JPH05172518A - Highly accurate coordinate measuring apparatus - Google Patents

Highly accurate coordinate measuring apparatus

Info

Publication number
JPH05172518A
JPH05172518A JP3344782A JP34478291A JPH05172518A JP H05172518 A JPH05172518 A JP H05172518A JP 3344782 A JP3344782 A JP 3344782A JP 34478291 A JP34478291 A JP 34478291A JP H05172518 A JPH05172518 A JP H05172518A
Authority
JP
Japan
Prior art keywords
interferometer
measuring
axis
movable holder
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3344782A
Other languages
Japanese (ja)
Other versions
JP3064613B2 (en
Inventor
Hajime Morokuma
肇 諸隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3344782A priority Critical patent/JP3064613B2/en
Priority to US07/986,787 priority patent/US5369488A/en
Publication of JPH05172518A publication Critical patent/JPH05172518A/en
Application granted granted Critical
Publication of JP3064613B2 publication Critical patent/JP3064613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the moving part light and to obtain the conditions for excluding the errors in Abbe numbers in measurements of lengths and coordinates. CONSTITUTION:Optical interference is utilized in a length-measuring coordinate measuring apparatus. In this apparatus, a movable holder 2, which can be moved in the direction orthogonal to a reflecting mirror Mx fixed to a base stage 1, is provided. In this holder 2, a position detector 3 and first and second interferometers 20 and 30, which measure the relative moving amounts of the position detectors 3 and the reflecting mirror Mx, are provided. Each interferometer has a measuring optical system and a reference optical system. The optical axes of the measuring optical systems of the first and second interferometers are located at the distances of L and D from the measuring point O of the position detector 3. When the measured moving amount values are d1 and d2 and m=L/D, the moving amount S of the measuring point is computed by S=(d2-md1)/(1-m).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ干渉を利用した
高精度座標測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high precision coordinate measuring device utilizing laser interference.

【0002】[0002]

【従来の技術】先ず従来技術に基づいて作られたレーザ
干渉座標測定器の概念を示す図11について説明する。
X,Y方向に移動可能なステージ6の上には長方形の反
射鏡Mx、Myが固定されている。これらの反射鏡M
x、MyはそれぞれX軸測定用レーザ干渉計(以下X軸
干渉計という)IxおよびY軸測定用レーザ干渉計(以
下Y軸干渉計という)Iyの測定アームに垂直になるよ
うに配置されている。ステージ1がX方向に動く場合は
X軸干渉計IxによってX方向の移動量が測定され、ま
たY方向に動く時はY軸干渉計IyによってY方向の移
動量が測定される。3は被測定物4の上の描かれた図形
5の位置を検出する位置検出用顕微鏡等の表面位置検出
器である。X、Y軸干渉計Ix、Iyの光軸と、表面位
置検出器3の光軸は互いに垂直で、かつ1点で交わるよ
うになっている。このように構成されていれば、アッベ
の条件が満たされ、ステージ6がX軸および/あるいは
Y軸の回りに僅か傾いたとしても、この傾き角に比例す
る測定誤差(アッベの誤差)は生じない。しかしこの例
では被測定物4を載せた重量のあるステージ6を動かさ
ねばならず、このためX軸干渉計Ix、Y軸干渉計Iy
や、表面位置検出器3が固定されている基台(図示せ
ず)が十分な剛性を持っていないと、基台に撓みが生じ
る。その結果、干渉計と反射鏡の間隔が変わり誤差を生
じる。ナノメータの精度を実現するためには、このよう
な誤差を除去する必要がある。そのためには基台の剛性
を高めなければならず、装置全体が大きく、かつ重たい
ものになる。従って、移動する物体が出来るだけ軽量に
なる構成とすることが、精度向上の鍵となる。
2. Description of the Related Art First, FIG. 11 showing the concept of a laser interference coordinate measuring instrument manufactured based on the prior art will be described.
Rectangular reflecting mirrors Mx and My are fixed on the stage 6 movable in the X and Y directions. These reflectors M
x and My are arranged so as to be perpendicular to the measurement arms of the laser interferometer for X-axis measurement (hereinafter referred to as X-axis interferometer) Ix and the laser interferometer for Y-axis measurement (hereinafter referred to as Y-axis interferometer) Iy. There is. When the stage 1 moves in the X direction, the movement amount in the X direction is measured by the X axis interferometer Ix, and when the stage 1 moves in the Y direction, the movement amount in the Y direction is measured by the Y axis interferometer Iy. Reference numeral 3 is a surface position detector such as a position detecting microscope for detecting the position of the drawn figure 5 on the object to be measured 4. The optical axes of the X and Y axis interferometers Ix and Iy and the optical axis of the surface position detector 3 are perpendicular to each other and intersect at one point. With such a configuration, even if the Abbe condition is satisfied and the stage 6 is slightly tilted around the X axis and / or the Y axis, a measurement error (Abbe error) proportional to the tilt angle occurs. Absent. However, in this example, the heavy stage 6 on which the object to be measured 4 is placed must be moved, and therefore, the X-axis interferometer Ix and the Y-axis interferometer Iy are required.
Alternatively, if the base (not shown) to which the surface position detector 3 is fixed does not have sufficient rigidity, the base is bent. As a result, the distance between the interferometer and the reflecting mirror changes and an error occurs. In order to achieve nanometer accuracy, it is necessary to eliminate such errors. For that purpose, the rigidity of the base must be increased, and the entire apparatus becomes large and heavy. Therefore, the key to improving accuracy is to make the moving object as light as possible.

【0003】図12は3次元測定の概念図であり、図1
1に示す構成に対してZ軸方向のZ軸干渉計Izおよび
ステージ6の下面にZ軸反射鏡Mzを付加し、かつステ
ージ6がX、Y、Zの3次元に動くように構成されてい
る。また5aは3次元表面である。この例においても重
いステージ6を動かさねばならず、基台の撓みのよる誤
差は避けられない。移動物体を軽量化する方法は、ステ
ージ6の代わりに干渉計Ix、Iy、Izを3個の反射
鏡の内側に置き、表面位置検出器3と一体にして、これ
を移動させる方法である。この場合、干渉計も表面位置
検出器もステージに比べれば、遙に軽量にすることがで
きる。しかし、干渉計を表面位置検出器に近付けようと
すると、干渉計が被測定物にぶつかってしまう。そこで
接触しないように干渉計の光軸を上方にずらせば、アッ
ベの条件を満たすことができない。このような不都合は
2次元の場合も同じである。
FIG. 12 is a conceptual diagram of three-dimensional measurement.
In addition to the configuration shown in FIG. 1, a Z-axis interferometer Iz in the Z-axis direction and a Z-axis reflecting mirror Mz are added to the lower surface of the stage 6, and the stage 6 is configured to move in three dimensions of X, Y and Z. There is. Further, 5a is a three-dimensional surface. Also in this example, the heavy stage 6 has to be moved, and an error due to the bending of the base is unavoidable. A method of reducing the weight of a moving object is to place interferometers Ix, Iy, and Iz inside the three reflecting mirrors instead of the stage 6 and to move them integrally with the surface position detector 3. In this case, both the interferometer and the surface position detector can be made much lighter than the stage. However, when trying to bring the interferometer close to the surface position detector, the interferometer collides with the object to be measured. Therefore, if the optical axis of the interferometer is shifted upward so as not to make contact, the Abbe condition cannot be satisfied. Such inconvenience is the same in the two-dimensional case.

【0004】[0004]

【発明が解決しようとする課題】光波干渉を利用した測
長システムでは、ナノメータオーダの非常に高い精度が
実現できると謂われている。しかし、位置検出も含めた
測定系を総合的に考慮しないと、干渉計が本来有する高
い精度を実現することは出来ない。また、従来の座標測
定器では、重量のあるステージを2次元に動かさなけれ
ばならず、撓みの来ない頑丈な基台が要求され、大形に
なってしまうと言う問題がある。更に、3次元物体を精
度高く測定する手段は未だ知られていない。本発明は測
長あるいは座標の測定において、移動部分を軽量化する
ことによって、干渉計の有する高い精度を実現すること
を目的とする。
It is so-called that a length measuring system utilizing light wave interference can realize a very high accuracy on the order of nanometers. However, the high accuracy that the interferometer originally has cannot be realized unless the measurement system including the position detection is comprehensively considered. Further, in the conventional coordinate measuring machine, a heavy stage has to be moved in two dimensions, which requires a sturdy base that does not bend, resulting in a large size. Furthermore, a means for measuring a three-dimensional object with high accuracy has not yet been known. It is an object of the present invention to realize high accuracy of an interferometer by reducing the weight of a moving part in length measurement or coordinate measurement.

【0005】[0005]

【課題を解決するための手段】本発明の高精度座標測定
装置は、基台に反射鏡を固設すると共に、この反射鏡に
垂直な方向に移動可能な可動ホルダを設け、可動ホルダ
には位置検出装置および反射鏡と位置検出装置との相対
的移動量を測定するための第1、第2の干渉計を設け、
更に第1、第2の干渉計が各々測定用光学系と参照用光
学系とを有し、第1、第2の干渉計の測定用光学系の光
軸が位置検出装置の測定点からそれぞれL,Dの距離
(但し、D≠L)にあり、第1、第2の干渉計により測
定される可動ホルダの移動量測定値をd1 、d2 とし、
m=L/Dとするとき、 S=(d2 −md1 )/(1−m) なる式により測定点の移動量Sを算出するようにしたも
のである。
A high precision coordinate measuring apparatus according to the present invention has a reflecting mirror fixed to a base and a movable holder movable in a direction perpendicular to the reflecting mirror. A position detecting device and first and second interferometers for measuring a relative movement amount between the reflecting mirror and the position detecting device are provided.
Furthermore, the first and second interferometers each have a measurement optical system and a reference optical system, and the optical axes of the measurement optical systems of the first and second interferometers are respectively from the measurement points of the position detection device. There are distances L and D (however, D ≠ L), and the moving amount measurement values of the movable holder measured by the first and second interferometers are d1 and d2,
When m = L / D, the moving amount S of the measuring point is calculated by the formula S = (d2-md1) / (1-m).

【0006】[0006]

【作用】ステージの代わりに位置検出装置を設けた可動
ホルダを移動させることにより、移動部分が軽量化さ
れ、測定誤差が生じ難くなる。また、測定点から高さの
異なる位置に2つの干渉計を設けて、各干渉計より得ら
れる干渉縞計測データに基づき、各干渉計の測定点から
の位置を含むパラメータを用いて移動距離を算出するこ
とにより、可動ホルダの傾きに伴うアッベの誤差が相殺
されて除去される。
By moving the movable holder provided with the position detecting device instead of the stage, the moving part is made lighter and the measurement error is less likely to occur. In addition, two interferometers are provided at different heights from the measurement point, and the movement distance is calculated based on the interference fringe measurement data obtained from each interferometer using parameters including the position from the measurement point of each interferometer. By the calculation, the Abbe error caused by the tilt of the movable holder is offset and removed.

【0007】[0007]

【実施例】本発明を図面に基づき説明する。図10は第
1の実施例の概念図を示した構成である。基台1の上に
は平面反射鏡Mx、My、Mzがそれぞれ図示しない適
宜手段により固定されている。可動ホルダ2には表面位
置検出器3、X軸干渉計Ix、Y軸干渉計Iy、Z軸干
渉計Izが取り付けられている。このホルダ2は周知の
3次元駆動機構によりX、Y、Zの3軸方向にそれぞれ
自在に移動可能に構成されており、可動ホルダ2に取り
付けられた表面位置検出器3により基台1上に置かれた
3次元の被測定物4の表面位置を検出するようになって
いる。
The present invention will be described with reference to the drawings. FIG. 10 is a configuration showing a conceptual diagram of the first embodiment. Flat reflecting mirrors Mx, My, Mz are fixed on the base 1 by appropriate means (not shown). A surface position detector 3, an X-axis interferometer Ix, a Y-axis interferometer Iy, and a Z-axis interferometer Iz are attached to the movable holder 2. The holder 2 is configured to be freely movable in three directions of X, Y and Z by a well-known three-dimensional drive mechanism, and is mounted on the base 1 by a surface position detector 3 attached to the movable holder 2. The surface position of the placed three-dimensional DUT 4 is detected.

【0008】ここで、アッベの誤差を除去する方法の一
実施例を図1ないし図4に従い説明する。図1は図10
からX軸方向の測定を行なう部分のみを抜き出し描いた
図である。図において、可動ホルダ2に固定されたX軸
干渉計Ixは、2つの干渉計20および30および、こ
れらの干渉計により計測された干渉縞数に基づいて所定
の演算を行なう引算器41を備えている。干渉計20お
よび30は位置検出装置3の測定点Oに対してそれぞれ
DおよびLの間隔で固定されている。
An embodiment of a method for removing Abbe's error will be described with reference to FIGS. 1 to 4. 1 is shown in FIG.
It is the figure which extracted and drew only the part which measures the X-axis direction from. In the figure, the X-axis interferometer Ix fixed to the movable holder 2 includes two interferometers 20 and 30 and a subtracter 41 that performs a predetermined calculation based on the number of interference fringes measured by these interferometers. I have it. The interferometers 20 and 30 are fixed to the measuring point O of the position detecting device 3 at intervals of D and L, respectively.

【0009】図2は図1に示した干渉計20の要部光路
の説明図である。図において、全ての光学部品は可動ホ
ルダ2(ここでは図示せず)に固定されている。21は
偏光プリズムで、これに入射する光束のうち、紙面に平
行に振動する直線偏光成分(p成分)は、偏光プリズム
21および 1/4波長板23を透過しX軸反射鏡Mx(こ
こでは図示せず)で反射し再び 1/4波長板23を透過し
た後、偏光プリズム21で反射し、別の偏光プリズム2
2に向かう。ここで反射して 1/4波長板24を透過し
て、固定反射鏡8で反射し、再び 1/4波長板24を透過
し、今度は偏光プリズム22を透過する。そして、直角
プリズム25で反射した後、偏光プリズム22、 1/4波
長板24を透過してX軸反射鏡Mxに向かう。更に、こ
こで反射した光束は、再び 1/4波長板24を通り偏光プ
リズム22、偏光プリズム21で反射して、別の固定反
射鏡9で反射した後、再び 1/4波長板23と偏光プリズ
ム21を透過して干渉計20から射出する。
FIG. 2 is an explanatory view of an optical path of a main part of the interferometer 20 shown in FIG. In the figure, all optical components are fixed to a movable holder 2 (not shown here). Reference numeral 21 denotes a polarization prism, and a linearly polarized light component (p component) that oscillates in parallel to the paper surface of the light beam incident on the polarization prism 21 passes through the polarization prism 21 and the quarter-wave plate 23, and the X-axis reflection mirror Mx (here, (Not shown), transmits again through the quarter-wave plate 23, and then is reflected by the polarizing prism 21 to be reflected by another polarizing prism 2
Go to 2. Here, the light is reflected and transmitted through the quarter-wave plate 24, is reflected by the fixed reflecting mirror 8, again passes through the quarter-wave plate 24, and this time passes through the polarization prism 22. Then, after being reflected by the right-angle prism 25, it passes through the polarizing prism 22 and the quarter-wave plate 24 and goes toward the X-axis reflecting mirror Mx. Further, the light flux reflected here passes through the quarter-wave plate 24 again, is reflected by the polarization prism 22 and the polarization prism 21, is reflected by another fixed reflecting mirror 9, and is again polarized by the quarter-wave plate 23. The light is transmitted through the prism 21 and emitted from the interferometer 20.

【0010】一方、紙面に垂直に振動する直線偏光成分
(s成分)は、偏光プリズム21で反射し、裏面が反射
鏡になっている 1/4波長板26で反射した後、偏光プリ
ズム21,22を透過し、前記 1/4波長板26と同様に
裏面が反射鏡になっている 1/4波長板27で反射する。
その後、偏光プリズム22で反射し、直角プリズム25
で折り返され、偏光プリズム22で反射、再び 1/4波長
板27で反射し、偏光プリズム22、21を透過し、 1
/4波長板26、偏光プリズム21で反射して干渉計から
射出する。ここでp成分とs成分は一緒になって射出す
る。
On the other hand, the linearly polarized light component (s component) which oscillates perpendicularly to the paper surface is reflected by the polarization prism 21, and after being reflected by the 1/4 wavelength plate 26 having a back surface as a reflection mirror, the polarization prism 21, 22 and is reflected by a quarter-wave plate 27 whose rear surface is a reflecting mirror, as with the quarter-wave plate 26.
After that, the light is reflected by the polarization prism 22 and the right-angle prism 25
Is reflected by the polarizing prism 22, again reflected by the 1/4 wavelength plate 27, transmitted through the polarizing prisms 22 and 21,
It is reflected by the / 4 wavelength plate 26 and the polarization prism 21 and emitted from the interferometer. Here, the p component and the s component are ejected together.

【0011】尚、図3は干渉計30の一実施例の要部光
路の構成を示すが、図2に示すものと異なる点は、固定
反射鏡8、9が取り外されたものであり、干渉計20で
は反射鏡Mxに2本の光束が向かうが、干渉計30の場
合は4本の光束が向かうようになっている。干渉計2
0、30からの射出光はそれぞれ図4に示すような干渉
縞検出系に導かれる。図において11は 1/2波長板であ
り、各干渉計からのp、s成分はそれぞれ 1/2波長板1
1によって偏光面が光軸の回りに45°回転した後、偏
光プリズム7を透過することによって、干渉縞が形成さ
れ、これを公知の光検出器12によって検出するように
なっている。干渉縞の強度はこの光検出器12で電気的
信号に変換され公知の手段によって干渉縞の数が計数さ
れる。
FIG. 3 shows the construction of the optical paths of the essential parts of an embodiment of the interferometer 30. However, the difference from that shown in FIG. 2 is that the fixed reflecting mirrors 8 and 9 are removed. In the total 20, the two light beams are directed to the reflecting mirror Mx, but in the case of the interferometer 30, four light beams are directed. Interferometer 2
Light emitted from 0 and 30 is guided to the interference fringe detection system as shown in FIG. In the figure, 11 is a half-wave plate, and the p and s components from each interferometer are the half-wave plate 1 respectively.
After the plane of polarization is rotated by 45 ° around the optical axis by 1, the interference fringes are formed by passing through the polarization prism 7, which is detected by a known photodetector 12. The intensity of the interference fringes is converted into an electric signal by the photodetector 12 and the number of the interference fringes is counted by a known means.

【0012】可動ホルダ2の移動に伴い位置検出装置3
の測定点OがX軸方向にSだけ動いたとする。また移動
後可動ホルダ2は時計回りにαだけ傾いたとする。干渉
計20および30でそれぞれ測定される干渉縞の数Z1
、Z2 は次式で与えられる。即ち、 Z1 =(S−Dα)/(λ/4) (1) Z2 =(S−Lα)/(λ/8) (2) 従って、引算器41により差Zを算出すると、 Z=Z2 −Z1 ={S−(2L−D)α}/(λ/4) (3) この式から、 D=2Lのとき Z=S/(λ/4) (4) となり、傾きαの影響は除去され、移動量Sは次式から
求められる。 S=(λ/4)Z (5) このように、測定点Oを中心に位置検出装置3が回転し
ても、この値は変化しないからアッベの誤差を除去でき
たことになる。図1中、10は位置検出装置3の測定点
Oの位置を検出するブローブであり、光電顕微鏡、走査
型トンネル顕微鏡(STM)、原子間力顕微鏡(AF
M)など公知の装置を利用することができる。
Along with the movement of the movable holder 2, the position detecting device 3
Suppose that the measurement point O of S moves in the X-axis direction by S. After the movement, the movable holder 2 is assumed to be tilted clockwise by α. Number of interference fringes measured by interferometers 20 and 30 Z1
, Z2 is given by the following equation. That is, Z1 = (S-Dα) / (λ / 4) (1) Z2 = (S-Lα) / (λ / 8) (2) Therefore, when the difference Z is calculated by the subtractor 41, Z = Z2 -Z1 = {S- (2L-D) α} / (λ / 4) (3) From this equation, when D = 2L, Z = S / (λ / 4) (4), and the influence of the inclination α is The removed amount S is calculated by the following equation. S = (λ / 4) Z (5) As described above, even if the position detection device 3 rotates about the measurement point O, this value does not change, and thus Abbe's error can be removed. In FIG. 1, 10 is a probe for detecting the position of the measuring point O of the position detecting device 3, which is a photoelectric microscope, a scanning tunneling microscope (STM), an atomic force microscope (AF).
Known devices such as M) can be used.

【0013】図5は第2の実施例を示す。この例は図1
に示した例の干渉計20の光学系を図3に示した干渉計
光学系で置き換えた構成となっている。この干渉縞の数
を計数するとき2つの干渉縞に対して1個の計数パルス
を出す間引回路42を通って引算器41に入る。他の干
渉計31は、干渉計30と同じであるが1干渉縞に対し
て1個の計数パルスが引算器41に入る。この構成で
は、各干渉計における1つの干渉縞計数パルスがλ/8
の長さに相当するので、引算器41の出力は前と同様
(3)式で表される。故に前実施例のようにD=2Lの
とき、アッベの誤差は除去される。
FIG. 5 shows a second embodiment. This example is shown in Figure 1.
The optical system of the interferometer 20 of the example shown in FIG. 3 is replaced with the interferometer optical system shown in FIG. When counting the number of the interference fringes, the subtractor 41 is entered through a thinning circuit 42 which outputs one counting pulse for the two interference fringes. The other interferometers 31 are the same as the interferometers 30, but one counting pulse for one interference fringe enters the subtractor 41. In this configuration, one fringe counting pulse in each interferometer is λ / 8.
Since it corresponds to the length of, the output of the subtractor 41 is expressed by the equation (3) as before. Therefore, when D = 2L as in the previous embodiment, the Abbe error is removed.

【0014】ここでは、説明の便宜上、干渉計31の1
干渉縞に対して1個の計数パルスを対応させたが、公知
の干渉縞分割法により、1干渉縞に2個あるいは4個な
どの複数パルスを対応させて干渉縞の端数を測定するこ
とは容易である。今、干渉計30の干渉縞検出系として
1干渉縞にM個の計数パルスを検出させるものを用い、
干渉計31の干渉縞検出系としては1干渉縞にN個(N
はMより大)の計数パルスを発生させるものを用いれ
ば、MD=NLを満足するとき、アッベの誤差は除去さ
れ、且つ干渉縞をM分割して、より細かく計測すること
ができる。
Here, for convenience of explanation, 1 of the interferometer 31 is used.
Although one counting pulse is made to correspond to the interference fringes, it is not possible to measure the fraction of the interference fringes by making a plurality of pulses such as two or four correspond to one interference fringe by a known interference fringe division method. It's easy. Now, as the interference fringe detection system of the interferometer 30, one that detects M counting pulses in one interference fringe is used,
The interference fringe detection system of the interferometer 31 has N (N
If a pulse generating a counting pulse of (> is larger than M) is used, Abbe's error is removed when MD = NL is satisfied, and the interference fringes can be divided into M for finer measurement.

【0015】図6は第3の実施例を示す。即ち、計数器
43で干渉計30からの計数パルスを計数したのち掛算
器45でパルス数をM倍にし、計数器44で干渉計31
からの計数パルスを計数した後、掛算器46でパルス数
をN倍した後、引算器41に入力する。この場合もMD
=NLのときアッベの誤差は除去される。干渉計30ま
たは干渉計31からの1計数パルスがλ/2K(Kは整
数)の長さに対応するとすれば位置検出装置3の測定点
の移動量Sは引算器41の出力をZとすれば、 S=λZ/2K(N−M) (6) で与えられる。
FIG. 6 shows a third embodiment. That is, after counting pulses from the interferometer 30 by the counter 43, the number of pulses is multiplied by M by the multiplier 45, and the interferometer 31 by the counter 44.
After counting the counting pulses from, the number of pulses is multiplied by N by the multiplier 46, and then input to the subtractor 41. Also in this case MD
= NL, the Abbe error is removed. If one counting pulse from the interferometer 30 or the interferometer 31 corresponds to the length of λ / 2K (K is an integer), the movement amount S of the measurement point of the position detecting device 3 is the output of the subtractor 41 as Z. Then, S = λZ / 2K (NM) (6)

【0016】図7は、計数器43、44の計数値Z1 、
Z2 を入力として演算器47で移動量Sを求める第4の
実施例である。干渉計30によって測定された計数値を
Z1とすると、その部分での可動ホルダ2の移動量d1
は、 d1 =S−Dα=Z1 一(λ/2K) (7) 干渉計31によって測定された計数値をZ2 とすると、
その部分での可動ホルダ2の移動量d2 は、 d2 =S−Lα=Z2 (λ/2K) (8) 演算器47では、 m=L/D (9) とするとき、次の演算を行う。 S=(λ/2K)(Z2 −mZ1 )/(1−m) (10) または、 S=(d2 −md1 )/(1−m) (11) この様にすればアッベの誤差を含まない正しい移動量S
が求められる。ここで、m=2/3とすればD−L=L
/2となり、2つの干渉計光軸の間隔(D−L)をL/
2にすることができる。2つの干渉計の測定光束が反射
鏡との往復する回数が異なる場合も、(10)式または
(11)式に相当する式を導き出すことは極めて容易で
あり、このような場合も本発明の範疇に含まれることは
言うまでもない。
FIG. 7 shows the count values Z1 of the counters 43 and 44,
It is a fourth embodiment in which the movement amount S is obtained by the calculator 47 with Z2 as an input. Assuming that the count value measured by the interferometer 30 is Z1, the amount of movement d1 of the movable holder 2 at that portion is
Is d1 = S-Dα = Z1 1 (.lambda. / 2K) (7) Letting Z2 be the count value measured by the interferometer 31,
The amount of movement d2 of the movable holder 2 at that portion is: d2 = S-Lα = Z2 (λ / 2K) (8) The calculator 47 performs the following calculation when m = L / D (9) .. S = (λ / 2K) (Z2-mZ1) / (1-m) (10) or S = (d2-md1) / (1-m) (11) In this way, Abbe's error is not included. Correct movement amount S
Is required. Here, if m = 2/3, D−L = L
/ 2, and the distance (D-L) between the two interferometer optical axes is L /
It can be 2. Even when the number of times the measurement light beams of the two interferometers make a round trip with the reflecting mirror is different, it is extremely easy to derive the equation corresponding to the equation (10) or the equation (11). It goes without saying that it is included in the category.

【0017】図8、9に更に第5の実施例を示す。これ
らは図2、3に示した光学系で射出した光束を直角プリ
ズム48によりもう1度干渉計に戻すようにした例で、
図1の実施例の干渉計20として図8の光学系を、干渉
計30として図9の光学系をそれぞれ使用するようにし
ている。この例では、干渉計20の測定用光束は反射鏡
Mxとの間を6往復する。干渉計30の測定用光束は8
往復する。従って、3D=4Lが成り立つようにすれば
アッベの誤差が除去される。干渉計20と干渉計30の
光軸間隔はD−Lであるが、D−L=L/3となる。従
って、Lが同じとすれば干渉計光学系の間隔をつめるこ
とができ、干渉計をコンパクトに纏めることができる。
間隔が同じとすれば、測定点を一層離れた位置に設定す
ることができる。
A fifth embodiment is further shown in FIGS. These are examples in which the light beam emitted by the optical system shown in FIGS. 2 and 3 is returned to the interferometer again by the right-angle prism 48.
The optical system of FIG. 8 is used as the interferometer 20 of the embodiment of FIG. 1, and the optical system of FIG. 9 is used as the interferometer 30. In this example, the measuring light beam of the interferometer 20 makes six round trips with the reflecting mirror Mx. The measuring luminous flux of the interferometer 30 is 8
Make a round trip. Therefore, if 3D = 4L is satisfied, the Abbe error is removed. The optical axis distance between the interferometer 20 and the interferometer 30 is DL, but DL-L / 3. Therefore, if L is the same, the intervals of the interferometer optical system can be reduced, and the interferometer can be compactly assembled.
If the intervals are the same, the measurement points can be set at positions further apart.

【0018】以上の実施例に見られるように、2つの干
渉計を用い、m=N/M=L/Dとするとき、(10)
式または(11)式によりアッベの誤差を含まない正し
い移動量Sが求められる。
As seen in the above embodiment, when two interferometers are used and m = N / M = L / D, (10)
The correct movement amount S that does not include the Abbe error can be obtained by the expression or the expression (11).

【0019】以上の実施例では、可動ホルダに干渉計を
固設し、基台に反射鏡を固定したが、これに制約される
ものではなく、可動ホルダに反射鏡を、基台に干渉計を
それぞれ固設して、上記の関係が満たされれば、アッベ
の誤差を除去することができる。
In the above embodiment, the interferometer is fixedly mounted on the movable holder and the reflecting mirror is fixed to the base. However, the present invention is not limited to this, and the reflecting mirror is mounted on the movable holder and the interferometer is mounted on the base. If the above is fixed and the above relationship is satisfied, the Abbe error can be removed.

【発明の効果】本発明による高精度座標測定装置は、ア
ッベの誤差を排除し高精度の測定が可能なものである。
The high-precision coordinate measuring device according to the present invention is capable of highly accurate measurement by eliminating Abbe's error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高精度座標測定装置の第1の実施
例の構成図である。
FIG. 1 is a configuration diagram of a first embodiment of a high precision coordinate measuring apparatus according to the present invention.

【図2】図1中の干渉計の光路説明図である。FIG. 2 is an optical path explanatory diagram of the interferometer in FIG.

【図3】図1中の別の干渉計の光路説明図である。FIG. 3 is an optical path explanatory diagram of another interferometer in FIG.

【図4】図1で省略した光検出器の概要図である。FIG. 4 is a schematic diagram of a photodetector omitted in FIG.

【図5】本発明による高精度座標測定装置の第2の実施
例による構成図である。
FIG. 5 is a configuration diagram of a high precision coordinate measuring device according to a second embodiment of the present invention.

【図6】本発明による高精度座標測定装置の第3の実施
例による要部の構成図である。
FIG. 6 is a configuration diagram of a main part according to a third embodiment of a high precision coordinate measuring apparatus according to the present invention.

【図7】本発明による高精度座標測定装置の第4の実施
例による要部の構成図である。
FIG. 7 is a configuration diagram of a main part of a high precision coordinate measuring apparatus according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施例による1干渉計の光路説
明図である
FIG. 8 is an optical path diagram of the one interferometer according to the fifth embodiment of the present invention.

【図9】本発明の第5の実施例による他の干渉計の光路
説明図である。
FIG. 9 is an optical path diagram of another interferometer according to the fifth embodiment of the present invention.

【図10】本発明による3次元測定の概念を示した構成
図である。
FIG. 10 is a configuration diagram showing the concept of three-dimensional measurement according to the present invention.

【図11】従来の2次元測定の概念を示した構成図であ
る。
FIG. 11 is a configuration diagram showing the concept of conventional two-dimensional measurement.

【図12】同じく3次元測定の概念を示した構成図であ
る。
FIG. 12 is a configuration diagram similarly showing the concept of three-dimensional measurement.

【符号の説明】[Explanation of symbols]

1 基台 2 可動ホルダ 3 表面位置検出器 4 被測定物 6 ステージ 7 偏光プリズム 8 反射鏡 9 反射鏡 10 ブローブ 11 1/2波長板 12 光検出器 20 干渉計 21 偏光プリズム 22 偏光プリズム 23 1/4波長板 24 1/4波長板 25 直角プリズム 26 1/4波長板 27 1/4波長板 30 干渉計 41 引算器 42 間引回路 43 計数器 44 計数器 45 掛算器 46 掛算器 47 演算器 48 直角プリズム Mx X軸反射鏡 My Y軸反射鏡 Mz Z軸反射鏡 Ix X軸干渉計 Iy Y軸干渉計 Iz Z軸干渉計 1 base 2 movable holder 3 surface position detector 4 object to be measured 6 stage 7 polarizing prism 8 reflecting mirror 9 reflecting mirror 10 probe 11 1/2 wave plate 12 photodetector 20 interferometer 21 polarizing prism 22 polarizing prism 23 1 / 4 wave plate 24 1/4 wave plate 25 right angle prism 26 1/4 wave plate 27 1/4 wave plate 30 interferometer 41 subtractor 42 thinning circuit 43 counter 44 counter 45 multiplier 46 multiplier 47 calculator 48 Right Angle Prism Mx X Axis Reflector My Y Axis Reflector Mz Z Axis Reflector Ix X Axis Interferometer Iy Y Axis Interferometer Iz Z Axis Interferometer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基台と、該基台に固設された反射鏡と、
前記基台に該反射鏡に垂直な方向に移動可能に設けられ
た可動ホルダと、該可動ホルダに固設された位置検出装
置と、該可動ホルダに固設され前記反射鏡と位置検出装
置との相対的移動量を測定する第1、第2の干渉計とを
備え、前記第1、第2の干渉計が各々測定用光学系と参
照用光学系とを有し、第1の干渉計の測定用光学系の光
軸が前記位置検出装置の測定点からLの距離に在り、前
記第2の干渉計の測定用光学系の光軸は前記測定点から
D(但しD≠L)の距離に在り、前記第1の干渉計によ
り測定される前記可動ホルダの移動量測定値をd1 、前
記第2の干渉計により測定される前記可動ホルダの移動
量測定値をd2 、m=L/Dとするとき、 S=(d2 −md1 )/(1−m) なる式により測定点の移動量Sを算出することを特徴と
する高精度座標測定装置。
1. A base and a reflecting mirror fixed to the base,
A movable holder provided on the base so as to be movable in a direction perpendicular to the reflecting mirror, a position detecting device fixed to the movable holder, the reflecting mirror fixed to the movable holder, and a position detecting device. First and second interferometers for measuring the relative movement amount of the first interferometer, each of the first and second interferometers having a measurement optical system and a reference optical system. The optical axis of the measuring optical system is at a distance L from the measuring point of the position detecting device, and the optical axis of the measuring optical system of the second interferometer is D (however, D ≠ L) from the measuring point. At a distance, the moving amount measurement value of the movable holder measured by the first interferometer is d1, the moving amount measurement value of the movable holder measured by the second interferometer is d2, and m = L / When D, the moving amount S of the measurement point is calculated by the formula S = (d2-md1) / (1-m). High precision coordinate measuring device.
【請求項2】 基台と、該基台に対して一方向に移動可
能に設けられた可動ホルダと、該可動ホルダに固設され
た位置検出装置と、該可動ホルダに固設された反射鏡
と、前記基台に固設され前記反射鏡と位置検出装置との
相対的移動量を測定する第1、第2の干渉計とを備え、
前記第1、第2の干渉計が各々測定用光学系と参照用光
学系とを有し、第1の干渉計の測定用光学系の光軸が前
記位置検出装置の測定点からLの距離に在り、前記第2
の干渉計の測定用光学系の光軸は前記測定点からD(但
しD≠L)の距離に在り、前記第1の干渉計により測定
される前記可動ホルダの移動量測定値をd1 、前記第2
の干渉計により測定される前記可動ホルダの移動量測定
値をd2 、m=L/Dとするとき、 S=(d2 −md1 )/(1−m) なる式により測定点の移動量Sを算出することを特徴と
する高精度座標測定装置。
2. A base, a movable holder provided so as to be movable in one direction with respect to the base, a position detection device fixed to the movable holder, and a reflection fixed to the movable holder. A mirror and first and second interferometers fixed to the base and measuring relative movement amounts of the reflecting mirror and the position detecting device,
The first and second interferometers each have a measuring optical system and a reference optical system, and the optical axis of the measuring optical system of the first interferometer is a distance L from the measuring point of the position detecting device. In the second
The optical axis of the measuring optical system of the interferometer is at a distance D (however, D ≠ L) from the measuring point, and the moving amount measurement value of the movable holder measured by the first interferometer is d1, Second
When the measurement value of the moving amount of the movable holder measured by the interferometer is d2 and m = L / D, the moving amount S of the measuring point is calculated by the following equation: S = (d2-md1) / (1-m) A high-precision coordinate measuring device characterized by calculating.
【請求項3】 基台と、該基台に固設された反射鏡と、
前記基台に該反射鏡に垂直な方向に移動可能に設けられ
た可動ホルダと、該可動ホルダに固設された位置検出装
置と、前記可動ホルダ2に固設され前記反射鏡と位置検
出装置との相対的移動量を測定する第1、第2の干渉計
とを備え、前記第1、第2の干渉計が各々測定用光学系
と参照用光学系とを有し、第1の干渉計の測定用光学系
の光軸が前記位置検出装置の測定点からLの距離に在
り、前記第2の干渉計の測定用光学系の光軸は前記測定
点からD(但しD≠L)の距離に在り、前記第1の干渉
計の測定用光束が前記反射鏡との間を往復する回数をN
回(Nは2以上の整数)、前記第2の干渉計の測定用光
束が前記反射鏡との間を往復する回数をM回(MはNよ
り小さい整数)とするとき、NL=MDなる関係を満足
し、更に前記2つの干渉計により測定された端数を含む
干渉縞の差より測定点の移動量を算出することを特徴と
する高精度座標測定装置。
3. A base, and a reflecting mirror fixed to the base,
A movable holder provided on the base so as to be movable in a direction perpendicular to the reflecting mirror, a position detecting device fixed to the movable holder, and the reflecting mirror and position detecting device fixed to the movable holder 2. And a first interferometer for measuring a relative movement amount between the first interferometer and the second interferometer, each of which has a measurement optical system and a reference optical system. The optical axis of the measuring optical system of the meter is at a distance L from the measuring point of the position detecting device, and the optical axis of the measuring optical system of the second interferometer is D from the measuring point (where D ≠ L). The number of times the measuring light beam of the first interferometer travels back and forth between the reflecting mirror and
NL = MD, where N is an integer of 2 or more and M is the number of times that the measuring light flux of the second interferometer travels back and forth with the reflecting mirror. A high-precision coordinate measuring device which satisfies the relationship and further calculates a moving amount of a measuring point from a difference between interference fringes including fractions measured by the two interferometers.
【請求項4】 基台と、該基台に対して一方向に移動可
能に設けられた可動ホルダと、該可動ホルダに固設され
た位置検出装置と、該可動ホルダに固設された反射鏡
と、前記基台に固設され前記反射鏡と位置検出装置との
相対的移動量を測定する第1、第2の干渉計とを備え、
前記第1、第2の干渉計が各々測定用光学系と参照用光
学系とを有し、第1の干渉計の測定用光学系の光軸が前
記位置検出装置の測定点からLの距離に在り、前記第2
の干渉計の測定用光学系の光軸は前記測定点からD(但
しD≠L)の距離に在り、前記第1の干渉計の測定用光
束が前記反射鏡との間を往復する回数をN回(Nは2以
上の整数)、前記第2の干渉計の測定用光束が前記反射
鏡との間を往復する回数をM回(MはNより小さい整
数)とするとき、NL=MDなる関係を満足し、更に前
記2つの干渉計により測定された端数を含む干渉縞の差
より測定点の移動量を算出することを特徴とする高精度
座標測定装置。
4. A base, a movable holder provided so as to be movable in one direction with respect to the base, a position detection device fixed to the movable holder, and a reflection fixed to the movable holder. A mirror and first and second interferometers fixed to the base and measuring relative movement amounts of the reflecting mirror and the position detecting device,
The first and second interferometers each have a measuring optical system and a reference optical system, and the optical axis of the measuring optical system of the first interferometer is a distance L from the measuring point of the position detecting device. In the second
The optical axis of the measuring optical system of the interferometer is at a distance of D (where D ≠ L) from the measuring point, and the number of times the measuring light beam of the first interferometer travels back and forth between the reflecting mirror and When N times (N is an integer of 2 or more) and M is the number of times the measurement light beam of the second interferometer travels back and forth between the reflecting mirror and M times (M is an integer smaller than N), NL = MD A high-precision coordinate measuring device which satisfies the following relationship and further calculates a moving amount of a measuring point from a difference between interference fringes including fractions measured by the two interferometers.
【請求項5】 請求項1または3において、前記反射鏡
は、X軸およびY軸上に各々X軸およびY軸反射鏡が固
設されており、前記可動ホルダは前記基台に対してXお
よびY軸方向に平行移動可能に設けられており、該可動
ホルダには前記X軸およびY軸反射鏡の各々に対向して
前記第1、第2の干渉計を備えたX軸干渉計およびY軸
干渉計が設けられていることを特徴とする請求項1また
は3の高精度座標測定装置。
5. The X-axis and Y-axis reflecting mirrors are fixedly mounted on the X-axis and the Y-axis, respectively, in the reflecting mirror according to claim 1, and the movable holder is X-axis relative to the base. And an X-axis interferometer including the first and second interferometers, which are provided so as to be movable in parallel in the Y-axis direction and face the X-axis and Y-axis reflecting mirrors, respectively, in the movable holder, The high-precision coordinate measuring device according to claim 1, further comprising a Y-axis interferometer.
【請求項6】 請求項5において、Z軸反射鏡が固定さ
れており、前記可動ホルダは前記基台に対してZ軸方向
に平行移動可能に設けられおり、該可動ホルダには前記
Z軸反射鏡に対向して前記第1、第2の干渉計を備えた
Z軸干渉計が設けられていることを特徴とする請求項5
の高精度座標測定装置。
6. The Z-axis reflecting mirror according to claim 5, wherein the movable holder is provided so as to be movable in parallel to the base in the Z-axis direction, and the movable holder is provided with the Z-axis. 6. A Z-axis interferometer including the first and second interferometers is provided facing the reflecting mirror.
High precision coordinate measuring device.
JP3344782A 1991-12-10 1991-12-26 High precision coordinate measuring device Expired - Fee Related JP3064613B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3344782A JP3064613B2 (en) 1991-12-26 1991-12-26 High precision coordinate measuring device
US07/986,787 US5369488A (en) 1991-12-10 1992-12-08 High precision location measuring device wherein a position detector and an interferometer are fixed to a movable holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344782A JP3064613B2 (en) 1991-12-26 1991-12-26 High precision coordinate measuring device

Publications (2)

Publication Number Publication Date
JPH05172518A true JPH05172518A (en) 1993-07-09
JP3064613B2 JP3064613B2 (en) 2000-07-12

Family

ID=18371944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344782A Expired - Fee Related JP3064613B2 (en) 1991-12-10 1991-12-26 High precision coordinate measuring device

Country Status (1)

Country Link
JP (1) JP3064613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1749985E (en) * 2004-05-24 2008-09-15 Hino Motors Ltd Exhaust gas purifier

Also Published As

Publication number Publication date
JP3064613B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US7440113B2 (en) Littrow interferometer
US6757066B2 (en) Multiple degree of freedom interferometer
US10066974B2 (en) Interferometric encoder systems having at least partially overlapping diffracted beams
KR102061632B1 (en) Grid measuring device
JP2579226B2 (en) Optical device for interferometer
US5369488A (en) High precision location measuring device wherein a position detector and an interferometer are fixed to a movable holder
CN102506764B (en) Laser interference system for displacement linearity measurement
CN108775878B (en) Grating heterodyne interference system and roll angle measuring method thereof
TWI452262B (en) Interferometer system for simultaneous measurement of linear displacement and tilt angle
CN113701640B (en) Three-axis grating ruler
US7057739B2 (en) Separated beam multiple degree of freedom interferometer
US6856402B2 (en) Interferometer with dynamic beam steering element
JP3064613B2 (en) High precision coordinate measuring device
CN104613902A (en) Laser interference system for measuring straightness of displacement
CN111121614A (en) Two-dimensional straightness and linear displacement simultaneous measurement interference device
CN110068272B (en) Two-dimensional straightness error and position simultaneous measurement device and method
CN114353671B (en) Dual-wavelength diffraction interference system and method for realizing synchronous measurement of displacement and angle
JP5149085B2 (en) Displacement meter
JPH0754802Y2 (en) Contact type profilometer
Liu et al. Theory and application of laser interferometer systems
Chen et al. A new high-precision device for one-dimensional grating period measurement
JPH09318311A (en) Interferometer system
JP5135183B2 (en) 3D shape measuring device
Ishii et al. Interferometer for multi-degree-of-freedom measurement using ball lens and liquid crystal
JPS6123902A (en) Interferometer for coordinate axis setting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees