JPH05172560A - Measuring method of distortion shape of plate material - Google Patents

Measuring method of distortion shape of plate material

Info

Publication number
JPH05172560A
JPH05172560A JP3356173A JP35617391A JPH05172560A JP H05172560 A JPH05172560 A JP H05172560A JP 3356173 A JP3356173 A JP 3356173A JP 35617391 A JP35617391 A JP 35617391A JP H05172560 A JPH05172560 A JP H05172560A
Authority
JP
Japan
Prior art keywords
plate material
strain
displacement
shape
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3356173A
Other languages
Japanese (ja)
Other versions
JP2988645B2 (en
Inventor
Jiro Katayama
二郎 片山
Akinobu Ogasawara
昭宣 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERUTETSUKU SYST KK
JFE Steel Corp
Original Assignee
SERUTETSUKU SYST KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERUTETSUKU SYST KK, Kawasaki Steel Corp filed Critical SERUTETSUKU SYST KK
Priority to JP3356173A priority Critical patent/JP2988645B2/en
Publication of JPH05172560A publication Critical patent/JPH05172560A/en
Application granted granted Critical
Publication of JP2988645B2 publication Critical patent/JP2988645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate measurement and fast computation of a distortion shape by removing errors due to playing of a plate material and errors attributed to a long-term error of a displacement meter in the measurement of the distortion shape. CONSTITUTION:Displacements y1i and y2i are detected with displacement meters 1 and 2. An arithmetic device 12 determines a displacement difference dyi from the displacements y1i and y2i detected to obtain an integration waveform y3 of an integration computation (first) over the overall length in the longitudinal direction of a steel plate 3 from the displacement difference dyi. The first integration waveform y3 is converted to a second integration waveform y3' with a mean thereof zero. A sum of products function S is determined between a linear function which becomes zero at the center of a integration computation range and represents +1 and -1 at both ends thereof and a second integration waveform y3' converted. An inclination function G which is determined by the sum of products S is subtracted from the first integration waveform y3 to obtain a distortion shaped of the steel plate from a subtracted value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば鋼板の歪形状を
精度良く測定し、高速に演算処理する際用いるのに好適
な、板材が流れるラインで板材の歪形状を測定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring the strained shape of a steel sheet and measuring the strained shape of the sheet material on a line through which the sheet material flows, which is suitable for high-speed arithmetic processing.

【0002】[0002]

【従来の技術】板材、例えば鋼板を生産・処理するライ
ンで、鋼板の歪形状を測定する要請が高まっており、数
例の歪形状測定装置(あるいは平坦度測定装置)がライ
ンで適用されている状況下にある。
2. Description of the Related Art There is an increasing demand for measuring the strain profile of a steel plate in a line for producing and processing a steel plate, for example, and several strain profile measuring devices (or flatness measuring devices) have been applied in the line. Are in a situation where

【0003】歪形状測定装置の従来の代表的な例には、
レーザ変位計等の変位計測器を鋼板の搬送テーブルの幅
方向に複数台設けて測定する装置がある。
A typical representative example of a strain profile measuring device is as follows.
2. Description of the Related Art There is an apparatus for measuring displacement by providing a plurality of displacement measuring instruments such as laser displacement gauges in the width direction of a steel plate transport table.

【0004】即ち、この測定装置においては、搬送テー
ブルで鋼板が搬送されている際に、当該搬送テーブルの
基準レベルに対する該鋼板の鉛直方向の変位を、鋼板幅
方向の複数箇所で搬送方向(鋼板長手方向)に連続的に
測定し、鋼板全面の歪の状態を、歪の形状データ、歪の
大きさ、急峻度値等として検出するものである。
That is, in this measuring apparatus, when the steel sheet is being conveyed by the conveying table, the vertical displacement of the steel sheet with respect to the reference level of the conveying table is measured at a plurality of positions in the steel sheet width direction in the conveying direction (steel sheet). The state of strain on the entire surface of the steel sheet is detected as shape data of strain, magnitude of strain, steepness value and the like.

【0005】このような歪形状測定装置に関して特開昭
53−31159(幅方向に一致する複数箇所で圧延材
料の波形を検出して歪形状態を測定するもの)、特開昭
59−230102(水柱式の板材距離検出器を板材幅
方向に設け、その検出器を板材の先、後端の信号に基づ
き動作させるもの)、及び特開昭60−120202
(幅方向に設けられたハイドロセンサ(水柱式センサ)
で同時に測定した測定値の設定値に対する相対関係を比
較して板材の長手方向の歪形状を検出するもの)があ
る。
Regarding such a strain shape measuring device, Japanese Patent Laid-Open No. 53-31159 (which measures the strain-shaped state by detecting the waveform of the rolled material at a plurality of positions which coincide with each other in the width direction) and Japanese Patent Laid-Open No. 59-230102 (Japanese Patent Laid-Open No. 59-230102). A water column type plate material distance detector is provided in the plate material width direction, and the detector is operated based on signals from the front and rear ends of the plate material) and JP-A-60-120202.
(Hydro sensor provided in the width direction (water column sensor)
There is a method for detecting the strained shape in the longitudinal direction of the plate material by comparing the relative relationship between the measured value and the set value simultaneously measured in (1).

【0006】ここで、鋼材が搬送テーブルの基準レベル
に対する鉛直方向の変位を発生する要因としては、「鋼
板の歪」と「搬送における鋼板のばたつき」がある。
Here, the factors that cause the steel material to be displaced in the vertical direction with respect to the reference level of the transport table are "strain of the steel plate" and "fluttering of the steel plate during transport".

【0007】この鋼板のばたつきによる変位を分離除去
し、歪のみで発生する変位を正確に検出するため考えら
れる方法例を説明する。
An example of a possible method for separating and removing the displacement caused by the flapping of the steel sheet and accurately detecting the displacement generated only by the strain will be described.

【0008】図3は、搬送テーブル5上を搬送される鋼
板3が波長Xa で波打つ歪を生じている状態を示すもの
である。
FIG. 3 shows a state in which the steel sheet 3 transported on the transport table 5 has a wavy distortion at the wavelength Xa.

【0009】前記鋼板3の歪を測定するため、図3に示
すように、鋼板3の長手方向4に、該鋼板3の歪の波長
Xa に対して十分小さい距離l だけ離した箇所にレーザ
変位計1及び2を設ける。この2箇所のレーザ変位計1
及び2で、搬送テーブル5の基準レベルFに対する鋼板
3の鉛直方向の変位y1i 及びy2i (i ;ばたつき hiを
示す添字)を同時に測定する。又、検出された2箇所の
変位の差dyiを鋼板3の搬送方向に鋼板3全長に亘って
測定する。
In order to measure the strain of the steel plate 3, as shown in FIG. 3, laser displacement is made in the longitudinal direction 4 of the steel plate 3 at a position separated by a distance l sufficiently smaller than the wavelength Xa of the strain of the steel plate 3. A total of 1 and 2 are provided. These two laser displacement gauges 1
2 and 2, the vertical displacements y1i and y2i (i: subscript indicating fluttering hi) of the steel plate 3 with respect to the reference level F of the transport table 5 are measured at the same time. Further, the difference dyi between the detected displacements at the two locations is measured in the conveying direction of the steel sheet 3 over the entire length of the steel sheet 3.

【0010】図4は、鋼板4にばたつきが生じた状態を
示すものである。鋼板3がばたつきhi が生じる前後の
変位y1i 、y2i は、次のように測定する。即ち、図4に
おいて、ばたつきi が生じる前のレーザ変位計1及び2
で検出される変位はy11 及びy21 とし、ばたつき hi が
生じたときの変位はy12 、y22 とする。これらばたつき
等の生じる前後の変位の差dy1 及びdy2 は、次式
(1)、(2)で算出する。
FIG. 4 shows a state where the steel plate 4 has flaps. The displacements y1i and y2i before and after the fluttering hi of the steel plate 3 is measured as follows. That is, in FIG. 4, the laser displacement meters 1 and 2 before the rattling i occurs
The displacements detected at are y11 and y21, and the displacements when flapping hi occurs are y12 and y22. Differences dy1 and dy2 of the displacement before and after the occurrence of flapping and the like are calculated by the following equations (1) and (2).

【0011】[0011]

【数1】 [Equation 1]

【0012】[0012]

【数2】 [Equation 2]

【0013】これら(1)、(2)式から、変位差dyi
を算出すれば鋼板3のばたつき hiによる変位y1i 、y2i
の変動前と変動後で該変位差dyi は同一となる。従っ
て、この変位差dyi を用いれば、鋼板3の搬送によるば
たつきが原因する測定誤差のない変位差dyi を鋼板3の
全長に亘って求めることができる。このため、この変位
差dyi を必要な歪形状データに演算処理することによ
り、鋼板3のばたつき等が起因する測定誤差のない歪デ
ータ、歪形状データ、歪の大きさ、あるいは急峻度値を
測定することができると考えられる。
From these equations (1) and (2), the displacement difference dyi
Is calculated, the displacements y1i and y2i due to the flapping hi of the steel plate 3 are calculated.
The displacement difference dyi becomes the same before and after the change. Therefore, by using this displacement difference dyi, it is possible to obtain the displacement difference dyi over the entire length of the steel sheet 3 without a measurement error caused by the fluttering due to the conveyance of the steel sheet 3. Therefore, by calculating the displacement difference dyi into the necessary strain shape data, the strain data, the strain shape data, the magnitude of the strain, or the steepness value without the measurement error caused by the flapping of the steel plate 3 is measured. It is thought that it can be done.

【0014】前記変位差dyi を測定し、鋼板3の歪形状
を求めるに際して、急峻度値により歪を測定する場合、
従来の演算処理では次式(3)のように歪の大きさZを
求める。
When the displacement difference dyi is measured and the strain shape of the steel sheet 3 is obtained, when the strain is measured by the steepness value,
In the conventional arithmetic processing, the magnitude Z of the distortion is obtained by the following equation (3).

【0015】[0015]

【数3】 [Equation 3]

【0016】この(3)式で求めた歪の大きさZを歪の
波長Xa で除することにより、鋼板3のばたつきによる
誤差を除去した歪データ(急峻度値)が測定できる。
By dividing the magnitude Z of strain obtained by the equation (3) by the wavelength Xa of strain, strain data (steepness value) from which the error due to the fluttering of the steel sheet 3 is removed can be measured.

【0017】又、前記変位差dyi を鋼板3全長に亘って
測定し、当該鋼板3の全長で歪形状を求める場合にも、
鋼板3のばたつき等を除去して歪形状を求めることは容
易である。
Also, when the displacement difference dyi is measured over the entire length of the steel plate 3 and the strained shape is obtained over the entire length of the steel plate 3,
It is easy to find the distorted shape by removing the flapping of the steel plate 3.

【0018】[0018]

【発明が解決しようとする課題】しかしながら、前記の
ように、2箇所に設けた変位計で測定する変位の差(変
位差dyi )により板材(鋼板)の歪形状を求める場合
に、誤差の要因として、板材の搬送で生じる板材のばた
つき以外にも、それぞれの変位計に生じる長期的な誤差
(オフセットと称される誤差とドリフトと称される誤差
等がある)がある。
However, as described above, when the strained shape of the plate material (steel plate) is obtained from the difference in displacement (displacement difference dyi) measured by the displacement gauges provided at two locations, the cause of the error As a result, there is a long-term error (an error called an offset, an error called a drift, etc.) that occurs in each displacement meter, in addition to the fluttering of the plate that occurs when the plate is transported.

【0019】搬送テーブルで板材を搬送中に板材全長の
歪形状の測定と歪形状演算処理とを行う場合に、この演
算処理において、オフラインで定盤上に板材を置いて測
定した歪形状と同等の板材全長の歪形状となる歪形状演
算結果を出すには、前記従来のように変位差dyi を単に
板材長手方向に積分することにより歪データを求めるだ
けでは、前記のような変位計の長期的な誤差が積算され
てしまう。
When the distortion shape of the entire length of the plate material is measured and the distortion shape calculation process is performed while the plate material is being conveyed on the conveyance table, in this calculation process, it is equivalent to the strain shape measured by placing the plate material on the surface plate offline. In order to obtain the strain shape calculation result that is the strain shape of the entire plate material, it is necessary to simply calculate the strain data by simply integrating the displacement difference dyi in the longitudinal direction of the plate as in the conventional case, Error is accumulated.

【0020】従って、従来は、前記のように搬送テーブ
ルで搬送中に板材全長の歪形状の測定と歪形状演算処理
とを行った場合の歪形状が、オフラインで定盤上に板材
を置いて測定した歪形状とは大きく異なった歪形状とな
るという問題点がある。
Therefore, conventionally, as described above, the strained shape when the strained shape of the entire length of the plate material is measured and the strained shape calculation process is performed during the transportation on the transport table, the strained shape is placed offline on the surface plate. There is a problem that the strained shape is significantly different from the measured strained shape.

【0021】例えば、各変位計に長期的な誤差がないと
した場合には、図5(A)に示すように、歪形状データ
が得られるが、これに対して、変位計に長期的な誤差が
ある場合には、図5(B)に示すように長期的な誤差が
積算された誤差が生じる。
For example, if there is no long-term error in each displacement gauge, strain shape data can be obtained as shown in FIG. 5 (A). When there is an error, as shown in FIG. 5B, an error in which long-term errors are integrated occurs.

【0022】本発明は、前記従来の問題点を解消するべ
くなされたもので、2箇所に設けられた変位計による歪
形状の測定に際して、板材のばたつきによる誤差の除
去、当該変位計の長期的な誤差による測定誤差の除去を
行うと共に、歪形状測定の高速な演算を可能とする板材
歪形状の測定方法を提供することを課題とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and eliminates errors caused by flapping of a plate material when measuring the strain shape by displacement gauges provided at two locations, and long-term operation of the displacement gauge. It is an object of the present invention to provide a method for measuring a strain profile of a plate material, which removes a measurement error due to a large error and enables high-speed calculation of strain profile measurement.

【0023】[0023]

【課題を解決するための手段】本発明は、板材が搬送さ
れるラインで板材の歪形状を測定する方法において、板
材の搬送方向で、且つ板材の歪波長に対して短い間隔の
2箇所の基準位置から板材までの距離を検出し、前記2
箇所で検出された各距離の差を板材の搬送方向に積分演
算して第1の積分波長を求め、前記第1の積分波形を平
均値が零になる第2の積分波形に変換し、積分演算の範
囲の中央で零となり、且つ、当該範囲の両端で第1、第
2の所定値を代表とする一次関数と、前記変換された第
2の積分波形との積和関数を求め、前記第1の積分波形
から前記積和関数を減じて、この減じた値から板材の歪
形状を求めることにより、前記課題を解決するものであ
る。
SUMMARY OF THE INVENTION The present invention is a method for measuring the strained shape of a plate material in a line where the plate material is transported, in which two positions are provided in the plate material transport direction and at short intervals with respect to the strain wavelength of the plate material. The distance from the reference position to the plate is detected and
The difference between the respective distances detected at the location is integrated in the transport direction of the plate material to obtain a first integrated wavelength, and the first integrated waveform is converted into a second integrated waveform having an average value of zero, and integrated. A zero-value is obtained at the center of the calculation range, and a product-sum function of the linear function typified by the first and second predetermined values at both ends of the range and the converted second integral waveform is calculated. The problem is solved by subtracting the sum-of-products function from the first integrated waveform and obtaining the strain shape of the plate material from the subtracted value.

【0024】[0024]

【作用】本発明を前出図3、図4、図5に基づき具体的
に説明する。
The present invention will be described in detail with reference to FIGS. 3, 4 and 5.

【0025】図3及び図4に示すように、搬送テーブル
5で搬送中の鋼板3は、搬送ロール6への衝突等で、ば
たつきh が多く発生する。このばたつきh による歪形状
測定誤差を除去するべく、鋼板3の歪波長Xa よりも十
分に短い距離l (エル)の2箇所にレーザ変位計(距離
計に相当)1及び2を設ける。このレーザ変位計1及び
2のそれぞれから搬送テーブル5の基準レベルFに対す
る鋼板3の鉛直方向の変位y1i 、y2i を測定する。この
測定された変位y1i 、y2i は、各変位計1及び2の長期
的誤差e1、e2を考慮して次式(4)、(5)で示され
る。
As shown in FIGS. 3 and 4, the steel plate 3 being conveyed by the conveying table 5 causes a large amount of fluttering h due to collision with the conveying roll 6 or the like. In order to eliminate the distortion shape measurement error due to the fluttering h, laser displacement meters (corresponding to rangefinders) 1 and 2 are provided at two positions of a distance l (ell) sufficiently shorter than the distortion wavelength Xa of the steel plate 3. The vertical displacements y1i and y2i of the steel plate 3 with respect to the reference level F of the transport table 5 are measured from the laser displacement gauges 1 and 2, respectively. The measured displacements y1i and y2i are represented by the following equations (4) and (5) in consideration of the long-term errors e1 and e2 of the displacement gauges 1 and 2.

【0026】[0026]

【数4】 [Equation 4]

【0027】[0027]

【数5】 [Equation 5]

【0028】この2箇所で検出された変位y1i 、y2i の
差dyi を、鋼板3の搬送方向(送り方向;板材であれば
板材長手方向)4に、例えば板材全長Lについて積分す
る。この積分の値y3は、次式(6)で示されるようにな
る。
The difference dyi between the displacements y1i and y2i detected at these two points is integrated in the conveying direction 4 of the steel plate 3 (feeding direction; plate material longitudinal direction if it is a plate material), for example, for the entire plate material length L. The value y3 of this integration is represented by the following equation (6).

【0029】[0029]

【数6】 [Equation 6]

【0030】なお、この積分値(第1の積分波形;ある
波形で変化する値のため積分波形という)y3には、前記
変位計1及び2の長期的な誤差が含まれている。
The integrated value (first integrated waveform; an integrated waveform because it changes with a certain waveform) y3 includes a long-term error of the displacement meters 1 and 2.

【0031】ここで、l は板材3の歪の波長Xa よりも
十分小さく、且つ、前記長期的誤差e1、e2は、通常の板
材3の測定時間中であれば一定と見做せるから、e1−e2
の値は定常値である。
Here, l is sufficiently smaller than the wavelength Xa of strain of the plate material 3, and the long-term errors e1 and e2 can be regarded as constant during the normal measurement time of the plate material 3. −e2
The value of is a steady value.

【0032】従って、前記(6)式は次式(7)のよう
に変形できる。
Therefore, the equation (6) can be transformed into the following equation (7).

【0033】[0033]

【数7】 [Equation 7]

【0034】次いで、前記第1の積分波形をy3の平均値
が零となるように変換すれば、次式(8)に示す第2の
積分波形y3′となる。
Then, if the first integrated waveform is converted so that the average value of y3 becomes zero, a second integrated waveform y3 'shown in the following equation (8) is obtained.

【0035】[0035]

【数8】 [Equation 8]

【0036】次いで、次式(9)に示すような、積分範
囲(例えば板材全長L)の中央で零となり、且つ両端に
それぞれ第1、第2の所定値、例えば+1、−1を代表
とする一次関数g (x )と、前記変換された第2の積分
波形y3′との積和関数Sを次式(10)のように求め
る。
Next, as shown in the following expression (9), the central value of the integral range (for example, the total length L of the plate material) becomes zero, and the first and second predetermined values, for example, +1 and -1, are represented at both ends as representatives. The sum-of-products function S of the linear function g (x) and the converted second integral waveform y3 'is obtained as in the following expression (10).

【0037】[0037]

【数9】 [Equation 9]

【0038】[0038]

【数10】 [Equation 10]

【0039】この(10)式により、前記積和Sは、変
位計の長期的な誤差による傾斜成分の大きさの項とな
る。このSから傾斜関数(11)式を作り元の積分波形
(第1の積分波形)から除去すれば、前記の長期的誤差
のない積分波形を求めることができ、これにより、精度
良く歪形状を測定することができる。
From the equation (10), the sum of products S becomes the term of the magnitude of the tilt component due to the long-term error of the displacement meter. If a slope function (11) is created from this S and removed from the original integrated waveform (first integrated waveform), the above-mentioned integrated waveform without long-term error can be obtained. Can be measured.

【0040】本発明は、前記着想に基づきなされたもの
である。即ち、図1に示す手順のように、2箇所で検出
した変位y1i 、y2i の変位差dyi を、板材搬送方向4に
ついて例えば板材全長Lに積分して第1の積分波形を求
める。
The present invention is based on the above idea. That is, as in the procedure shown in FIG. 1, the displacement difference dyi between the displacements y1i and y2i detected at two locations is integrated with respect to the plate material conveying direction 4 to, for example, the plate material total length L to obtain a first integrated waveform.

【0041】その第1の積分波形y3の平均値を零に変換
して第2の積分波形を求め、積分演算範囲−L/2〜L
/2の中央で零となり、且つ、両端でそれぞれ第1、第
2の所定値を代表とする一次関数g (x )と、前記変換
された第2の積分波形y3′と、の積和関数Sを求める。
The average value of the first integral waveform y3 is converted into zero to obtain the second integral waveform, and the integral calculation range -L / 2 to L
/ 0 at the center of / 2, and a product-sum function of a linear function g (x) typified by first and second predetermined values at both ends and the converted second integral waveform y3 ' Find S.

【0042】この積和関数は前記変位形の長期的誤差の
項になるため、前記第1の積分波形y3から前記積和関数
Sにより求めた傾斜関数G(x )を減ずれば、板材のば
たつきによる誤差の除去は勿論、変位計1及び2の長期
的誤差による傾斜成分の誤差を含まない真の積分波形を
表わす。
This product-sum function becomes a term of the displacement type long-term error. Therefore, if the slope function G (x) obtained by the product-sum function S is subtracted from the first integral waveform y3, the plate material This represents a true integrated waveform that does not include the error due to the flutter but of course the error of the slope component due to the long-term error of the displacement gauges 1 and 2.

【0043】この真の積分波形よりばたつきによる誤差
は勿論、長期的誤差を含まれない精度の良い板材歪形状
を求めることができる。又、板材の歪形状をたとえ複雑
な鋼板歪形状であっても高速な演算処理により求めるこ
とができる。
From this true integrated waveform, it is possible to obtain an accurate plate strain shape that does not include errors due to flapping but also long-term errors. Further, the strained shape of the plate material can be obtained by high-speed arithmetic processing even if the steel plate has a complicated strained shape.

【0044】なお、前記第1、第2の所定値は+1、−
1を例示したが、この値は+1、−1に限定されるもの
ではなく他の値もとりうる。
The first and second predetermined values are +1 and-.
Although 1 is shown as an example, this value is not limited to +1 and -1, and other values are possible.

【0045】[0045]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0046】この実施例は、図2に示すような構成の鋼
板3の歪形状演算装置である。
This embodiment is an apparatus for calculating the distortion shape of the steel plate 3 having the structure shown in FIG.

【0047】図1に示すように、この歪形状演算装置
は、厚鋼板工場の精整ラインにおいて、搬送テーブル5
に搬送される鋼板の歪形状を測定し、測定した歪形状か
ら厚鋼板製品の歪形状検査を行うものであり、この歪形
状測定装置は、レーザ変位計1及び2、演算装置12を
有している。
As shown in FIG. 1, this distortion shape calculating device is used in a conveying table 5 in a finishing line of a steel plate factory.
The strain shape of the steel sheet conveyed to the substrate is measured, and the strain shape inspection of the thick steel sheet product is performed based on the measured strain shape. This strain shape measuring device includes laser displacement meters 1 and 2, and a computing device 12. ing.

【0048】前記変位計1及び2は、各々搬送テーブル
5の基準レベルFから鋼板3の鉛直方向の変位を測定す
るものである。又、前記変位計1及び2は鋼板3搬送方
向に例えば300mmの間隔を離した2箇所に設けられ
る。なお各箇所の変位計1及び2では鋼板3の幅方向に
1又は複数台設置されている。このように変位計を複数
台設置すれば鋼板3の幅方向の歪形状も同時に測定可能
となる。
The displacement gauges 1 and 2 measure the vertical displacement of the steel plate 3 from the reference level F of the transport table 5. Further, the displacement gauges 1 and 2 are provided at two locations spaced apart from each other by, for example, 300 mm in the conveying direction of the steel plate 3. It should be noted that one or a plurality of displacement gauges 1 and 2 at each location are installed in the width direction of the steel plate 3. If a plurality of displacement gauges are installed in this way, it is possible to simultaneously measure the strain shape of the steel sheet 3 in the width direction.

【0049】又、前記変位計にはレーザ変位計を用いる
ことができるが、これは1適用例であり、例えば水柱式
距離計を用いることができる。
A laser displacement meter can be used as the displacement meter, but this is one application example, and for example, a water column type distance meter can be used.

【0050】前記演算装置12は、前記変位計1及び2
の出力信号に基づいて、歪形状の演算を行うものであ
り、この装置12には、例えばマイクロコンピュータを
用いることができる。
The arithmetic unit 12 includes the displacement gauges 1 and 2
The calculation of the distortion shape is performed based on the output signal of (1). For this device 12, for example, a microcomputer can be used.

【0051】次に実施例の作用を説明する。Next, the operation of the embodiment will be described.

【0052】変位計1及び2の検出信号を演算装置12
に入力する。演算装置12は前記図1に示した手順に従
い前出(4)〜(11)式の演算を行い、前記変位計1
及び2の長期的誤差のない積分波形(y3−G)を求め
る。次いで、この積分波形(y3−G)に基づき演算によ
り、鋼板3の歪形状の測定を行う。
The detection signals of the displacement gauges 1 and 2 are used as the arithmetic unit 12
To enter. The arithmetic unit 12 performs the arithmetic operations of the above equations (4) to (11) according to the procedure shown in FIG.
And the integrated waveform (y3−G) having no long-term error of 2 is obtained. Then, the distortion shape of the steel plate 3 is measured by calculation based on this integral waveform (y3-G).

【0053】従って、この測定された歪形状は、搬送ロ
ーラ6との衝突等で発生した鋼板3のばたつきh よる測
定誤差が除去されたものとなると共に、各変位計1及び
2の長期的な誤差(オフセットやドリフト誤差)が除去
されたものとなる。
Therefore, the measured strained shape is one in which the measurement error due to the flapping h of the steel plate 3 caused by the collision with the conveying roller 6 or the like is removed, and the displacement gauges 1 and 2 have a long-term effect. The error (offset or drift error) is removed.

【0054】よって、搬送テーブル5において、オンラ
インにより鋼板3の歪形状測定が行われる前記歪形状測
定装置は、その歪形状測定結果が、オフライン定盤上で
測定する歪測定形状と一致するという良好な結果が得ら
れるものである。又、この歪形状測定を高速な演算処理
により行い得るものである。
Therefore, in the strain profile measuring apparatus in which the strain profile of the steel sheet 3 is measured online on the transport table 5, the strain profile measurement result is in good agreement with the strain profile measured on the offline surface plate. It is possible to obtain such a result. Further, this strain shape measurement can be performed by high-speed arithmetic processing.

【0055】なお、前記実施例においては、板材として
鋼板を例示したが、本発明を実施して歪形状が測定可能
な板材はこのような鋼板に限られるものではなく、他の
種々の板材の歪形状の測定に本発明を用いることが可能
である。
In the above-mentioned embodiment, a steel plate is exemplified as the plate material, but the plate material for which the strain shape can be measured by carrying out the present invention is not limited to such a steel plate, and other various plate materials can be used. The present invention can be used to measure strained shapes.

【0056】[0056]

【発明の効果】以上説明した通り、本発明によれば、板
材がライン上を搬送されることによって発生するばたつ
きに起因した歪形状測定の誤差を除去できると共に、変
位計自体の長期的な誤差を完全に除去することが可能と
なる。従って、精度良く歪形状測定ができる。
As described above, according to the present invention, it is possible to eliminate the error of the strain shape measurement due to the fluttering caused by the plate material being conveyed on the line, and the long-term error of the displacement gauge itself. Can be completely removed. Therefore, it is possible to accurately measure the strain shape.

【0057】又、高速な演算により歪形状の測定が可能
となり、オンラインでリアルタイムな板材の歪形状測定
が可能となる等の優れた効果が得られる。
Further, the strained shape can be measured by a high-speed calculation, and the excellent effect that the strained shape of the plate material can be measured online in real time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明を説明するための流れ図であ
る。
FIG. 1 is a flowchart for explaining the present invention.

【図2】図2は、本発明の実施例に係る歪形状測定装置
の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a strain profile measuring apparatus according to an embodiment of the present invention.

【図3】図3は、一般的なライン上の鋼板の歪を示す側
断面図である。
FIG. 3 is a side sectional view showing distortion of a steel sheet on a general line.

【図4】図4は、前記鋼板にばたつきが生じた状態例を
示す側断面図である。
FIG. 4 is a side sectional view showing an example of a state where flapping has occurred in the steel sheet.

【図5】図5は、変位計に長期的な誤差がない場合とあ
る場合の歪形状データの例を示す線図である。
FIG. 5 is a diagram showing an example of strain shape data in the case where there is a long-term error in the displacement meter and in the case where the displacement meter does not exist.

【符号の説明】[Explanation of symbols]

1、2…変位計、 3…鋼板、 5…搬送テーブル、 6…搬送ロール、 12…演算装置。 1, 2 ... Displacement meter, 3 ... Steel plate, 5 ... Conveying table, 6 ... Conveying roll, 12 ... Computing device.

フロントページの続き (72)発明者 小笠原 昭宣 福岡県北九州市小倉北区白銀一丁目3番10 号 株式会社セルテックシステムズ内Continuation of the front page (72) Inventor Akinobu Ogasawara 1-3-10 Shiragin, Ogurakita-ku, Kitakyushu, Fukuoka Inside Celtec Systems Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】板材が搬送されるラインで板材の歪形状を
測定する方法において、 板材の搬送方向で、且つ板材の歪波長に対して短い間隔
の2箇所における基準位置から板材までの距離を検出
し、 前記2箇所で検出された各距離の差を板材の搬送方向に
積分演算して第1の積分波形を求め、 第1の積分波形を、平均値が零になる第2の積分波形に
変換し、 積分演算の範囲の中央で零となり、且つ当該範囲の両端
で第1、第2の所定値を代表とする一次関数と、前記変
換された第2の積分波形との積和関数を求め、 前記第1の積分波形から前記積和関数を減じて、この減
じた値から板材の歪形状を求めることを特徴とする板材
歪形状の測定方法。
1. A method for measuring a strained shape of a plate material on a line where the plate material is conveyed, wherein a distance from a reference position to a plate material at two positions at a short distance with respect to a strain wavelength of the plate material is measured in a plate material conveyance direction. The second integrated waveform which is detected, and the first integrated waveform is obtained by integrating the difference between the respective distances detected at the two locations in the transport direction of the plate material to obtain the first integrated waveform. To a zero at the center of the range of the integration operation, and a product-sum function of the linear function typified by the first and second predetermined values at both ends of the range and the converted second integral waveform. And subtracting the product-sum function from the first integrated waveform, and determining the strain shape of the plate material from the reduced value.
JP3356173A 1991-12-24 1991-12-24 Measurement method of sheet material distortion shape Expired - Fee Related JP2988645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3356173A JP2988645B2 (en) 1991-12-24 1991-12-24 Measurement method of sheet material distortion shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3356173A JP2988645B2 (en) 1991-12-24 1991-12-24 Measurement method of sheet material distortion shape

Publications (2)

Publication Number Publication Date
JPH05172560A true JPH05172560A (en) 1993-07-09
JP2988645B2 JP2988645B2 (en) 1999-12-13

Family

ID=18447705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3356173A Expired - Fee Related JP2988645B2 (en) 1991-12-24 1991-12-24 Measurement method of sheet material distortion shape

Country Status (1)

Country Link
JP (1) JP2988645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132836A (en) * 2010-12-22 2012-07-12 Yamaha Motor Co Ltd Three-dimensional shape measuring apparatus, component transfer apparatus and three-dimensional shape measuring method
EP2737963A1 (en) * 2012-10-03 2014-06-04 Nippon Steel & Sumitomo Metal Corporation Distortion calculation method and rolling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132836A (en) * 2010-12-22 2012-07-12 Yamaha Motor Co Ltd Three-dimensional shape measuring apparatus, component transfer apparatus and three-dimensional shape measuring method
EP2737963A1 (en) * 2012-10-03 2014-06-04 Nippon Steel & Sumitomo Metal Corporation Distortion calculation method and rolling system
EP2737963A4 (en) * 2012-10-03 2015-04-01 Nippon Steel & Sumitomo Metal Corp Distortion calculation method and rolling system

Also Published As

Publication number Publication date
JP2988645B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
SE435658B (en) SET AND DEVICE FOR DETERMINING ERRORS OF PRINTED SHEETS AND BANKS
JPH05172560A (en) Measuring method of distortion shape of plate material
KR890000118B1 (en) Rolling mill control system
JP3697015B2 (en) Method for determining the thickness of railroad rail columns
JP2536668B2 (en) Steel plate flatness measuring device
JPH04143608A (en) Device for measuring flatness of steel plate
KR100491019B1 (en) Multipoint thickness measurement system
JP2539134B2 (en) Flatness measuring device
JPH10291015A (en) Device for measuring pass-line of roller table and pass line
JPH06273162A (en) Flatness measuring device
JPH0634360A (en) Steel plate shape measuring method
JPH087063B2 (en) Flatness measuring device
JP3010398B2 (en) Steel sheet shape measurement method
JPH08159728A (en) Shape measuring instrument
JPH0428686A (en) Installation error measuring device for elevator guide rail
JPH06194241A (en) Device and method for measuring tension
JP3089614B2 (en) Method and apparatus for detecting tension in horizontal continuous heat treatment furnace
JPH06185988A (en) Measuring method for dimension of section steel
JP3286549B2 (en) Surface flaw detection method for long steel materials
JPH051912A (en) Flatness measuring-device
JP2690431B2 (en) Shape measuring device
JPH0543254B2 (en)
JPS60218010A (en) Measuring method of center line profile of beltlike body
JP2953784B2 (en) On-line dimension measuring device for section steel
JPH01292208A (en) Strip shape detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees