構装着の遮蔽容器を示す図である。FIG. 3 is a view showing a shielding container equipped with a rotation mechanism.

【符号の説明】[Explanation of symbols]

1…検出器、2…円形遮へい容器、3…ベッセル、4…
ベッセル内容物、5…棒状検出器、6…広角ビーム形遮
へい容器、7…容器支持装置、8…軸受部、9…減速機
部、10…回転ハンドル、11…シャッターレバー、1
2…目盛り板。
1 ... Detector, 2 ... Circular shielding container, 3 ... Vessel, 4 ...
Vessel contents, 5 ... Rod-shaped detector, 6 ... Wide-angle beam type shielding container, 7 ... Container supporting device, 8 ... Bearing part, 9 ... Reducer part, 10 ... Rotating handle, 11 ... Shutter lever, 1
2 ... Scale plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】検出器がベッセルレベル長さ方向に棒状を
成し、ベッセルを挾んで配置される遮蔽容器は、検出器
の全長にわたって放射線が広角に照射する放射線レベル
計において、遮蔽容器が線源収納位置を中心に照射方向
上下に回転できる構造としてベッセル空時に水張りテス
トを行わずとも放射線ビーム方向を任意に変化させて水
張りテストと同じ効果をもたらすようにしたことを特徴
とする放射線レベル計校正方式。
1. A shielded container in which a detector has a rod-like shape in a vessel level length direction and is arranged so as to sandwich the vessel, is a radiation level meter in which radiation is irradiated at a wide angle over the entire length of the detector. As a structure that can rotate up and down around the source storage position in the irradiation direction, the radiation level meter is characterized in that the radiation beam direction can be changed arbitrarily without performing a water filling test when the vessel is empty, and the same effect as the water filling test can be obtained. Calibration method.
JP3342733A 1991-12-25 1991-12-25 Radiation level meter calibration system Pending JPH05172611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342733A JPH05172611A (en) 1991-12-25 1991-12-25 Radiation level meter calibration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342733A JPH05172611A (en) 1991-12-25 1991-12-25 Radiation level meter calibration system

Publications (1)

Publication Number Publication Date
JPH05172611A true JPH05172611A (en) 1993-07-09

Family

ID=18356071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342733A Pending JPH05172611A (en) 1991-12-25 1991-12-25 Radiation level meter calibration system

Country Status (1)

Country Link
JP (1) JPH05172611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215611B2 (en) 2014-10-10 2019-02-26 Johnson Matthey Public Limited Company Apparatus and method for determining a level of a fluid within a vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215611B2 (en) 2014-10-10 2019-02-26 Johnson Matthey Public Limited Company Apparatus and method for determining a level of a fluid within a vessel

Similar Documents

Publication Publication Date Title
Meisberger et al. The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60
Farmer et al. A new approach to the determination of anatomical cross-sections of the body by Compton scattering of gamma-rays
US4223384A (en) Radiography
US4766319A (en) Portable nuclear moisture-density gauge with low activity nuclear sources
JP3795041B2 (en) Radioactive substance content measuring method and measuring apparatus
Yorke et al. Multicellular dosimetry for beta‐emitting radionuclides: Autoradiography, thermoluminescent dosimetry and three‐dimensional dose calculations
Ito et al. Possible use of proton CT as a means of density normalization in the PIXE semi-microprobe analysis
US6201852B1 (en) Method and means for variably attenuating radiation
JPH05172611A (en) Radiation level meter calibration system
KR19990026938A (en) Radiation distribution 3D measurement device and method
US5359198A (en) Scintillation device usable for measuring attenuation through transmission tomography
Loftus Standardization of cesium-137 gamma-ray sources in terms of exposure units (Roentgens)
JP3581413B2 (en) Non-destructive radiometric collimator measurement method for solidified radioactive waste in drums
JPH09230051A (en) Radioactivity quantity measuring method for radioactive waste solidified body
US6407394B1 (en) Procedure to measure the radioactivity of radioactive material enclosed in a container
Webber et al. A clinical system for the in vivo measurement of lung density
Goldstein Exposure and dose in panoramic radiology
Stanton Determination of isodose curves for supervoltage and cobalt-60 teletherapy machines with X-ray film
Chiang et al. Spatial resolution in industrial tomography
Greene et al. A transfer instrument for neutron dosimetry
Manglos et al. Detection nonuniformity measurements and corrections for cone beam transmission CT on a gamma camera
Miyazaki et al. A statistical approach for predicting accuracies of soil properties measured by single, double and dual gamma beams
Eilbert et al. Partial body calcium determination in bone by proton activation analysis
Johansen et al. Fluid composition analysis by multiple gamma-ray beam and modality measurements
Santo et al. Soil bulk density and water content measurements by gamma-ray attenuation techniques