JPH05172334A - Cooking implement - Google Patents
Cooking implementInfo
- Publication number
- JPH05172334A JPH05172334A JP14724192A JP14724192A JPH05172334A JP H05172334 A JPH05172334 A JP H05172334A JP 14724192 A JP14724192 A JP 14724192A JP 14724192 A JP14724192 A JP 14724192A JP H05172334 A JPH05172334 A JP H05172334A
- Authority
- JP
- Japan
- Prior art keywords
- cooking
- detecting
- food
- output
- physical quantity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Ovens (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動調理を目的とした
調理器具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooking utensil intended for automatic cooking.
【0002】[0002]
【従来の技術】従来、この種の調理器具、例えば電子レ
ンジで図24に示すように構成されていた。以下、その
構成について説明する。2. Description of the Related Art Conventionally, a cooking utensil of this type, for example, a microwave oven has been constructed as shown in FIG. The configuration will be described below.
【0003】図に示すように、調理器具1は、調理物を
収納する調理室2と、調理物を調理する調理手段3(マ
イクロ波供給手段)、調理室2の相対湿度を検出する湿
度センサなどから構成される湿度検出手段4、湿度検出
手段4からの情報でもって調理手段3を制御する制御手
段5から構成されていた。このような構成で自動調理を
するために、調理物の重量、初期温度などを知る必要が
ある。そのために電源投入時からの湿度検出手段4の出
力がある湿度に達するまでの時間Tを測定し、この時間
Tを基に調理物の重量を推測し、この時間に各調理物特
有の定数kを乗じた時間を最適調理時間としていた。As shown in the figure, the cooking utensil 1 includes a cooking chamber 2 for storing a cooking product, a cooking unit 3 (microwave supplying unit) for cooking the cooking product, and a humidity sensor for detecting the relative humidity of the cooking chamber 2. The humidity detecting means 4 is composed of the above, and the control means 5 for controlling the cooking means 3 based on the information from the humidity detecting means 4. In order to automatically cook with such a structure, it is necessary to know the weight of the food, the initial temperature, and the like. For that purpose, the time T from the time when the power is turned on until the output of the humidity detecting means 4 reaches a certain humidity is measured, the weight of the food is estimated based on this time T, and at this time, a constant k peculiar to each food is obtained. The optimum cooking time was the time multiplied by.
【0004】また電子オーブンレンジにおいては、図2
5に示すように、調理器具1は、調理物を収納する調理
皿16の位置を可変可能とする調理室2、調理皿を載せ
る棚15、調理物を調理する調理手段3、調理室2内の
温度を検出するサーミスター等から構成される温度検出
手段4a、温度検出手段4aからの情報でもって調理手
段3を制御する制御手段5から構成されていた。このよ
うな構成で自動調理を可能にしていた。オーブン調理を
例にとると、メニューとして、ケーキ、アップルパイ、
ピザ、クッキー、バターロール、シュークリーム、グラ
タン、ホイル焼き、ハンバーグ、肉の付け焼き、バーベ
キュー、魚の付け焼き等があった。つまり、電子オーブ
ンレンジの操作部上で、前記の12のメニューに分けら
れていた。また、それぞれのメニューで調理皿を置く位
置が異なり、上、中、下の3つの位置がメニューにより
決定されていた。例えば、ピザの場合は皿位置は下で、
シュークリームは中段である。使用者は、まずメニュー
を決め、そのメニューに対応した位置に調理物を載せた
調理皿をセットし調理スタートキーを押し調理を開始さ
せていた。その後は、そのメニューに対応した自動調理
シーケンスで調理手段3を制御するような制御シーケン
スプログラムを制御手段5に備えていた。この自動調理
シーケンスは、調理開始から温度検出手段4aが調理室
内の温度が、ある温度に到達するまでの時間Tに選択メ
ニューに対応した定数Kを乗じた時間だけ加熱させるも
のである。調理物の重量によって、前記時間Tは変わっ
てくることが自動調理の1つのポイントである。また前
記定数Kは、多くの調理実験をすることにより、メニュ
ーでの最適値を決定していた。In the microwave oven, as shown in FIG.
As shown in FIG. 5, the cooking utensil 1 includes a cooking chamber 2 in which the position of a cooking dish 16 for accommodating a dish is variable, a shelf 15 for placing the cooking dish, a cooking means 3 for cooking the dish, and a cooking chamber 2 inside. The temperature detecting means 4a is composed of a thermistor or the like for detecting the temperature, and the control means 5 is arranged to control the cooking means 3 based on the information from the temperature detecting means 4a. With such a configuration, automatic cooking was possible. Taking oven cooking as an example, menus include cakes, apple pies,
There were pizza, cookies, butter rolls, cream puffs, gratin, foil grill, hamburger, meat grill, barbecue, fish grill. In other words, it was divided into the above 12 menus on the operation unit of the microwave oven. Moreover, the position where the cooking dish is placed is different in each menu, and the three positions of upper, middle, and lower are determined by the menu. For example, for pizza, the plate position is below,
Cream puff is in the middle. The user first decides a menu, sets a cooking dish on which food is placed at a position corresponding to the menu, and presses the cooking start key to start cooking. After that, the control means 5 was equipped with a control sequence program for controlling the cooking means 3 by an automatic cooking sequence corresponding to the menu. In this automatic cooking sequence, the temperature detecting means 4a heats the time T from the start of cooking until the temperature in the cooking chamber reaches a certain temperature by a constant K corresponding to the selection menu. One of the points of automatic cooking is that the time T changes depending on the weight of the food. Further, the constant K has been determined to be the optimum value for the menu by conducting many cooking experiments.
【0005】[0005]
【発明が解決しようとする課題】このような従来の調理
器具では、調理開始から調理室内の湿度がある値になる
までの時間を計測し、その時間にカテゴリー毎に定めら
れた定数Kを乗じた時間を調理時間として決定していた
ために、カテゴリーの数だけ操作部に操作キーが必要と
なる。また調理の出来上がりにかなりばらつきがあっ
た。例えば”ごはん”と”みそ汁”の再加熱を異なるカ
テゴリーとして分けると問題はないが、同一カテゴリー
とすると、定数Kを”ごはん”にあわせるか、”みそ
汁”に合わせるかによって出来ばえが異なり、”ごは
ん”が熱くなりすぎたり、”みそ汁”がぬるいといった
調理状態となっていた。これを解決しようとすると、カ
テゴリーをもっと細分化すれば良いが、操作キーが細分
化の数だけ増えることになり、使い勝手が大変悪いもの
になるという課題を有していた。また電子オーブンレン
ジにおいても同様であり、メニューに対応した自動調理
シーケンスを備えているので、メニューに対する自動化
はある程度実現されていた。しかし、メニューを選択す
るメニューキーの数が多いので、使い勝手上大変不便な
ものになるという課題を有していた。In such a conventional cooking utensil, the time from the start of cooking until the humidity in the cooking chamber reaches a certain value is measured, and the time is multiplied by a constant K determined for each category. Since the cooking time has been decided as the cooking time, the operation keys are required in the operation unit for the number of categories. There was also a considerable variation in the cooking results. For example, there is no problem if the reheats of "rice" and "miso soup" are divided into different categories, but if they are made into the same category, the result will differ depending on whether the constant K is adjusted to "rice" or "miso soup". "It was too hot, and" miso soup "was lukewarm. In order to solve this, it is sufficient to subdivide the categories, but the number of operation keys is increased by the number of subdivisions, and there is a problem that usability becomes very poor. The same applies to the microwave oven, and since the automatic cooking sequence corresponding to the menu is provided, the automation for the menu has been realized to some extent. However, since there are many menu keys for selecting a menu, there is a problem in that it is very inconvenient in terms of usability.
【0006】本発明は上記課題を解決するもので、調理
物の種類を、現実に計測・検出できる調理物周辺の環境
物理量、調理皿が置かれた皿位置検出情報により推定す
ることで、メニューの選択が不要でワンボタン操作が可
能な自動調理器具を提供することを目的としている。The present invention is intended to solve the above-mentioned problems. The menu is estimated by estimating the kind of the cooking object from the physical quantity of the environment around the cooking object that can be actually measured and detected and the dish position detection information on which the cooking dish is placed. It is an object of the present invention to provide an automatic cooking appliance that does not require selection of and can be operated with one button.
【0007】[0007]
【課題を解決するための手段】本発明は上記の目的を達
成するために下記構成とした。すなわち第1の解決手段
として、前記調理物を調理する調理手段と、調理物周辺
の環境を検出する環境物理量検出手段と、前記調理物の
固有物理量を検出する固有物理量検出手段と、前記環境
物理量検出手段の出力と前記固有物理量検出手段の出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力に基づき前記調理手段を制御する
制御手段とからなる構成とした。The present invention has the following structure in order to achieve the above object. That is, as a first solution means, cooking means for cooking the cooked food, environmental physical quantity detecting means for detecting the environment around the cooked food, unique physical quantity detecting means for detecting the unique physical quantity of the cooked food, and the environmental physical quantity The cooked product estimating unit estimates the cooked product based on the output of the detecting unit and the output of the unique physical quantity detecting unit, and the control unit controls the cooking unit based on the output of the cooking product estimating unit.
【0008】また第2の解決手段として、調理物を調理
する調理手段と、調理物周辺の環境を検出する環境物理
量検出手段と、前記調理物の固有物理量を検出する固有
物理量検出手段と、商用電源電圧の電圧レベルを検出す
る電圧レベル検出手段と、前記環境物理量検出手段の出
力と前記固有物理量検出手段の出力および前記電圧レベ
ル検出手段の出力に基づき前記調理物を推定する調理物
推定手段と、前記調理物推定手段の出力に基づき前記調
理手段を制御する制御手段とからなる構成とした。As a second solution, cooking means for cooking food, environmental physical quantity detection means for detecting the environment around the food, unique physical quantity detection means for detecting the unique physical quantity of the food, and commercial Voltage level detection means for detecting the voltage level of the power supply voltage, and cooked food estimation means for estimating the cooked food based on the output of the environmental physical quantity detection means, the output of the specific physical quantity detection means and the output of the voltage level detection means. And a control means for controlling the cooking means based on the output of the cooking product estimation means.
【0009】また第3の解決手段として、調理物を調理
する調理手段と、前記調理物を載せる調理皿の位置を検
出する皿位置検出手段と、調理物周辺の環境を検出する
環境物理量検出手段と、前記調理物の固有物理量を検出
する固有物理量検出手段と、前記皿位置検出手段の出力
と前記環境物理量検出手段の出力および前記固有物理量
検出手段の出力に基づき前記調理物を推定する調理物推
定手段と、前記調理物推定手段の出力に基づき前記調理
手段を制御する制御手段とからなる構成とした。As a third means for solving the problems, cooking means for cooking the food, plate position detecting means for detecting the position of the cooking plate on which the food is placed, and environmental physical quantity detecting means for detecting the environment around the food And an inherent physical quantity detecting means for detecting an inherent physical quantity of the cooked food, a cooked food for estimating the cooked food based on the output of the dish position detecting means, the output of the environmental physical quantity detecting means and the output of the inherent physical quantity detecting means The estimation means and the control means for controlling the cooking means based on the output of the cooking material estimation means are used.
【0010】また第4の解決手段として、調理物を調理
する調理手段と、前記調理物を載せる調理皿の位置を検
出する皿位置検出手段と、商用電源電圧の電圧レベルを
検出する電圧レベル検出手段と、調理物周辺の環境を検
出する環境物理量検出手段と、前記調理物の固有物理量
を検出する固有物理量検出手段と、前記皿位置検出手段
の出力と前記電圧レベル検出手段の出力と前記環境物理
量検出手段の出力および前記固有物理量検出手段の出力
の出力に基づき前記調理物を推定する調理物推定手段
と、前記調理物推定手段の出力に基づき前記調理手段を
制御する制御手段とからなる構成とした。As a fourth solution, cooking means for cooking food, dish position detecting means for detecting the position of a cooking dish on which the food is placed, and voltage level detection for detecting the voltage level of the commercial power supply voltage Means, environmental physical quantity detection means for detecting the environment around the food, unique physical quantity detection means for detecting the unique physical quantity of the food, output of the plate position detection means, output of the voltage level detection means, and the environment A configuration comprising cooking food estimation means for estimating the cooking food based on the output of the physical quantity detection means and the output of the inherent physical quantity detection means, and control means for controlling the cooking means based on the output of the cooking food estimation means. And
【0011】また第5の解決手段として、調理物を調理
する調理手段と、調理物周辺の温度を検出する温度検出
手段と、調理物周辺の湿度を検出する湿度検出手段と、
前記調理物の重量を検出する重量検出手段と、予め定め
た調理物周辺の所定温度を記憶する所定温度記憶手段
と、前記温度検出手段の出力が前記所定温度記憶手段の
記憶値に達するまでの前記温度検出手段の出力と前記湿
度検出手段の出力および前記重量検出手段の出力に基づ
き前記調理物を推定する調理物推定手段と、前記調理物
推定手段の出力に基づき前記調理手段を制御する制御手
段とからなる構成とした。As a fifth means for solving the problems, cooking means for cooking the food, temperature detecting means for detecting the temperature around the food, and humidity detecting means for detecting the humidity around the food are provided.
Weight detection means for detecting the weight of the cooked food, predetermined temperature storage means for storing a predetermined temperature around the cooked food, and output of the temperature detection means until the value stored in the predetermined temperature storage means is reached. A cooking product estimation unit that estimates the cooking product based on the output of the temperature detection unit, the output of the humidity detection unit, and the output of the weight detection unit, and a control that controls the cooking unit based on the output of the cooking product estimation unit It is configured by means.
【0012】また第6の解決手段として、調理物を調理
する調理手段と、調理物周辺の温度を検出する温度検出
手段と、調理物周辺の湿度を検出する湿度検出手段と、
商用電源電圧の電圧レベルを検出する電圧レベル検出手
段と、前記調理物の重量を検出する重量検出手段と、予
め定めた調理物周辺の所定温度を記憶する所定温度記憶
手段と、前記電圧レベル検出手段の出力と前記温度検出
手段の出力が前記所定温度記憶手段の記憶値に達するま
での前記温度検出手段の出力と前記湿度検出手段の出力
および前記重量検出手段の出力に基づき前記調理物を推
定する調理物推定手段と、前記調理物推定手段の出力に
基づき前記調理手段を制御する制御手段とからなる構成
とした。As a sixth means for solving the problems, a cooking means for cooking the food, a temperature detecting means for detecting the temperature around the food, and a humidity detecting means for detecting the humidity around the food are provided.
Voltage level detection means for detecting the voltage level of the commercial power supply voltage, weight detection means for detecting the weight of the cooked food, predetermined temperature storage means for storing a predetermined temperature around the cooked food, and the voltage level detection The cooking product is estimated based on the output of the temperature detecting means, the output of the humidity detecting means and the output of the weight detecting means until the output of the means and the output of the temperature detecting means reach the stored value of the predetermined temperature storing means. And a control means for controlling the cooking means based on the output of the cooking material estimation means.
【0013】また第7の解決手段として、調理物を調理
する調理手段と、調理物周辺の温度を検出する温度検出
手段と、調理物周辺の湿度を検出する湿度検出手段と、
前記調理物を載せる調理皿の位置を検出する皿位置検出
手段と、前記調理物の重量を検出する重量検出手段と、
予め定めた調理物周辺の所定温度を記憶する所定温度記
憶手段と、前記皿位置検出手段の出力と前記温度検出手
段の出力が前記所定温度記憶手段の記憶値に達するまで
の前記温度検出手段の出力と前記湿度検出手段の出力お
よび前記重量検出手段の出力に基づき前記調理物を推定
する調理物推定手段と、前記調理物推定手段の出力に基
づき前記調理手段を制御する制御手段とからなる構成と
した。As a seventh solving means, a cooking means for cooking the cooked food, a temperature detecting means for detecting the temperature around the cooked food, and a humidity detecting means for detecting the humidity around the cooked food,
A plate position detecting means for detecting the position of the cooking plate on which the food is placed, and a weight detecting means for detecting the weight of the food,
Predetermined temperature storage means for storing a predetermined temperature around a predetermined food product, and of the temperature detection means until the output of the plate position detection means and the output of the temperature detection means reach the stored value of the predetermined temperature storage means. A configuration including a cooking product estimation unit that estimates the cooking product based on an output, an output of the humidity detection unit, and an output of the weight detection unit, and a control unit that controls the cooking unit based on the output of the cooking product estimation unit. And
【0014】また第8の解決手段として、調理物を調理
する調理手段と、調理物周辺の温度を検出する温度検出
手段と、調理物周辺の湿度を検出する湿度検出手段と、
前記調理物を載せる調理皿の位置を検出する皿位置検出
手段と、商用電源電圧の電圧レベルを検出する電圧レベ
ル検出手段と、前記調理物の重量を検出する重量検出手
段と、予め定めた調理物周辺の所定温度を記憶する所定
温度記憶手段と、前記皿位置検出手段の出力と前記電圧
レベル検出手段の出力と前記温度検出手段の出力が前記
所定温度記憶手段の記憶値に達するまでの前記温度検出
手段の出力と前記湿度検出手段の出力および前記重量検
出手段の出力に基づき前記調理物を推定する調理物推定
手段と、前記調理物推定手段の出力に基づき前記調理手
段を制御する制御手段とからなる構成とした。As an eighth solution means, a cooking means for cooking the food, a temperature detection means for detecting the temperature around the food, and a humidity detection means for detecting the humidity around the food are provided.
Dish position detecting means for detecting the position of the cooking plate on which the food is placed, voltage level detecting means for detecting the voltage level of the commercial power supply voltage, weight detecting means for detecting the weight of the food, and predetermined cooking A predetermined temperature storage means for storing a predetermined temperature around an object; the output of the dish position detection means, the output of the voltage level detection means, and the output of the temperature detection means until the stored value of the predetermined temperature storage means is reached. Cooking estimation means for estimating the cooking based on the output of the temperature detection means, the output of the humidity detection means and the output of the weight detection means, and a control means for controlling the cooking means based on the output of the cooking estimation means It is composed of and.
【0015】また第9の解決手段として、制御手段は所
定温度記憶手段の記憶値より低い第2の所定温度を記憶
する第2所定温度記憶部を有し、温度検出手段からの出
力が初期に第2所定温度より高い時に第2所定温度より
低くなるまで調理手段を停止させる待機部を設ける構成
とした。As a ninth solution means, the control means has a second predetermined temperature storage section for storing a second predetermined temperature lower than the storage value of the predetermined temperature storage means, and the output from the temperature detection means is initially set. When the temperature is higher than the second predetermined temperature, the standby unit that stops the cooking means until the temperature becomes lower than the second predetermined temperature is provided.
【0016】さらに、前記調理物推定手段は、複数の神
経素子より構成される神経回路網をモデル化した手法に
より得られ、調理物を推定する複数の固定された結合重
み係数を内部に持つ神経回路網模式手段を有する構成と
した。または、複数の神経素子より構成される層が多数
組み合わされて構築される階層型の神経回路網模式手段
を有する構成とした。Further, the cooking product estimating means is obtained by a method of modeling a neural network composed of a plurality of neural elements, and a nerve having a plurality of fixed connection weight coefficients for estimating a cooking product inside. The configuration has a circuit network schematic means. Alternatively, it is configured to have a hierarchical neural network model means constructed by combining a number of layers composed of a plurality of neural elements.
【0017】[0017]
【作用】本発明は上記した構成によって下記の作用が得
られる。第1の課題解決手段により、環境物理量検出手
段からの調理物周辺の環境情報と調理物固有の重量情報
を、時々刻々調理物推定手段に入力することにより、調
理物推定手段は調理物を推定し、制御手段は調理物推定
手段からの調理物情報で調理物を認識し、認識した調理
物に最適な制御シーケンスで調理手段を制御する。The present invention has the following functions due to the above-mentioned structure. By the first problem solving means, the environmental information around the cooked food and the weight information specific to the cooked food from the environmental physical quantity detecting means are input to the cooked food estimating means from moment to moment so that the cooked food estimating means estimates the cooked food. Then, the control unit recognizes the cooking product based on the cooking product information from the cooking product estimating unit, and controls the cooking unit in a control sequence most suitable for the recognized cooking product.
【0018】また第2の解決手段により環境物理量検出
手段からの調理物周辺の環境情報と調理物固有の重量情
報と電圧レベル検出手段からの商用電源電圧の電圧レベ
ル情報を、時々刻々調理物推定手段に入力することによ
り、調理物推定手段は調理物を推定し、制御手段は調理
物推定手段からの調理物情報で調理物を認識し、認識し
た調理物に最適な制御シーケンスで調理手段を制御す
る。Further, the second solution means estimates the cooking product moment by moment based on the environmental information around the cooking product from the environmental physical quantity detecting device, the weight information peculiar to the cooking product, and the voltage level information of the commercial power supply voltage from the voltage level detecting device. By inputting to the means, the cooking product estimating means estimates the cooking product, the control means recognizes the cooking product from the cooking product information from the cooking product estimating means, and selects the cooking means in the optimal control sequence for the recognized cooking product. Control.
【0019】また第3の解決手段により、調理物を載せ
る皿位置検出手段の情報により調理物の種類を大分類
し、そのカテゴリーを認識し、環境物理量検出手段から
の調理物周辺の環境情報と調理物固有の重量情報を、時
々刻々調理物推定手段に入力することにより、調理物推
定手段はそのカテゴリー内での調理物を推定し、制御手
段は調理物推定手段からの調理物情報で調理物を認識
し、認識した調理物に最適な制御シーケンスで調理手段
を制御する。Further, according to the third solving means, the types of foods are roughly classified according to the information of the plate position detecting means on which the foods are placed, the categories are recognized, and the environmental information around the foods is detected from the environmental physical quantity detecting means. By inputting the weight information peculiar to the cooked product to the cooked product estimating device from moment to moment, the cooked product estimating device estimates the cooked product within the category, and the control device prepares the cooked product from the cooked product estimating device. An object is recognized, and the cooking means is controlled by a control sequence most suitable for the recognized food.
【0020】また第4の解決手段により、調理物を載せ
る皿位置検出手段の情報により調理物の種類を大分類
し、そのカテゴリーを認識し、環境物理量検出手段から
の調理物周辺の環境情報と調理物固有の重量情報と電圧
レベル検出手段からの商用電源電圧の電圧レベル情報
を、時々刻々調理物推定手段に入力することにより、調
理物推定手段はそのカテゴリー内での調理物を推定し、
制御手段は調理物推定手段からの調理物情報で調理物を
認識し、認識した調理物に最適な制御シーケンスで調理
手段を制御する。Further, according to the fourth solving means, the type of the cooking product is roughly classified according to the information of the plate position detecting means on which the cooking product is placed, the category is recognized, and the environmental information around the cooking product is detected from the environmental physical quantity detecting means. By inputting the weight information specific to the cooking product and the voltage level information of the commercial power supply voltage from the voltage level detecting unit to the cooking product estimating unit every moment, the cooking product estimating unit estimates the cooking product in the category,
The control means recognizes the cooked food from the cooked food information from the cooked food estimating means, and controls the cooking means in a control sequence most suitable for the recognized cooked food.
【0021】また第5の解決手段により調理物周辺の温
度が予め定めた所定の温度に達するまでの調理物周辺の
温度情報と湿度情報と調理物の重量情報を、時々刻々調
理物推定手段に入力することにより、調理物推定手段は
調理物を推定し、制御手段は調理物推定手段からの調理
物情報で調理物を認識し、認識した調理物に最適な制御
シーケンスで調理手段を制御する。[0021] Further, by the fifth solving means, the temperature information, the humidity information and the weight information of the food surrounding the food until the temperature of the food surrounding reaches a predetermined temperature which is set in advance are sent to the food estimating means every moment. By inputting, the cooked product estimating means estimates the cooked food, the control means recognizes the cooked food from the cooked food information from the cooked food estimating means, and controls the cooking means in a control sequence most suitable for the recognized cooked food. ..
【0022】また第6の解決手段により調理物周辺の温
度が予め定めた所定の温度に達するまでの商用電源電圧
の電圧レベル情報と調理物周辺の温度情報と湿度情報と
調理物の重量情報を、時々刻々調理物推定手段に入力す
ることにより、調理物推定手段は調理物を推定し、制御
手段は調理物推定手段からの調理物情報で調理物を認識
し、認識した調理物に最適な制御シーケンスで調理手段
を制御する。Further, the sixth solution provides the voltage level information of the commercial power supply voltage until the temperature around the food reaches a predetermined temperature, the temperature information around the food, the humidity information, and the weight information about the food. , The cooking product estimating unit estimates the cooking product by inputting it into the cooking product estimating unit every moment, and the control unit recognizes the cooking product based on the cooking product information from the cooking product estimating unit, and optimizes the recognized cooking product. The control means controls the cooking means.
【0023】また第7の解決手段により調理物を載せる
皿位置検出手段の情報により調理物の種類を大分類し、
そのカテゴリーを認識し、次に調理物周辺の温度が予め
定めた所定の温度に達するまでの調理物周辺の温度情報
と湿度情報と調理物の重量情報を、時々刻々調理物推定
手段に入力することにより、調理物推定手段はそのカテ
ゴリー内での調理物を推定し、制御手段は調理物推定手
段からの調理物情報で調理物を認識し、認識した調理物
に最適な制御シーケンスで調理手段を制御する。Further, according to the seventh solving means, the types of the cooking products are roughly classified according to the information of the plate position detecting means for placing the cooking products,
The category is recognized, and then the temperature information, the humidity information, and the weight information of the food surrounding the food until the temperature around the food reaches a predetermined temperature are input to the food estimating means every moment. By doing so, the cooking product estimation means estimates the cooking products within the category, the control means recognizes the cooking products based on the cooking product information from the cooking product estimation means, and the cooking means in the optimal control sequence for the recognized cooking products. To control.
【0024】また第8の解決手段により調理物を載せる
皿位置検出手段の情報により調理物の種類を大分類し、
そのカテゴリーを認識し、次に調理物周辺の温度が予め
定めた所定の温度に達するまでの商用電源電圧の電圧レ
ベル情報と調理物周辺の温度情報と湿度情報と調理物の
重量情報を、時々刻々調理物推定手段に入力することに
より、調理物推定手段はそのカテゴリー内での調理物を
推定し、制御手段は調理物推定手段からの調理物情報で
調理物を認識し、認識した調理物に最適な制御シーケン
スで調理手段を制御する。Further, according to the eighth solving means, the types of the cooked food are roughly classified by the information of the plate position detecting means for placing the cooked food,
Recognize the category, and then occasionally the voltage level information of the commercial power supply voltage until the temperature around the cook reaches a predetermined temperature, temperature information around the cook, humidity information, and weight information of the cook, By inputting into the cooking product estimation means every moment, the cooking product estimation means estimates the cooking products in the category, the control means recognizes the cooking products from the cooking product information from the cooking product estimation means, and the recognized cooking products The cooking means is controlled by the optimal control sequence.
【0025】また第9の解決手段により、調理後、すぐ
に調理をしようとした場合は調理室内の温度は高いが、
温度検出手段からの出力が初期に第2所定温度より高い
時に第2所定温度より低くなるまで調理手段を停止させ
る待機部を設ける構成としているので、調理器具を連続
使用した場合でも確実に調理物の推定が可能となる。According to the ninth means for solving the problems, the temperature in the cooking chamber is high when trying to cook immediately after cooking,
When the output from the temperature detecting means is initially higher than the second predetermined temperature, the standby portion is provided to stop the cooking means until it becomes lower than the second predetermined temperature. Can be estimated.
【0026】また第10の解決手段により、調理物推定
手段を構成する神経回路網模式手段は、使用される環境
下で既に学習された結合重み係数を備えており、調理中
の調理物を推定することができる。According to the tenth solving means, the neural network pattern forming means constituting the cooking food estimating means is provided with the connection weighting coefficient already learned under the environment in which it is used, and the cooking food being cooked is estimated. can do.
【0027】また第11の解決手段により、調理物推定
手段を構成する神経回路網模式手段は、複数の神経素子
が多層組み合わされて構築されているので、調理物の推
定をより正確に行なうことができる。According to the eleventh solving means, the neural network model means constituting the cooking food estimating means is constructed by combining a plurality of neural elements in multiple layers, so that the cooking food can be more accurately estimated. You can
【0028】[0028]
【実施例】以下、本発明の一実施例を図1から図23を
参照しながら説明する。なお、従来例と同じ構成のもの
は同一符号を付して説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same components as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted.
【0029】(実施例1)本実施例では、調理器具とし
て、電子レンジに応用した例について説明する。図1に
示すように、環境物理量検出手段6は調理物周辺の環境
を検出する。本実施例では、調理室2内の絶対湿度を検
出するものであり、湿度センサなどで構成されている。
固有物理量検出手段7は調理物が固有に持っている固有
の物理量を検出するものであり、本実施例では調理物の
重量を検出するものであり、重量センサ等で構成されて
いる。計時手段8は調理開始時からの時間をカウントす
る。調理物推定手段9は環境物理量検出手段6、固有物
理量検出手段7、計時手段8の出力に基づき調理物が何
であるのかを推定するものであり、制御手段5は調理物
推定手段8の出力に基づき調理手段3を制御する。調理
手段3は、本実施例では、マイクロ波供給手段であり調
理室2に配設されている。さらに、10、11はAD変
換手段であり環境物理量検出手段6、固有物理量検出手
段7の出力をディジタル値に変換している。図10は、
操作手段12のキー構成を示した構成図である。(Embodiment 1) In this embodiment, an example applied to a microwave oven as a cooking utensil will be described. As shown in FIG. 1, the environmental physical quantity detection means 6 detects the environment around the food. In this embodiment, the absolute humidity in the cooking chamber 2 is detected, and is composed of a humidity sensor or the like.
The unique physical quantity detecting means 7 is for detecting a unique physical quantity that the cooking product has, and for detecting the weight of the cooking product in this embodiment, it is composed of a weight sensor or the like. The time measuring means 8 counts the time from the start of cooking. The cooked product estimating means 9 estimates what the cooked food is based on the outputs of the environmental physical quantity detecting means 6, the inherent physical quantity detecting means 7, and the time measuring means 8, and the control means 5 outputs the cooked food estimating means 8. Based on this, the cooking means 3 is controlled. In this embodiment, the cooking means 3 is a microwave supply means and is arranged in the cooking chamber 2. Further, 10 and 11 are AD conversion means for converting the outputs of the environmental physical quantity detection means 6 and the intrinsic physical quantity detection means 7 into digital values. Figure 10
It is a block diagram which showed the key structure of the operation means 12.
【0030】調理物推定手段8は、従来の制御手法に用
いられている解決的な方法が適用できないため、多次元
情報処理手法として最適な神経回路網をモデル化した方
法で構成している。神経回路網をモデル化する手法は、
調理物を推定する神経回路網の複数の結合重み係数を固
定されたテーブルとして用いる方法と、学習機能を残し
環境と使用者に適応できるようにする方法とがある。本
実施例は、神経回路網をモデル化した手法によって獲得
され、固定された結合重み係数を内部にテーブルとして
もち調理物を推定する神経回路網模式手段を有する調理
物推定手段8を設けている。Since the resolving method used in the conventional control method cannot be applied to the cooking product estimating means 8, the cooking object estimating means 8 is constructed by a method of modeling an optimal neural network as a multidimensional information processing method. The method of modeling a neural network is
There are a method of using a plurality of connection weighting factors of a neural network for estimating a cooking product as a fixed table, and a method of leaving a learning function so that it can be adapted to an environment and a user. In the present embodiment, a cooking product estimating means 8 having neural network model means for estimating a cooking product, which is obtained by a method of modeling a neural network and has a fixed connection weighting coefficient as a table, is provided. ..
【0031】異なる調理物を調理した場合、調理物の重
量が変化し、調理開始にともなう時々刻々の調理物から
発生する蒸気によって調理室内の湿度が変化する。When different cooked foods are cooked, the weight of the cooked foods changes, and the steam generated from the cooked foods changes the humidity in the cooking chamber with the start of cooking.
【0032】調理物を推定する神経回路網において固定
された結合重み係数は、実際に自動調理の対象とする調
理物を調理した場合、調理物の重量と調理室内の絶対湿
度がどのように変化するかというデータを収集し、調理
物とその重量変化データと調理室内の絶対湿度データと
の相関を神経回路網模式手段に学習させることによって
得ることができる。用いるべき神経回路網模式手段とし
ては、文献1(D.E.ラメルハート他2名著、甘利俊
一監訳「PDPモデル」(株)産業図書、1989
年)、文献2(中野馨他7名著「ニューロコンピュータ
の基礎」(株)コロナ社刊、P102、1990年)、
特公昭63−55106号公報などに示されたものがあ
る。以下、文献1に記載された最もよく知られた学習ア
ルゴリズムとして誤差逆伝搬法を用いた多層パーセプト
ロンを例にとり、具体的な神経回路網模式手段の構成お
よび動作について説明する。The coupling weight coefficient fixed in the neural network for estimating the cooking product changes how the weight of the cooking product and the absolute humidity in the cooking chamber change when the cooking product to be automatically cooked is actually cooked. This can be obtained by collecting data as to whether or not to do so and learning the correlation between the weight change data of the food and the absolute humidity data in the cooking chamber by the neural network model means. As a neural network schematic means to be used, reference 1 (DE Ramelhart et al., 2 authors, translated by Shunichi Amari “PDP Model” Sangyo Tosho, 1989)
, 2 (Kaoru Nakano and 7 others, "Basics of Neurocomputers", Corona Publishing Co., Ltd., P102, 1990),
There is one disclosed in Japanese Examined Patent Publication No. 63-55106. Hereinafter, the configuration and operation of a concrete neural network schematic means will be described by taking a multilayer perceptron using an error backpropagation method as the most well-known learning algorithm described in Document 1 as an example.
【0033】図11は、神経回路網模式手段の構成単位
となる神経素子の概念図である。図11において、21
〜2Nは神経のシナプス結合を模擬する疑似シナプス結
合変換器であり、2aは疑似シナプス結合変換器21〜
2Nからの出力を加算する加算器であり、2bは設定さ
れた非線形関数、たとえば、しきい値をhとするシグモ
イド関数、 f(y,h)=1/(1+exp(−y+h)) (式1) によって加算器2aの出力を非線形変換する非線形変換
器である。なお、図面が煩雑になるので省略したが、修
正手段からの修正信号を受ける入力線が疑似シナプス結
合変換器21〜2Nと非線形変換器2bにつながってい
る。また、疑似シナプス結合変換器21〜2Nが神経回
路網模式手段の結合重み係数となる。この神経素子に
は、信号処理モードと学習モードの2つの種類の動作モ
ードがある。FIG. 11 is a conceptual diagram of a neural element which is a constituent unit of the neural network model means. In FIG. 11, 21
2N is a pseudo synapse coupling converter simulating nerve synapse coupling, and 2a is a pseudo synapse coupling converter 21-
2B is an adder for adding outputs from 2N, 2b is a set non-linear function, for example, a sigmoid function with a threshold value h, f (y, h) = 1 / (1 + exp (-y + h)) 1) is a non-linear converter for non-linearly converting the output of the adder 2a. Although omitted because the drawing is complicated, an input line for receiving a correction signal from the correction means is connected to the pseudo synapse coupling converters 21 to 2N and the non-linear converter 2b. Further, the pseudo synapse coupling converters 21 to 2N serve as coupling weight coefficients of the neural network schematic unit. This neural element has two types of operation modes, a signal processing mode and a learning mode.
【0034】以下、図11に基づいて神経素子のそれぞ
れのモードの動作について説明する。まず、信号処理モ
ードの動作の説明をする。神経素子はN個の入力X1〜
Xnを受けて1つの出力を出す。i番目の入力信号Xi
は、四角で示されたi番目の疑似シナプス結合変換器2
iにおいてWi・Xiに変換される。疑似シナプス結合
変換器21〜2Nで変換されたN個の信号W1・X1〜
Wn・Xnは加算器2aに入り、加算結果yが非線形変
換器2bに送られ、最終出力f(y,h)となる。つぎ
に、学習モードの動作について説明する。学習モードで
は、疑似シナプス結合変換器21〜2Nと非線形変換器
2bの変換パラメータW1〜Wnとhを、修正手段から
の変換パラメータの修正量△W1〜△Wnと△hを表す
修正信号を受けて、 Wi+△Wi ; i=1,2,…… ,N h+△h (式2) と修正する。The operation of each mode of the neural element will be described below with reference to FIG. First, the operation of the signal processing mode will be described. Neural elements are N inputs X1
It receives Xn and outputs one output. i-th input signal Xi
Is the i-th pseudo-synaptic coupling converter 2 shown by a square
i is converted to Wi · Xi. N signals W1 · X1 converted by the pseudo synapse coupling converters 21 to 2N
Wn · Xn enters the adder 2a, the addition result y is sent to the nonlinear converter 2b, and becomes the final output f (y, h). Next, the operation of the learning mode will be described. In the learning mode, the conversion parameters W1 to Wn and h of the pseudo synapse coupling converters 21 to 2N and the non-linear converter 2b are received, and the correction signals representing the conversion parameter correction amounts ΔW1 to ΔWn and Δh from the correction means are received. , Wi + ΔWi; i = 1, 2, ..., N h + Δh (formula 2).
【0035】図12は上記神経素子を4つ並列につない
で構成した信号変換手段の概念図である。なお、以下の
説明は、この信号変換手段を構成する神経素子の個数を
4個に限定するものではない。図12において、211
〜244は疑似シナプス結合変換器であり、201〜2
04は、図11で説明した加算器2aと非線形変換器2
bをまとめた加算非線形変換器である。図12におい
て、図11と同様に図面が煩雑になるので省略したが、
修正手段からの修正信号を受ける入力線が疑似シナプス
結合変換器211〜244と加算非線形変換器201〜
204につながっている。疑似シナプス結合変換器21
1〜244も結合重み係数となる。この信号変換手段の
動作については、図11で説明した神経素子の動作が並
列してなされるものである。FIG. 12 is a conceptual diagram of a signal converting means constituted by connecting four neural elements in parallel. The following description does not limit the number of neural elements constituting this signal converting means to four. In FIG. 12, 211
˜244 are pseudo synapse coupling converters 201 to 2
Reference numeral 04 denotes the adder 2a and the non-linear converter 2 described in FIG.
It is an addition nonlinear converter which put together b. 12 is omitted because it is complicated as in FIG.
The input lines receiving the correction signal from the correction means are pseudo synapse coupling converters 211 to 244 and addition nonlinear converters 201 to 201.
It is connected to 204. Pseudo-synaptic coupling converter 21
1 to 244 are also the connection weighting factors. Regarding the operation of the signal converting means, the operations of the neural elements described in FIG. 11 are performed in parallel.
【0036】図13は、学習アルゴリズムとして誤差逆
伝搬法を採用した場合の信号処理手段の構成を示したブ
ロック図で、31は上述の信号変換手段である。ただ
し、ここではN個の入力を受ける神経素子がM個並列に
並べられたものである。32は学習モードにおける信号
変換手段31の修正量を算出する修正手段である。以
下、図13に基づいて信号処理手段の学習を行う場合の
動作について説明する。信号変換手段31はN個の入力
Sin(X)を受け、M個の出力Sout(X)を出力す
る。修正手段32は、入力信号Sin(X)と出力信号S
out(X)とを受け、誤差計算手段または後段の信号変
換手段からのM個の誤差信号δj(X)の入力があるま
で待機する。誤差信号δj(X)が入力され修正量を △Wij=δj(X)・Sjout(X)・(1−Sjout(X))・Siin(X) (i=1〜N,j=1〜M) (式3) と計算し、修正信号を信号変換手段31に送る。信号変
換手段31は、内部の神経素子の変換パラメータを上で
説明した学習モードにしたがって修正する。FIG. 13 is a block diagram showing the configuration of the signal processing means when the error back propagation method is adopted as the learning algorithm, and 31 is the above-mentioned signal conversion means. However, here, M neural elements that receive N inputs are arranged in parallel. Reference numeral 32 is a correction means for calculating the correction amount of the signal conversion means 31 in the learning mode. Hereinafter, the operation in the case of learning the signal processing means will be described with reference to FIG. The signal converting means 31 receives N inputs Sin (X) and outputs M outputs Sout (X). The correction means 32 includes an input signal Sin (X) and an output signal S
Upon receiving out (X), it waits until the input of M error signals δj (X) from the error calculating means or the signal converting means in the subsequent stage. The error signal δj (X) is input and the correction amount is set to ΔWij = δj (X) .Sjout (X). (1-Sjout (X)). Siin (X) (i = 1 to N, j = 1 to M). ) (Equation 3) is calculated, and the correction signal is sent to the signal conversion means 31. The signal conversion means 31 modifies the conversion parameters of the internal neural elements according to the learning mode described above.
【0037】図14は、神経回路網模式手段を用いた多
層パーセプトロンの構成を示すブロック図であり、31
X、31Y、31ZはそれぞれK個、L個、M個の神経
素子からなる信号変換手段であり、32X、32Y、3
2Zは修正手段であり、33は誤差計算手段である。以
上のように構成された多層パーセプトロンについて、図
14を参照しながらその動作を説明する。信号処理手段
34Xにおいて、信号変換手段31Xは、入力Siin
(X)(i=1〜N)を受け、出力Sjout(X)(j=
1〜K)を出力する。修正手段32Xは、信号Siin
(X)と信号Sjout(X)を受け、誤差信号δj(X)
(j=1〜K)が入力されるまで待機する。以下同様の
処理が、信号処理手段34Y、34Zにおいて行われ、
信号変換手段31Zより最終出力Shout(Z)(h=1
〜M)が出力される。最終出力Shout(Z)は、誤差計
算手段33にも送られる。誤差計算手段33において
は、2乗誤差の評価関数COST(式4)に基づいて理
想的な出力T(T1 ,……,TM)との誤差が計算さ
れ、誤差信号δh(Z)が修正手段32Zに送られる。FIG. 14 is a block diagram showing the structure of a multilayer perceptron using a neural network model.
X, 31Y, and 31Z are signal conversion means composed of K, L, and M neural elements, respectively, and are 32X, 32Y, and 3X.
2Z is a correction means, and 33 is an error calculation means. The operation of the multi-layer perceptron configured as described above will be described with reference to FIG. In the signal processing means 34X, the signal converting means 31X receives the input Siin.
(X) (i = 1 to N) and output Sjout (X) (j =
1 to K) are output. The correction means 32X receives the signal Siin
(X) and the signal Sjout (X), the error signal δj (X)
Wait until (j = 1 to K) is input. Hereinafter, similar processing is performed in the signal processing means 34Y and 34Z,
Final output Shout (Z) (h = 1) from the signal conversion means 31Z
~ M) is output. The final output Shout (Z) is also sent to the error calculation means 33. In the error calculating means 33, the error with the ideal output T (T1, ..., TM) is calculated based on the square error evaluation function COST (Equation 4), and the error signal .delta.h (Z) is corrected by the correcting means. Sent to 32Z.
【0038】[0038]
【数1】 [Equation 1]
【0039】ただし、ηは多層パーセプトロンの学習速
度を定めるパラメータである。つぎに、評価関数を2乗
誤差とした場合には誤差信号は、 δh(Z)=−η・(Shout(Z)−Th) (式5) となる。修正手段32Zは、上で説明した手続きにした
がって、信号変換手段31Zの変換パラメータの修正量
△W(Z)を計算し、修正手段32Yに送る誤差信号を
(式6)に基づき計算し、修正信号△W(Z)を信号変
換手段31Zに送り、誤差信号δ(Y)を修正手段32
Yに送る。信号変換手段31Zは、修正信号△W(Z)
に基づいて内部のパラメータを修正する。なお、誤差信
号δ(Y)は(式6)で与えられる。However, η is a parameter that determines the learning speed of the multilayer perceptron. Next, when the evaluation function is a square error, the error signal is δh (Z) = − η · (Shout (Z) −Th) (Equation 5). According to the procedure described above, the correction means 32Z calculates the correction amount ΔW (Z) of the conversion parameter of the signal conversion means 31Z, calculates the error signal to be sent to the correction means 32Y based on (Equation 6), and corrects it. The signal ΔW (Z) is sent to the signal converting means 31Z, and the error signal δ (Y) is corrected by the correcting means 32.
Send to Y. The signal converting means 31Z uses the correction signal ΔW (Z).
Modify internal parameters based on. The error signal δ (Y) is given by (Equation 6).
【0040】[0040]
【数2】 [Equation 2]
【0041】ここで、Wij(Z)は信号変換手段31Z
の疑似シナプス結合変換器の変換パラメータである。以
下、同様の処理が信号処理手段34X、34Yにおいて
行われる。学習と呼ばれる以上の手続きを繰り返し行う
ことにより、多層パーセプトロンは入力が与えられると
理想出力Tをよく近似する出力を出すようになる。な
お、上記の説明においては、3段の多層パーセプトロン
を用いたが、これは何段であってもよい。また、文献1
にある信号変換手段のなかの非線形変換手段の変換パラ
メータhの修正法についてと慣性項として知られる学習
高速化の方法については、説明の簡略化のため省略した
が、この省略は以下に述べる本発明を拘束するものでは
ない。Wij (Z) is the signal conversion means 31Z.
Is a conversion parameter of the pseudo synapse coupling converter of. Hereinafter, similar processing is performed in the signal processing means 34X and 34Y. By repeating the above procedure called learning, the multi-layer perceptron produces an output that closely approximates the ideal output T when given an input. In the above description, the three-stage multi-layer perceptron is used, but this may be any number of stages. In addition, reference 1
The modification method of the conversion parameter h of the non-linear conversion means in the signal conversion means and the method of accelerating learning known as the inertia term are omitted for simplification of the description, but this omission is described below. It does not bind the invention.
【0042】こうして、神経回路網模式手段は、実際に
自動調理の対象となる調理物と、その調理物を調理した
場合、調理物固有の物理量(本実施例では重量)と調理
物周辺の環境物理量(絶対湿度)がどのように変化する
かというデータを収集し、調理物とその重量変化と調理
物周辺の環境物理量(絶対湿度データ)との関係を学習
し、簡単なルールで記述することが容易でない調理物の
推定の仕方を自然な形で表現することができる。本実施
例は、こうして得られた情報を組み込んで、調理物推定
手段9を構成するものである。具体的には、十分学習を
終えた後の多層パーセプトロンの信号変換手段31X、
31Y、31Zのみを神経回路網模式手段として用い
て、調理物推定手段9を構成する。実際に学習させたデ
ータについて説明する。In this way, the neural network model means actually cooks the object to be cooked, the physical quantity (weight in this embodiment) peculiar to the cooked food, and the environment around the cooked food when the cooked food is cooked. Collect data on how the physical quantity (absolute humidity) changes, learn the relationship between the weight change of the cooked food and the environmental physical quantity (absolute humidity data) around the cooked food, and describe by simple rules It is possible to express in a natural way how to estimate a cooked food that is not easy. In the present embodiment, the cooking product estimation means 9 is configured by incorporating the information thus obtained. Specifically, the signal converting means 31X of the multi-layer perceptron after sufficient learning is completed,
The food product estimating unit 9 is configured by using only 31Y and 31Z as a neural network schematic unit. The data actually learned will be described.
【0043】図15は、”ごはん”を再加熱した時の環
境物理量検出手段6と固有物理量検出手段7の出力電圧
の変化を示している。すなわち図15(a)は調理室内
の湿度の変化を示し、図15(b)は時々刻々の重量変
化を示している。図16は、”みそ汁”を再加熱した時
の環境物理量検出手段6と固有物理量検出手段7の出力
電圧の変化を示している。図16(a)は調理室内の湿
度の変化を示し、図16(b)は時々刻々の重量変化を
示している。ている。図15、図16から”ごはん”
と”みそ汁”では明らかに蒸気の出方が異なるため調理
室内の湿度状態も異なっている。重量情報は、同じ”ご
はん”、”味噌汁”でも調理する毎にその量が異なるた
め必要となる。自動調理の対象となる調理メニューすべ
てについてこのような実験をしデータを採取した。そし
て、その実験データを神経回路網模式手段に入力し学習
をさせた。つまり、神経回路網模式手段へは環境物理量
検出手段6の調理室内の絶対湿度情報と、絶対湿度勾配
情報として現時点より1分前の絶対湿度情報と、固有物
理量検出手段7の重量情報と、重量勾配情報として現時
点より1分前の重量情報と、計時手段8より得られる調
理開始時からの経過時間情報の5情報と、理想出力とし
て調理物の種類を入力し学習させ、神経回路網模式手段
の中の信号変換手段31X、31Y、31Zを確立し、
それらを神経回路網模式手段として調理物推定手段9に
組み込んでいる。FIG. 15 shows changes in the output voltage of the environmental physical quantity detection means 6 and the intrinsic physical quantity detection means 7 when "rice" is reheated. That is, FIG. 15A shows a change in humidity inside the cooking chamber, and FIG. 15B shows a change in weight every moment. FIG. 16 shows changes in the output voltage of the environmental physical quantity detection means 6 and the intrinsic physical quantity detection means 7 when the “miso soup” is reheated. FIG. 16A shows changes in humidity in the cooking chamber, and FIG. 16B shows changes in weight every moment. ing. 15 and 16 "rice"
And "Miso soup" obviously have different vapor output, so the humidity condition in the cooking chamber is also different. Weight information is necessary because the same "rice" and "miso soup" have different amounts each time they are cooked. Data was collected by conducting such experiments for all cooking menus that are targets of automatic cooking. Then, the experimental data was input to the neural network model means for learning. That is, to the neural network model means, absolute humidity information in the cooking chamber of the environmental physical quantity detection means 6, absolute humidity information one minute before the present time as absolute humidity gradient information, weight information of the intrinsic physical quantity detection means 7, and weight. Weight information one minute before the present time as gradient information, five pieces of information of elapsed time from the start of cooking obtained by the time counting means 8, and the type of food to be input as an ideal output for learning, and neural network model means The signal conversion means 31X, 31Y, 31Z in
They are incorporated into the cooking product estimation means 9 as a neural network model means.
【0044】つぎに、図1に示した構成ブロック図に基
づき動作を説明する。まず、調理物を調理室2内に入
れ、操作手段12の再加熱キー12aにより再加熱モー
ドを選択する。そして調理キー12bにより調理が開始
される。制御手段5は計時手段8に計時開始の信号を出
力するとともに、調理手段3を駆動すべく調理開始信号
を出力する。計時手段8の計時情報は調理物推定手段9
に入力されている。そして調理物周辺の環境物理量情報
(絶対湿度情報)と調理物固有の固有物理量(重量)は
AD変換手段10、11でディジタル変換され、時々刻
々調理物推定手段9に入力されている。調理物推定手段
9は、これらの入力された信号・情報をもとに調理物が
何であるのかを推定し、その情報を制御手段5に出力し
ている。制御手段5は、この推定調理物情報で調理メニ
ューが認識できたので、調理メニューに応じた調理シー
ケンスを実行させることができる。各々の調理シーケン
スとは、本実施例では、従来より行われている調理開始
からある量の湿度を検出するまでの時間に調理メニュー
毎に用意された定数Kを乗じた時間をそのメニューの調
理時間とするものである。この制御プログラムは制御手
段5に備えており調理手段3を制御するように動作す
る。Next, the operation will be described with reference to the block diagram shown in FIG. First, the food to be cooked is put in the cooking chamber 2 and the reheating mode is selected by the reheating key 12a of the operating means 12. Then, cooking is started by the cooking key 12b. The control means 5 outputs a signal to start timing to the timing means 8 and also outputs a cooking start signal to drive the cooking means 3. The timing information of the timing means 8 is the cooking product estimation means 9
Has been entered in. Then, the environmental physical quantity information (absolute humidity information) around the cooking product and the unique physical quantity (weight) peculiar to the cooking product are digitally converted by the AD converting means 10 and 11, and are inputted to the cooking product estimating means 9 every moment. The cooked product estimating means 9 estimates what the cooked food is based on these input signals and information, and outputs the information to the control means 5. Since the cooking menu can be recognized from the estimated cooking information, the control means 5 can execute the cooking sequence according to the cooking menu. In this embodiment, each cooking sequence is the time taken from the start of cooking, which is conventionally performed until the detection of a certain amount of humidity, multiplied by a constant K prepared for each cooking menu. It is time. This control program is provided in the control means 5 and operates so as to control the cooking means 3.
【0045】以上のように本実施例によれば、実際に自
動調理の対象となる調理メニューについて調理をし、そ
の時の時々刻々の調理物の重量情報と調理室内の湿度情
報を学習した神経回路網の複数の固定結合重み係数を有
する神経回路網模式手段を組み込んだ調理物推定手段9
を備えた構成としているので、調理物のメニューが認識
でき、各々のメニューについて最適な調理シーケンスを
駆動することができるので、従来に比べ、より調理状態
をよくすることができ、自動調理に最適なものとなる。As described above, according to the present embodiment, the neural circuit which actually cooks the cooking menu to be automatically cooked, and learns the weight information of the cooked food and the humidity information of the cooking chamber at that time, is learned. Cooking product estimating means 9 incorporating neural network schematic means having a plurality of fixed coupling weight coefficients of the net
Since it has a configuration that allows you to recognize the menu of cooking items and drive the optimal cooking sequence for each menu, it is possible to improve the cooking state more than before and it is ideal for automatic cooking It will be
【0046】(実施例2)本実施例では、電子オーブン
レンジに応用した例について説明する。特にオーブン調
理においては、調理手段3として、ヒータを用いるので
商用電源電圧の電圧レベルが調理時に特に影響を与え
る。本実施例の構成は、図2に示すように、実施例1と
同様であるが、商用電源電圧の電圧レベルを検出する電
圧レベル検出手段13を有している点が異なる。この電
圧レベル検出手段13の出力を調理物推定手段9に入力
することにより、調理物の推定に、より精度をあげるこ
とができる。また調理物推定手段9を構成する神経回路
網模式手段には、実際に自動調理の対象となる調理物を
調理した場合、商用電源電圧とともに調理物周辺の環境
物理量(絶対湿度)と調理物固有の物理量(重量)がど
のように変化するかというデータを収集し、調理物と調
理物周辺の環境物理量(絶対湿度データ)と商用電源電
圧レベルとの関係を学習し、簡単なルールで記述するこ
とが容易でない調理物の推定の仕方を自然な形で表現す
ることができる。本実施例は、こうして得られた情報を
組み込んで、調理物推定手段9を構成するものである。(Embodiment 2) In this embodiment, an example applied to a microwave oven will be described. Particularly in oven cooking, since a heater is used as the cooking means 3, the voltage level of the commercial power supply voltage has a particular influence during cooking. As shown in FIG. 2, the configuration of this embodiment is the same as that of the first embodiment, except that it has a voltage level detection means 13 for detecting the voltage level of the commercial power supply voltage. By inputting the output of the voltage level detecting means 13 into the cooking product estimating means 9, the estimation of the cooking product can be made more accurate. In addition, the neural network model means that constitutes the cooking product estimation means 9 includes the commercial physical power supply voltage, the environmental physical quantity (absolute humidity) around the cooking product, and the peculiarity of the cooking product when the cooking product to be automatically cooked is actually cooked. Data on how the physical quantity (weight) of the food changes, and learn the relationship between the physical quantity of the environment around the food (absolute humidity data) and the commercial power supply voltage level, and describe with simple rules It is possible to express in a natural way how to estimate a cooked food. In the present embodiment, the cooking product estimation means 9 is configured by incorporating the information thus obtained.
【0047】以上のように本実施例によれば、商用電源
電圧レベルは90vから110vぐらいまで変動すると
いわれているが、調理物推定手段を構成する神経回路網
模式手段には、電源電圧が変動しても、環境物理量と商
用電源電圧レベルと調理物の関係をあらかじめ学習させ
た構成としているので、調理物を推定する精度がより向
上する。As described above, according to the present embodiment, it is said that the commercial power supply voltage level fluctuates from about 90v to 110v, but the power supply voltage fluctuates in the neural network model means constituting the cooking product estimation means. Even so, since the relationship between the physical quantity of the environment, the commercial power supply voltage level, and the cooking product is learned in advance, the accuracy of estimating the cooking product is further improved.
【0048】(実施例3)本実施例では、同様に電子オ
ーブンレンジに応用した例について説明する。図3に示
すように、環境物理量検出手段6は調理室内の環境を検
出する。本実施例では、調理室2内の絶対湿度の検出と
調理室2内の温度と調理室2内のガス量を検出するもの
であり、湿度センサ6aとサーミスタ6bとガスセンサ
6cで構成されている。本実施例で用いたガスセンサ6
cは、半導体で構成されており、調理加熱中にでる臭い
分子の半導体表面にもたらす変化でガス量を検出するも
のである。固有物理量検出手段7は実施例1と同様、調
理物の重量を検出する。計時手段8は調理開始時からの
時間をカウントする。皿位置検出手段14は調理皿16
を調理室2内のどの棚15に載せたかを検出するもので
あり、本実施例ではマイクロスイッチより構成されてい
るが、皿位置を検出できるものであれば何でも良く、本
発明を拘束するものではない。調理物推定手段9は環境
物理量検出手段6、固有物理量検出手段7、計時手段
8、皿位置検出手段14の出力に基づき調理物が何であ
るのかを推定するものであり、制御手段5は調理物推定
手段9の出力に基づき調理手段3を制御する。調理手段
3は、本実施例では、マイクロ波供給手段3aと、ヒー
ター3bからなり調理室2に配設されている。さらに、
10、11はA/D変換手段であり環境物理量検出手段
6の湿度センサ6aとサーミスタ6bとガスセンサ6c
の出力および固有物理量検出手段7の重量センサの出力
をディジタル値に変換している。(Embodiment 3) In this embodiment, an example similarly applied to a microwave oven will be described. As shown in FIG. 3, the environmental physical quantity detection means 6 detects the environment inside the cooking chamber. In this embodiment, the absolute humidity in the cooking chamber 2 is detected, the temperature in the cooking chamber 2 and the amount of gas in the cooking chamber 2 are detected, and the humidity sensor 6a, the thermistor 6b, and the gas sensor 6c are included. .. Gas sensor 6 used in this embodiment
c is composed of a semiconductor, and detects the amount of gas by the change of odorous molecules generated during cooking and heating on the semiconductor surface. The unique physical quantity detection means 7 detects the weight of the food as in the first embodiment. The time measuring means 8 counts the time from the start of cooking. The plate position detecting means 14 is a cooking plate 16
It is intended to detect which shelf 15 in the cooking chamber 2 is placed. In the present embodiment, it is constituted by a micro switch, but any device capable of detecting the plate position may be used, which restrains the present invention. is not. The cooked product estimating means 9 estimates what the cooked food is based on the outputs of the environmental physical quantity detecting means 6, the unique physical quantity detecting means 7, the time measuring means 8 and the plate position detecting means 14, and the control means 5 is the cooked food. The cooking means 3 is controlled based on the output of the estimation means 9. In this embodiment, the cooking means 3 comprises a microwave supply means 3a and a heater 3b and is arranged in the cooking chamber 2. further,
Reference numerals 10 and 11 denote A / D conversion means, which are the humidity sensor 6a, the thermistor 6b, and the gas sensor 6c of the environmental physical quantity detection means 6.
And the output of the weight sensor of the intrinsic physical quantity detection means 7 are converted into digital values.
【0049】次に調理物推定手段を構成する神経回路網
模式手段に学習させたデータについて説明する。図17
は、”パイ”をオーブン調理した時の環境物理量検出手
段6の出力電圧の変化を示している。図17(a)は調
理室内の湿度の変化を示し、図17(b)は調理室内の
温度変化を示し、図17(c)は調理室内のガス量変化
を示している。図17(d)は重量変化を示している。
図18は”スポンジケーキ”、図19は”ハンバー
グ”、図20は”グラタン”を、それぞれオーブン調理
した時の環境物理量検出手段6と固有物理量検出手段7
の出力電圧の変化を示している。図18(a)、図19
(a)、図20(a)は図17(a)と同様に調理室内
の湿度の変化を示し、図18(b)、図19(b)、図
20(b)は調理室内の温度変化を示し、図18
(c)、図19(c)、図20(c)は調理室内のガス
量変化を示し、図18(d)、図19(d)、図20
(d)は調理物の重量変化を示している。図17、図1
8から”パイ”と”スポンジケーキ”では調理室内の温
度変化は、それほど変わらないが、明かにガスの出方と
調理室内の湿度変化が異なっている。又、図19、図2
0から”ハンバーグ”と”グラタン”においても、ガス
量の変化が異なっている。自動調理の対象となる調理メ
ニューすべてについて実験をしデータを採取した。そし
て、その実験デ−タを神経回路網模式手段に入力し学習
をさせた。つまり、神経回路網模式手段へは環境物理量
手段6の調理室内の絶対湿度情報と、温度情報と、ガス
量情報と、調理物の重量情報と、調理皿の皿位置情報の
5つの入力情報と、理想出力として調理物のメニューを
入力し学習させ、神経回路網模式手段の中の信号変換手
段31X、31Y、31Zを確立し、それらを神経回路
網模式手段として調理物推定手段9に組み込んでいる。Next, the data learned by the neural network model means constituting the cooking product estimation means will be described. FIG. 17
Shows the change in the output voltage of the environmental physical quantity detection means 6 when the "pie" is cooked in the oven. 17A shows a change in humidity in the cooking chamber, FIG. 17B shows a change in temperature in the cooking chamber, and FIG. 17C shows a change in gas amount in the cooking chamber. FIG. 17D shows the change in weight.
FIG. 18 is a “sponge cake”, FIG. 19 is a “hamburger”, and FIG. 20 is a “gratin”.
Shows the change of the output voltage of. 18 (a) and 19
(A) and FIG. 20 (a) show changes in humidity inside the cooking chamber, as in FIG. 17 (a), and FIGS. 18 (b), 19 (b) and 20 (b) show changes in temperature inside the cooking chamber. Is shown in FIG.
(C), FIG. 19 (c), and FIG. 20 (c) show changes in the amount of gas in the cooking chamber, and FIG. 18 (d), FIG. 19 (d), and FIG.
(D) shows the change in weight of the food. 17 and 1
From 8 on, the temperature change in the cooking chamber does not change much between the "pie" and the "sponge cake", but it is clear that the way gas is emitted and the humidity change in the cooking chamber are different. Also, FIG. 19 and FIG.
The change in gas amount is different between 0 and "hamburger" and "gratin". Experiments were conducted for all cooking menus that are targets of automatic cooking, and data was collected. Then, the experimental data was input to the neural network model means for learning. That is, to the neural network model means, five input information of absolute humidity information in the cooking chamber of the environmental physical quantity means 6, temperature information, gas amount information, food weight information, and plate position information of the cooking plate are input. , Inputting and learning a menu of cooked foods as ideal output, establishing signal conversion means 31X, 31Y, 31Z in the neural network schematic means, and incorporating them into the cooked food estimating means 9 as neural network schematic means There is.
【0050】つぎに、図3に示した構成ブロック図に基
づき動作を説明する。まず、調理物を調理皿16にの
せ、あらかじめ決められた調理室2の棚15にセットす
る。本実施例では、対象となる自動オーブン調理メニュ
ーとして、12種類を考慮しており、”パイ”、”ケー
キ類”であれば、棚位置は下であり、”ハンバー
グ”、”グラタン”であれば、棚位置は上である。操作
手段12のオーブン調理キー12cによりオーブン調理
モードを選択する。そして調理キー12bにより調理が
開始される。制御手段5は、調理手段3を駆動すべく加
熱開始信号を出力する。又、皿位置検出手段14の皿位
置情報は調理皿のセットされた棚位置であり、調理物推
定手段9に入力されている。そして調理室内の環境物理
量情報は環境物理量検出手段6の出力からA/D変換手
段10でディジタル変換され、また調理物固有の物理量
は固有物理量検出手段7の出力からA/D変換手段11
でディジタル変換され、時々刻々調理物推定手段9に入
力されている。調理物推定手段9は、これらの入力され
た信号・情報をもとに調理物が何であるのかを推定し、
その情報を制御手段5に出力している。調理物推定手段
9は、皿位置検出情報により、調理物を大分類し、カテ
ゴリーを認識し、調理室内の環境物理量情報と固有物理
量の変化から詳細メニューを推定するように動作する。
制御手段5は、この推定調理物情報で調理メニューが認
識できたので、調理メニューに応じた調理シーケンスを
実行させることができる。Next, the operation will be described with reference to the block diagram shown in FIG. First, the food to be cooked is placed on the cooking plate 16 and set on the shelf 15 of the predetermined cooking chamber 2. In the present embodiment, 12 types are considered as the target automatic oven cooking menu. If it is "pie" or "cakes", the shelf position is below, and it may be "hamburger" or "gratin". For example, the shelf position is above. The oven cooking key 12c of the operating means 12 is used to select the oven cooking mode. Then, cooking is started by the cooking key 12b. The control means 5 outputs a heating start signal to drive the cooking means 3. Further, the dish position information of the dish position detecting means 14 is the shelf position where the cooking dish is set, and is input to the cooking product estimating means 9. Then, the environmental physical quantity information in the cooking chamber is digitally converted from the output of the environmental physical quantity detecting means 6 by the A / D converting means 10, and the physical quantity peculiar to the cooking product is converted from the output of the unique physical quantity detecting means 7 into the A / D converting means 11.
Is digitally converted by and is input to the cooking product estimation means 9 every moment. The cooking product estimation means 9 estimates what the cooking product is based on these input signals and information,
The information is output to the control means 5. The cooking product estimation means 9 operates to roughly classify the cooking products based on the dish position detection information, recognize the categories, and estimate the detailed menu from the environmental physical quantity information in the cooking chamber and the change in the unique physical quantity.
Since the cooking menu can be recognized from the estimated cooking information, the control means 5 can execute the cooking sequence according to the cooking menu.
【0051】以上のように本実施例によれば、実際に自
動調理の対象となる調理メニューについて調理をし、セ
ットされた調理皿の棚位置と、調理中の時々刻々の調理
室内の温度情報と湿度情報とガス量情報と調理物の重量
情報を、既に学習した複数の固定結合重み係数を有する
神経回路網模式手段を組み込んだ調理物推定手段9を備
えた構成としているので、調理物のメニューが認識で
き、各々のメニューについて最適な調理シーケンスを駆
動することができるので、従来に比べ、メニュー選択キ
ーの数を集約することができ、使い勝手上大変便利なも
のとなる。As described above, according to the present embodiment, cooking is performed on the cooking menu that is actually the target of automatic cooking, the shelf position of the cooking dish that is set, and the temperature information in the cooking chamber during the cooking, which is constantly changing. And the humidity information, the gas amount information, and the weight information of the cooked food are configured to include the cooked food estimating means 9 in which the neural network schematic means having a plurality of fixed coupling weighting coefficients already learned is incorporated. Since the menus can be recognized and the optimum cooking sequence for each menu can be driven, the number of menu selection keys can be consolidated compared to the conventional one, which is very convenient in terms of usability.
【0052】(実施例4)本実施例では、電子オーブン
レンジに応用した例について説明する。構成は図4に示
すように、実施例1による調理物の推定を、より精度を
向上させるために商用電源電圧の電圧レベルを検出する
電圧レベル検出手段13と、調理室2にセットされる調
理皿16の位置を検出する皿位置検出手段14の情報を
調理物推定手段9に入力することにより実現している。
具体的な内容は実施例1、実施例2、および実施例3で
説明したので省略する。効果は、電圧レベル検出手段1
3と皿位置検出手段14を備えているので、調理物の推
定の精度は実施例2の場合と同様により向上する。(Embodiment 4) In this embodiment, an example applied to a microwave oven will be described. As shown in FIG. 4, the cooking level estimation means 13 for detecting the voltage level of the commercial power supply voltage and the cooking set in the cooking chamber 2 in order to improve the accuracy of the estimation of the cooking product according to the first embodiment. This is realized by inputting the information of the plate position detecting means 14 for detecting the position of the plate 16 into the cooking product estimating means 9.
Since the specific contents have been described in the first, second, and third embodiments, the description thereof will be omitted. The effect is that the voltage level detecting means 1
3 and the plate position detecting means 14 are provided, the accuracy of estimation of the cooked food is improved as in the case of the second embodiment.
【0053】(実施例5)本実施例では、電子オーブン
レンジに応用した例について説明する。構成を図5に示
す。湿度検出手段17は調理室2内の湿度を検出する。
本実施例では、調理室2内の絶対湿度を検出するもので
あり、湿度センサ等で構成されている。18は温度検出
手段であり調理室2内の温度を検出する。また重量検出
手段19は調理物の重量を検出するものであり、ストレ
インゲージ等の重量センサから構成されている。このセ
ンサは、重量を検出できるものであれば何でもよく、本
発明を拘束するものではない。所定温度記憶手段20
は、調理物を推定するタイミングを温度検出手段18で
検出できる調理室2内の温度で記憶している。調理物推
定手段9は、温度検出手段18の検出温度が所定温度記
憶手段20の記憶値まで上昇した時点で、温度検出手段
18、湿度検出手段17、重量検出手段19、計時手段
8の出力に基づき調理物を推定する。制御手段5は調理
物推定手段9の出力に基づき調理温度、調理時間、調理
方法(上ヒータと下ヒータの通電比率)を決め、調理手
段であるヒータ3a、3bを制御する。(Embodiment 5) In this embodiment, an example applied to a microwave oven will be described. The configuration is shown in FIG. The humidity detecting means 17 detects the humidity inside the cooking chamber 2.
In this embodiment, the absolute humidity in the cooking chamber 2 is detected, and is composed of a humidity sensor or the like. Reference numeral 18 is a temperature detecting means for detecting the temperature in the cooking chamber 2. The weight detecting means 19 is for detecting the weight of the food and is composed of a weight sensor such as a strain gauge. This sensor is not limited to the present invention as long as it can detect the weight. Predetermined temperature storage means 20
Stores the timing of estimating the food as the temperature in the cooking chamber 2 which can be detected by the temperature detecting means 18. The cooking product estimating means 9 outputs the outputs of the temperature detecting means 18, the humidity detecting means 17, the weight detecting means 19 and the time measuring means 8 when the temperature detected by the temperature detecting means 18 has risen to the stored value of the predetermined temperature storing means 20. Estimate the food based on. The control means 5 determines the cooking temperature, the cooking time, and the cooking method (the energization ratio of the upper heater and the lower heater) based on the output of the cooking product estimating means 9, and controls the heaters 3a and 3b which are the cooking means.
【0054】次に調理物推定手段9を構成する神経回路
網模式手段に学習させたデータについて説明する。図2
1は、ハンバーグを調理した時の温度検出手段18、湿
度検出手段17の出力電圧の変化を示している。図22
は、グラタンを調理した時の温度検出手段18、湿度検
出手段17の出力電圧の変化を示している。図21
(a)は調理室2内の温度変化を示し、図21(b)は
湿度変化を示し、図21(c)は重量変化を示してい
る。図22(a)および図22(b)および図22
(c)は、図21(a)および図21(b)および図2
1(c)に対応している。調理室内の温度が150℃に
達した時点で調理物を推定し、以後、推定した調理物に
より調理室2内の制御温度、ヒータ3a、3bの通電比
率を変えるので温度検出手段18からの出力電圧が15
0℃に相当する電圧になるまでのデータを収集してい
る。図21、図22は調理物を推定した後、調理完了ま
でのデータを示している。図21、図22から明らかな
ようにハンバーグはグラタンに比べて体積の割に空気中
にふれる面積が多く湿度の上昇が早い。Next, the data learned by the neural network model means constituting the cooking product estimation means 9 will be described. Figure 2
Reference numeral 1 shows changes in the output voltage of the temperature detecting means 18 and the humidity detecting means 17 when the hamburger is cooked. FIG. 22.
Shows changes in the output voltage of the temperature detecting means 18 and the humidity detecting means 17 when the gratin was cooked. Figure 21
21A shows a temperature change in the cooking chamber 2, FIG. 21B shows a humidity change, and FIG. 21C shows a weight change. 22 (a) and 22 (b) and FIG.
FIG. 21 (c) shows FIG. 21 (a), FIG. 21 (b), and FIG.
It corresponds to 1 (c). When the temperature in the cooking chamber reaches 150 ° C., the cooking product is estimated, and thereafter, the control temperature in the cooking chamber 2 and the energization ratio of the heaters 3a and 3b are changed according to the estimated cooking product. Voltage is 15
Data is collected until the voltage reaches 0 ° C. FIG. 21 and FIG. 22 show data up to the completion of cooking after estimating the food. As is clear from FIGS. 21 and 22, the hamburger has a larger area exposed to the air for the volume than the gratin, and the humidity increases faster.
【0055】このようにして自動調理の対象となる調理
メニューすべてについて実験をしデータを採取し、神経
回路網模式手段に学習させた。つまり、神経回路網模式
手段へは温度検出手段18の調理室内の温度情報、湿度
検出手段17の調理室内の湿度情報、重量検出手段19
からの調理物の重量情報と、計時手段8より得られる調
理開始からの経過時間情報を簡略化し、温度検出手段1
8の検出温度が100℃の時、125℃の時、150℃
の時、それぞれの湿度情報、経過時間情報の合計6情報
と、理想出力として調理物の情報(例えばグラタンなら
1、ハンバーグなら0)を入力し学習させた。In this way, experiments were conducted on all cooking menus to be automatically cooked, data was collected, and the neural network model means was made to learn. That is, to the neural network model means, temperature information in the cooking chamber of the temperature detecting means 18, humidity information in the cooking chamber of the humidity detecting means 17, and weight detecting means 19
The weight information of the cooked food and the information on the elapsed time from the start of cooking obtained from the time measuring means 8 are simplified, and the temperature detecting means 1
When the detection temperature of 8 is 100 ℃, when it is 125 ℃, it is 150 ℃
At that time, a total of 6 pieces of information of respective humidity information and elapsed time information and information of the cooked food (for example, 1 for gratin and 0 for hamburger) were input and learned as ideal outputs.
【0056】動作としては、調理開始後、所定温度記憶
手段20に予め記憶値(例えば150℃)を入力してお
き、温度検出手段18からの検出温度が記憶値に達した
時点で、温度検出手段18の検出温度が100℃、12
5℃、150℃の時の湿度情報、重量情報、経過時間情
報の9情報を抽出して調理物推定手段9に入力し調理物
を推定し、その情報を制御手段5に出力している。制御
手段5は、その調理物推定情報により調理手段3(ヒー
タ3a、3b)を制御する。即ち、温度検出手段18の
検出温度が150℃に達した時点で調理物推定手段9か
らの出力をうけ、1であれば調理物はグラタンであり、
0であればハンバーグであるとして、以後の調理室2の
制御温度、ヒータ3a・3bの通電比率を決定し、また
加熱時間を決定する。そして制御手段5は温度検出手段
18から得られる調理室2内の温度が制御温度となるよ
うにヒータ3a、3bのオン・オフ制御をする。As the operation, after the cooking is started, a stored value (for example, 150 ° C.) is input in the predetermined temperature storage means 20 in advance, and when the temperature detected by the temperature detection means 18 reaches the stored value, the temperature detection is performed. The temperature detected by the means 18 is 100 ° C., 12
Humidity information, weight information, and elapsed time information at 5 ° C. and 150 ° C. are extracted and input to the cooking product estimation unit 9 to estimate the cooking product, and the information is output to the control unit 5. The control unit 5 controls the cooking unit 3 (heaters 3a and 3b) based on the cooking product estimation information. That is, when the temperature detected by the temperature detecting means 18 reaches 150 ° C., the output from the food estimating means 9 is received, and if the temperature is 1, the food is gratin.
If it is 0, it is regarded as a hamburger and the control temperature of the cooking chamber 2 and the energization ratio of the heaters 3a and 3b thereafter are determined, and the heating time is determined. Then, the control means 5 performs on / off control of the heaters 3a and 3b so that the temperature in the cooking chamber 2 obtained from the temperature detection means 18 becomes the control temperature.
【0057】以上のように本実施例によれば、調理開始
の初期に調理物を推定し、以後調理完了まで推定した調
理物に合わせて調理を行う自動調理が可能となる。効果
は、実施例1と同様の効果が得られる。As described above, according to the present embodiment, it is possible to perform automatic cooking in which the food to be cooked is estimated at the beginning of cooking and the cooking is performed in accordance with the food to be estimated until the completion of cooking. The effect is similar to that of the first embodiment.
【0058】(実施例6)本実施例では、電子オーブン
レンジに応用した例について説明する。構成を図6に示
す。実施例5とほぼ同様であるが、商用電源電圧の電圧
レベルを検出する電圧レベル検出手段13を有している
点が異なる。この電圧レベル検出手段13の出力を調理
物推定手段9に入力することにより、調理物の推定に、
より精度をあげることができる。その作用は、実施例2
と同様であり、実施例2と同様の効果が得られる。(Embodiment 6) In this embodiment, an example applied to a microwave oven will be described. The configuration is shown in FIG. It is almost the same as the fifth embodiment except that it has a voltage level detecting means 13 for detecting the voltage level of the commercial power supply voltage. By inputting the output of the voltage level detecting means 13 into the cooking product estimating means 9,
The accuracy can be increased. The operation is the same as in Example 2.
The same effect as in the second embodiment can be obtained.
【0059】(実施例7)本実施例として、電子オーブ
ンレンジに応用した例について説明する。構成を図7に
示す。実施例5とほぼ同様であるが、調理室2にセット
される調理皿16の位置を検出する皿位置検出手段14
の情報を調理物推定手段9に入力することにより実現し
ている。具体的な内容は実施例3と同様であり、実施例
3と同様の効果が得られる。(Embodiment 7) As the present embodiment, an example applied to a microwave oven will be described. The configuration is shown in FIG. Almost the same as the fifth embodiment, but the plate position detecting means 14 for detecting the position of the cooking plate 16 set in the cooking chamber 2
This is realized by inputting the information of the above into the cooking product estimation means 9. The specific content is the same as that of the third embodiment, and the same effect as that of the third embodiment can be obtained.
【0060】(実施例8)本実施例では、電子オーブン
レンジに応用した例について説明する。構成は図8に示
すように、実施例5の調理物の推定を、より精度を向上
させるために商用電源電圧の電圧レベルを検出する電圧
レベル検出手段13と、調理室2にセットされる調理皿
16の位置を検出する皿位置検出手段14の情報を調理
物推定手段9に入力することにより実現している。具体
的な内容は実施例1、実施例2および実施例3と同様で
あり、実施例4と同様の効果が得られる。(Embodiment 8) In this embodiment, an example applied to a microwave oven will be described. As shown in FIG. 8, the cooking level of the fifth embodiment is estimated by a voltage level detecting means 13 for detecting the voltage level of the commercial power source voltage and the cooking set in the cooking chamber 2 in order to improve the accuracy. This is realized by inputting the information of the plate position detecting means 14 for detecting the position of the plate 16 into the cooking product estimating means 9. The specific content is the same as in the first, second, and third embodiments, and the same effect as in the fourth embodiment can be obtained.
【0061】(実施例9)本実施例は、実施例5、実施
例6、実施例7および実施例8において、調理室の環境
条件がばらついても正しく調理物を推定出きるように調
理物の推定の精度をさらに向上させるものである。構成
を図9に示す。実施例5、実施例6、実施例7および実
施例8と異なる点は、制御手段5に第2所定温度記憶部
21と待機部22を設けた点にある。第2所定温度記憶
部21には、所定温度記憶部20の記憶値(例えば15
0℃)より低い温度(例えば80℃)を記憶している。
待機部22は調理開始時の温度検出手段18の検出温度
が第2所定温度記憶部21の記憶値より高い時に記憶値
より低くなるまで調理手段3であるヒータ3a・3bへ
の通電を禁止し、調理を待機させる。(Embodiment 9) This embodiment is the same as Embodiment 5, Embodiment 6, Embodiment 7 and Embodiment 8 so that the food can be accurately estimated even if the environmental conditions of the cooking chamber vary. It further improves the accuracy of estimation of. The configuration is shown in FIG. The difference from the fifth embodiment, the sixth embodiment, the seventh embodiment and the eighth embodiment is that the control means 5 is provided with a second predetermined temperature storage unit 21 and a standby unit 22. The second predetermined temperature storage unit 21 stores a value stored in the predetermined temperature storage unit 20 (for example, 15
The temperature (for example, 80 ° C.) lower than 0 ° C. is stored.
When the temperature detected by the temperature detecting means 18 at the start of cooking is higher than the stored value of the second predetermined temperature storage portion 21, the standby portion 22 prohibits energization of the heaters 3a and 3b as the cooking means 3 until the temperature falls below the stored value. , Wait for cooking.
【0062】たとえば使用者が、グラタンの調理を行っ
た直後にハンバーグの調理を行った場合、調理室内の温
度は高い。この時には、待機部22がヒータ3a・3b
の通電を禁止する。この時にファン(図示せず)を駆動
して調理室内を冷却するなどして第2所定温度記憶部2
1の記憶値より低くなってからヒータ3a・3bに通電
して調理を開始する。図23はその場合のハンバーグを
調理した時の温度検出手段18、湿度検出手段17、重
量検出手段19の出力電圧の変化を示している。図23
(a)は調理室内の温度の変化を示し、図23(b)は
調理室内の湿度の変化を示し、図23(c)は調理物の
重量の変化を示し、図23(a)、(b)および(c)
は図21(a)、(b)および(c)にそれぞれ対応し
ている。この実験は、調理開始直後の調理室2内の温度
が高く第2所定温度記憶部21の記憶値である80度よ
り低くなってから実際の調理を開始している。図23と
図21から明らかなように、いったん調理室2内の温度
が下がってからは温度情報、湿度情報、重量情報ともほ
ぼ同様の変化を示す。従って、調理物推定手段8で神経
回路網模式手段に入力する温度検出手段17の検出温度
が100度の時、125度の時、150度の時、それぞ
れの湿度情報、重量情報、経過時間情報の合計9情報に
ついては同様の値になり正しく調理物を推定することが
出来る。以上のように調理室の環境条件がばらついても
調理物の推定が可能である。For example, when the user cooks the hamburger immediately after cooking the gratin, the temperature in the cooking chamber is high. At this time, the standby unit 22 is not connected to the heaters 3a and 3b.
Energizing is prohibited. At this time, a fan (not shown) is driven to cool the cooking chamber, and the second predetermined temperature storage unit 2
After the stored value becomes lower than 1, the heaters 3a and 3b are energized to start cooking. FIG. 23 shows changes in the output voltage of the temperature detecting means 18, the humidity detecting means 17, and the weight detecting means 19 when the hamburger is cooked in that case. Figure 23
23A shows a change in temperature inside the cooking chamber, FIG. 23B shows a change in humidity inside the cooking chamber, FIG. 23C shows a change in weight of the cooked product, and FIGS. b) and (c)
Correspond to FIGS. 21 (a), 21 (b) and 21 (c), respectively. In this experiment, the actual cooking is started after the temperature inside the cooking chamber 2 is high immediately after the start of cooking and becomes lower than 80 degrees which is the stored value of the second predetermined temperature storage unit 21. As is clear from FIG. 23 and FIG. 21, after the temperature inside the cooking chamber 2 once drops, the temperature information, the humidity information, and the weight information show substantially the same changes. Therefore, when the detected temperature of the temperature detecting means 17 input to the neural network model means by the cooking product estimating means 8 is 100 degrees, 125 degrees, and 150 degrees, the respective humidity information, weight information, and elapsed time information. The total of 9 pieces of information has the same value, and the cooked food can be correctly estimated. As described above, it is possible to estimate the cooked food even if the environmental conditions of the cooking room vary.
【0063】以上の実施例では、制御手段5、計時手段
8、調理物推定手段9は、すべて4ビットマイクロコン
ピュータで構成したが、これらは1つのマイクロコンピ
ュータで構成することはもちろん可能である。なお、調
理物推定手段9には環境物理量情報として温度情報、湿
度情報、ガス情報等を適切に加工して入力し、固有物理
量情報として重量情報を加工して入力しているが、この
限定は本発明を拘束するものでなく加工方法を変えた
り、情報量を増やして推定の精度を向上させることは可
能である。また、環境物理量情報として上記の以外に
も、温度情報、煙情報、調理物からでるにおい情報や調
理物の色情報などでも適用でき、また固有物理量情報と
して上記以外にも調理物の形状、体積、高さ等の情報も
適用できる。また相互に事前に演算を施し加工した値を
入力しても同様の効果が得られる。また、本実施例で
は、調理室を持つ電子レンジ、電子オーブンレンジにつ
いて説明したが、ガステーブル、電磁調理器などの調理
室を持たない調理器具にも適用できる。さらに本実施例
では、電子レンジの再加熱機能や、オーブンレンジでの
お菓子の調理を説明したが、惣菜やレンジ料理の煮込
み、下ごしらえにも適用できる。In the above embodiment, the control means 5, the timing means 8 and the cooking product estimation means 9 are all constructed by a 4-bit microcomputer, but it is of course possible to construct them by one microcomputer. Although the temperature information, the humidity information, the gas information and the like are appropriately processed and input as the environmental physical quantity information and the weight information is processed and input as the unique physical quantity information to the cooking product estimation means 9, the limitation is not limited to this. It is possible to improve the estimation accuracy by changing the processing method or increasing the amount of information without restricting the present invention. In addition to the above as the environmental physical quantity information, temperature information, smoke information, odor information from the cooked food, color information of the cooked food, etc. can also be applied. Information such as height can also be applied. Also, the same effect can be obtained by inputting values that are mutually processed and processed in advance. Further, although the microwave oven and the microwave oven having the cooking chamber have been described in the present embodiment, the invention can also be applied to cooking utensils having no cooking chamber such as a gas table and an electromagnetic cooker. Furthermore, although the reheating function of the microwave oven and the cooking of sweets in the microwave oven have been described in the present embodiment, the present invention can also be applied to the preparation and preparation of prepared dishes and cooked dishes.
【0064】[0064]
【発明の効果】以上の実施例から明らかなように本発明
によれば、調理物を調理する調理手段と、調理物周辺の
環境物理量を検出する環境物理量検出手段と、調理物固
有の物理量を検出する固有物理量検出手段と、前記環境
物理量検出手段の出力と前記固有物理量検出手段の出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力に基づき前記調理手段を制御する
制御手段とからなるから、調理物が何であるのかを認識
することができると同時に、その調理物に最適に調理手
段を制御できるので、調理の出来上り状態をより向上さ
せることが可能となる。さらに、自動調理を可能にする
ための操作部のキーが集約化でき使い勝手が向上する。As is apparent from the above embodiments, according to the present invention, the cooking means for cooking the food, the environmental physical quantity detecting means for detecting the environmental physical quantity around the food, and the physical quantity peculiar to the food are provided. Inherent physical quantity detecting means for detecting, cooking product estimating means for estimating the cooking material based on the output of the environmental physical quantity detecting means and output of the inherent physical quantity detecting means, and the cooking means based on the output of the cooking food estimating means. Since it comprises control means for controlling, it is possible to recognize what the food is, and at the same time, the cooking means can be optimally controlled for the food, which makes it possible to further improve the finished state of cooking. .. Furthermore, the keys of the operation unit for enabling automatic cooking can be integrated, improving usability.
【0065】また調理物を調理する調理手段と、調理物
周辺の環境を検出する環境物理量検出手段と、調理物固
有の物理量を検出する固有物理量検出手段と、商用電源
電圧の電圧レベルを検出する電圧レベル検出手段と、前
記環境物理量検出手段の出力と前記固有物理量検出手段
の出力および前記電圧レベル検出手段の出力に基づき前
記調理物を推定する調理物推定手段と、前記調理物推定
手段の出力に基づき前記調理手段を制御する制御手段と
からなるから電源電圧の変動に対しても調理物の推定の
精度が向上する。Further, the cooking means for cooking the food, the environmental physical quantity detecting means for detecting the environment around the food, the unique physical quantity detecting means for detecting the physical quantity peculiar to the food, and the voltage level of the commercial power supply voltage are detected. A voltage level detecting means, a cooked food estimating means for estimating the cooked food based on the outputs of the environmental physical quantity detecting means, the output of the inherent physical quantity detecting means and the output of the voltage level detecting means, and the output of the cooked food estimating means Since the control means controls the cooking means based on the above, the accuracy of estimation of the cooked food is improved even when the power supply voltage fluctuates.
【0066】また調理物を調理する調理手段と、前記調
理物を載せる調理皿の位置を検出する皿位置検出手段
と、調理物周辺の環境を検出する環境物理量検出手段
と、調理物固有の物理量を検出する固有物理量検出手段
と、前記皿位置検出手段、前記環境物理量検出手段の出
力および前記固有物理量検出手段の出力に基づき前記調
理物を推定する調理物推定手段と、前記調理物推定手段
の出力に基づき前記調理手段を制御する制御手段とから
なるから、最初に調理物の推定を皿位置により大まかに
分類でき、次に詳細に調理物を推定できるので調理物推
定の精度がより向上できるとともに、推定可能な調理物
の数を増やすことがで、自動調理が可能となる調理物の
種類を増やすことができる。Further, the cooking means for cooking the food, the plate position detecting means for detecting the position of the cooking plate on which the food is placed, the environmental physical quantity detecting means for detecting the environment around the food, and the physical quantity peculiar to the food. Of the inherent physical quantity detection means for detecting the cooking position, the dish position detection means, the output of the environmental physical quantity detection means, and the cooked product estimating means for estimating the cooked food based on the output of the unique physical quantity detecting means, and the cooked food estimating means. Since the cooking means is controlled based on the output, the estimation of the cooked food can be roughly classified according to the plate position first, and then the cooked food can be estimated in detail, so that the accuracy of the cooked food estimation can be further improved. At the same time, by increasing the number of foods that can be estimated, the types of foods that can be automatically cooked can be increased.
【0067】また調理物を調理する調理手段と、前記調
理物を載せる調理皿の位置を検出する皿位置検出手段
と、商用電源電圧の電圧レベルを検出する電圧レベル検
出手段と、調理物周辺の環境を検出する環境物理量検出
手段と、調理物固有の物理量を検出する固有物理量検出
手段と、前記皿位置検出手段の出力と前記電圧レベル検
出手段の出力と前記環境物理量検出手段の出力および前
記固有物理量検出手段の出力に基づき前記調理物を推定
する調理物推定手段と、前記調理物推定手段の出力に基
づき前記調理手段を制御する制御手段とからなるから、
調理物の推定を、さらに向上させることができる。Further, the cooking means for cooking the food, the plate position detecting means for detecting the position of the cooking plate on which the food is placed, the voltage level detecting means for detecting the voltage level of the commercial power supply voltage, and the peripheral portion of the food Environmental physical quantity detecting means for detecting environment, unique physical quantity detecting means for detecting physical quantity peculiar to cooking, output of the plate position detecting means, output of the voltage level detecting means, output of the environmental physical quantity detecting means and the unique Since it comprises cooked food estimating means for estimating the cooked food based on the output of the physical quantity detecting means, and control means for controlling the cooking means based on the output of the cooked food estimating means,
The food product estimate can be further improved.
【0068】また調理物を調理する調理手段と、調理物
周辺の温度を検出する温度検出手段と、調理物周辺の湿
度を検出する湿度検出手段と、調理物の重量を検出する
重量検出手段と、予め定めた調理物周辺の所定温度を記
憶する所定温度記憶手段と、前記温度検出手段の出力が
前記所定温度記憶手段の記憶値に達するまでの前記温度
検出手段の出力と前記湿度検出手段の出力および前記重
量検出手段の出力に基づき前記調理物を推定する調理物
推定手段と、前記調理物推定手段の出力に基づき前記調
理手段を制御する制御手段とからなるから、使用者は調
理メニューを選択する操作が不要になり煩雑な操作が解
消され使い勝手の良く出来上りばらつきの少ない調理器
具を提供できる。Further, cooking means for cooking the food, temperature detecting means for detecting the temperature around the food, humidity detecting means for detecting the humidity around the food, and weight detecting means for detecting the weight of the food. A predetermined temperature storage means for storing a predetermined temperature around a predetermined cooking product, an output of the temperature detection means and an output of the humidity detection means until the output of the temperature detection means reaches a storage value of the predetermined temperature storage means. The user can select a cooking menu because it comprises a cooking product estimation unit that estimates the cooking product based on the output and the output of the weight detection unit and a control unit that controls the cooking unit based on the output of the cooking product estimation unit. It is possible to provide a cooking utensil that is easy to use and has little variation in the finished product because the operation of selecting is unnecessary and complicated operations are eliminated.
【0069】また調理物を調理する調理手段と、調理物
周辺の温度を検出する温度検出手段と、調理物周辺の湿
度を検出する湿度検出手段と、調理物の重量を検出する
重量検出手段と、商用電源電圧の電圧レベルを検出する
電圧レベル検出手段と、予め定めた調理物周辺の所定温
度を記憶する所定温度記憶手段と、前記電圧レベル検出
手段の出力と前記温度検出手段の出力が前記所定温度記
憶手段の記憶値に達するまでの前記温度検出手段の出力
と前記湿度検出手段の出力および前記重量検出手段の出
力に基づき前記調理物を推定する調理物推定手段と、前
記調理物推定手段の出力に基づき前記調理手段を制御す
る制御手段とからなるから、電源電圧の変動に対しても
調理物の推定の精度が向上する。In addition, cooking means for cooking the food, temperature detecting means for detecting the temperature around the food, humidity detecting means for detecting the humidity around the food, and weight detecting means for detecting the weight of the food. A voltage level detecting means for detecting a voltage level of a commercial power supply voltage, a predetermined temperature storing means for storing a predetermined temperature around a predetermined cooking product, an output of the voltage level detecting means and an output of the temperature detecting means. Cooked food estimating means for estimating the cooked food based on the output of the temperature detecting means, the output of the humidity detecting means and the output of the weight detecting means until the stored value of the predetermined temperature storing means is reached, and the cooked food estimating means. And a control means for controlling the cooking means based on the output of 1., the accuracy of estimation of the cooked food is improved even when the power supply voltage fluctuates.
【0070】また調理物を調理する調理手段と、調理物
周辺の温度を検出する温度検出手段と、調理物周辺の湿
度を検出する湿度検出手段と、調理物の重量を検出する
重量検出手段と、前記調理物を載せる調理皿の位置を検
出する皿位置検出手段と、予め定めた調理物周辺の所定
温度を記憶する所定温度記憶手段と、前記皿位置検出手
段の出力と前記温度検出手段の出力が前記所定温度記憶
手段の記憶値に達するまでの前記温度検出手段の出力と
前記湿度検出手段の出力および前記重量検出手段の出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力に基づき前記調理手段を制御する
制御手段とからなるから最初に調理物の推定を皿位置に
より大まかに分類でき、次に詳細に調理物を推定できる
ので調理物推定の精度がより向上できるとともに、推定
可能な調理物の数を増やすことがで、自動調理が可能と
なる調理物の種類を増やすことができる。Further, cooking means for cooking the food, temperature detecting means for detecting the temperature around the food, humidity detecting means for detecting the humidity around the food, and weight detecting means for detecting the weight of the food. , A plate position detecting means for detecting the position of the cooking plate on which the food is placed, a predetermined temperature storage device for storing a predetermined temperature around the food, and an output of the plate position detecting device and the temperature detecting device. Cooked food estimating means for estimating the cooked food based on the output of the temperature detecting means, the output of the humidity detecting means and the output of the weight detecting means until the output reaches the stored value of the predetermined temperature storing means; The estimation of the cooked food can be roughly classified according to the position of the plate because the control means controls the cooking means based on the output of the cooked food estimating means. Degrees together with possible further improved, out to increase the estimable cooking the number, it is possible to increase the types of food that the automatic cooking is possible.
【0071】また調理物を調理する調理手段と、調理物
周辺の温度を検出する温度検出手段と、調理物周辺の湿
度を検出する湿度検出手段と、調理物の重量を検出する
重量検出手段と、前記調理物を載せる調理皿の位置を検
出する皿位置検出手段と、商用電源電圧の電圧レベルを
検出する電圧レベル検出手段と、予め定めた調理物周辺
の所定温度を記憶する所定温度記憶手段と、前記皿位置
検出手段の出力と前記電圧レベル検出手段の出力と前記
温度検出手段の出力が前記所定温度記憶手段の記憶値に
達するまでの前記温度検出手段の出力と前記湿度検出手
段の出力および前記重量検出手段の出力に基づき前記調
理物を推定する調理物推定手段と、前記調理物推定手段
の出力に基づき前記調理手段を制御する制御手段とから
なるから調理物の推定を、さらに向上させることができ
る。Further, cooking means for cooking the food, temperature detecting means for detecting the temperature around the food, humidity detecting means for detecting the humidity around the food, and weight detecting means for detecting the weight of the food. A dish position detecting means for detecting the position of the cooking dish on which the cooked food is placed, a voltage level detecting means for detecting the voltage level of the commercial power supply voltage, and a predetermined temperature storing means for storing a predetermined temperature around the cooked food. The output of the plate position detecting means, the output of the voltage level detecting means, and the output of the temperature detecting means until the output of the temperature detecting means reaches the stored value of the predetermined temperature storing means, and the output of the humidity detecting means. And a cooking product estimation unit that estimates the cooking product based on the output of the weight detection unit, and a control unit that controls the cooking unit based on the output of the cooking product estimation unit. The constant can be further improved.
【0072】また制御手段は所定温度記憶手段の記憶値
より低い第2の所定温度を記憶する第2所定温度記憶部
を有し、温度検出手段からの出力が初期に第2所定温度
より高い時に第2所定温度より低くなるまで調理手段を
停止させる待機部を設けているので、例えば連続使用の
ように調理室の環境条件がばらついても調理物の推定を
誤らずに精度の高い推定が可能となる。The control means has a second predetermined temperature storage section for storing a second predetermined temperature lower than the storage value of the predetermined temperature storage means, and when the output from the temperature detection means is initially higher than the second predetermined temperature. Since the standby unit that stops the cooking means until the temperature becomes lower than the second predetermined temperature is provided, even if the environmental conditions of the cooking chamber vary, for example, in continuous use, the estimation of the cooked product can be performed accurately without making an error. Becomes
【0073】また調理物推定手段は、複数の神経素子よ
り構成される神経回路網をモデル化し学習によって得ら
れ、調理物を推定する複数の固定された結合重み係数を
内部に持つ神経回路網模式手段を有し、または、複数の
神経素子より構成される層が多数組み合わされて構築さ
れる階層型の神経回路網模式手段を有するから、自動調
理の対象となる学習させた調理メニューについては、調
理物の推定ができ自動調理が可能となり、調理メニュー
選択の操作が不要な使い勝手の良い調理器具を提供でき
る。Further, the cooking product estimating means is a neural network model which has a plurality of fixed connection weight coefficients for estimating a cooking product obtained by learning by modeling a neural network composed of a plurality of neural elements. Since it has a means, or has a hierarchical neural network schematic means constructed by combining a large number of layers composed of a plurality of neural elements, for the learned cooking menu to be the target of automatic cooking, It is possible to estimate cooking items and enable automatic cooking, and to provide easy-to-use cooking utensils that do not require operations for selecting cooking menus.
【図1】本発明の一実施例の調理器具の構成ブロック図FIG. 1 is a configuration block diagram of a cookware according to an embodiment of the present invention.
【図2】本発明の他の実施例の調理器具の構成ブロック
図FIG. 2 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図3】本発明の他の実施例の調理器具の構成ブロック
図FIG. 3 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図4】本発明の他の実施例の調理器具の構成ブロック
図FIG. 4 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図5】本発明の他の実施例の調理器具の構成ブロック
図FIG. 5 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図6】本発明の他の実施例の調理器具の構成ブロック
図FIG. 6 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図7】本発明の他の実施例の調理器具の構成ブロック
図FIG. 7 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図8】本発明の他の実施例の調理器具の構成ブロック
図FIG. 8 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図9】本発明の他の実施例の調理器具の構成ブロック
図FIG. 9 is a configuration block diagram of a cookware according to another embodiment of the present invention.
【図10】本発明の一実施例の調理器具に用いた操作部
の構成図FIG. 10 is a configuration diagram of an operation unit used in the cooking utensil of the embodiment of the present invention.
【図11】同調理器具に用いた神経回路網模式手段の構
成単位となる神経素子の概念図FIG. 11 is a conceptual diagram of a neural element that is a constituent unit of a neural network schematic means used in the cooking utensil.
【図12】同調理器具に用いた神経素子で構成した信号
変換手段の概念図FIG. 12 is a conceptual diagram of a signal conversion unit composed of neural elements used in the cooking utensil.
【図13】同調理器具に用いた学習アルゴリズムとして
誤差逆伝搬法を採用した信号処理手段のブロック図FIG. 13 is a block diagram of a signal processing unit that employs an error back propagation method as a learning algorithm used for the cooking utensil.
【図14】同調理器具に用いた神経回路網模式手段を用
いた多層パーセプトロンの構成を示すブロック図FIG. 14 is a block diagram showing a configuration of a multilayer perceptron using a neural network schematic means used in the cooking utensil.
【図15】図1の構成ブロック図に基づく調理器具の実
験データの一例を示す図FIG. 15 is a diagram showing an example of experimental data of a cooking utensil based on the configuration block diagram of FIG. 1.
【図16】同調理器具の実験データの他の例を示す図FIG. 16 is a diagram showing another example of experimental data of the cooking utensil.
【図17】図3の構成ブロック図に基づく調理器具の実
験データの一例を示す図FIG. 17 is a diagram showing an example of experimental data of a cooking utensil based on the configuration block diagram of FIG. 3.
【図18】同調理器具の実験データの他の例を示す図FIG. 18 is a view showing another example of experimental data of the cooking utensil.
【図19】同調理器具の実験データの他の例を示す図FIG. 19 is a diagram showing another example of experimental data of the cooking utensil.
【図20】同調理器具の実験データの他の例を示す図FIG. 20 is a diagram showing another example of experimental data of the cooking utensil.
【図21】図5の構成ブロック図に基づく調理器具の実
験データの一例を示す図FIG. 21 is a diagram showing an example of experimental data of a cooking utensil based on the configuration block diagram of FIG. 5.
【図22】同調理器具の実験データの他の例を示す図FIG. 22 is a diagram showing another example of experimental data of the cooking utensil.
【図23】図9の構成ブロック図に基づく調理器具の実
験データの一例を示す図23 is a diagram showing an example of experimental data of the cooking utensil based on the configuration block diagram of FIG. 9. FIG.
【図24】従来の調理器具の構成ブロック図FIG. 24 is a configuration block diagram of a conventional cooking utensil.
【図25】従来の調理器具の他の構成ブロック図FIG. 25 is a block diagram of another configuration of the conventional cooking utensil.
1 調理器具 3 調理手段 5 制御手段 6 環境物理量検出手段 7 固有物理量検出手段 9 調理物推定手段 13 電圧レベル検出手段 14 皿位置検出手段 16 調理皿 17 湿度検出手段 18 温度検出手段 19 重量検出手段 20 所定温度記憶手段 21 第2所定温度記憶手段 22 待機部 1 Cooking Utensils 3 Cooking Means 5 Control Means 6 Environmental Physical Quantity Detecting Means 7 Unique Physical Quantity Detecting Means 9 Cooking Estimating Means 13 Voltage Level Detecting Means 14 Dish Position Detecting Means 16 Cooking Dish 17 Humidity Detecting Means 18 Temperature Detecting Means 19 Weight Detecting Means 20 Predetermined temperature storage means 21 Second predetermined temperature storage means 22 Standby unit
フロントページの続き (72)発明者 黄地 謙三 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中 基孫 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内Front page continued (72) Inventor Kenzo Ochi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation
Claims (11)
の環境を検出する環境物理量検出手段と、前記調理物の
固有物理量を検出する固有物理量検出手段と、前記環境
物理量検出手段の出力と前記固有物理量検出手段の出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力に基づき前記調理手段を制御する
制御手段とからなる調理器具。1. A cooking means for cooking food, an environmental physical quantity detection means for detecting the environment around the food, an inherent physical quantity detection means for detecting an inherent physical quantity of the food, and outputs of the environmental physical quantity detection means. And a cooking utensil estimating means for estimating the cooking food based on the output of the inherent physical quantity detecting means, and a control means for controlling the cooking means based on the output of the cooking food estimating means.
の環境を検出する環境物理量検出手段と、前記調理物の
固有物理量を検出する固有物理量検出手段と、商用電源
電圧の電圧レベルを検出する電圧レベル検出手段と、前
記環境物理量検出手段の出力と前記固有物理量検出手段
の出力および前記電圧レベル検出手段の出力に基づき前
記調理物を推定する調理物推定手段と、前記調理物推定
手段の出力に基づき前記調理手段を制御する制御手段と
からなる調理器具。2. A cooking means for cooking food, an environmental physical quantity detecting means for detecting an environment around the food, an intrinsic physical quantity detecting means for detecting an inherent physical quantity of the food, and a voltage level of a commercial power supply voltage. Voltage level detecting means for detecting, cooking product estimating means for estimating the cooking product based on the outputs of the environmental physical quantity detecting means, the output of the intrinsic physical quantity detecting means and the output of the voltage level detecting means, and the cooking food estimating means And a control means for controlling the cooking means based on the output of the cooking utensil.
を載せる調理皿の位置を検出する皿位置検出手段と、調
理物周辺の環境を検出する環境物理量検出手段と、前記
調理物の固有物理量を検出する固有物理量検出手段と、
前記皿位置検出手段の出力と前記環境物理量検出手段の
出力および前記固有物理量検出手段の出力に基づき前記
調理物を推定する調理物推定手段と、前記調理物推定手
段の出力に基づき前記調理手段を制御する制御手段とか
らなる調理器具。3. Cooking means for cooking food, plate position detection means for detecting the position of a cooking plate on which the food is placed, environmental physical quantity detection means for detecting the environment around the food, and the food An intrinsic physical quantity detecting means for detecting an intrinsic physical quantity,
A cooking product estimation unit that estimates the cooking product based on the output of the plate position detection unit, the output of the environmental physical quantity detection unit, and the output of the intrinsic physical quantity detection unit, and the cooking unit based on the output of the cooking product estimation unit. A cooking utensil consisting of control means for controlling.
を載せる調理皿の位置を検出する皿位置検出手段と、商
用電源電圧の電圧レベルを検出する電圧レベル検出手段
と、調理物周辺の環境を検出する環境物理量検出手段
と、前記調理物の固有物理量を検出する固有物理量検出
手段と、前記皿位置検出手段の出力と前記電圧レベル検
出手段の出力と前記環境物理量検出手段の出力および前
記固有物理量検出手段の出力の出力に基づき前記調理物
を推定する調理物推定手段と、前記調理物推定手段の出
力に基づき前記調理手段を制御する制御手段とからなる
調理器具。4. Cooking means for cooking food, plate position detection means for detecting the position of a cooking plate on which the food is placed, voltage level detection means for detecting the voltage level of the commercial power supply voltage, and the periphery of the food. Environment physical quantity detection means for detecting the environment of, the unique physical quantity detection means for detecting the unique physical quantity of the food, the output of the plate position detection means, the output of the voltage level detection means and the output of the environmental physical quantity detection means, and A cooking utensil comprising: a cooking product estimation unit that estimates the cooking product based on the output of the inherent physical quantity detection unit; and a control unit that controls the cooking unit based on the output of the cooking product estimation unit.
の温度を検出する温度検出手段と、調理物周辺の湿度を
検出する湿度検出手段と、前記調理物の重量を検出する
重量検出手段と、予め定めた調理物周辺の所定温度を記
憶する所定温度記憶手段と、前記温度検出手段の出力が
前記所定温度記憶手段の記憶値に達するまでの前記温度
検出手段の出力と前記湿度検出手段の出力および前記重
量検出手段の出力に基づき前記調理物を推定する調理物
推定手段と、前記調理物推定手段の出力に基づき前記調
理手段を制御する制御手段とからなる調理器具。5. Cooking means for cooking food, temperature detection means for detecting the temperature around the food, humidity detection means for detecting the humidity around the food, and weight detection for detecting the weight of the food. Means, a predetermined temperature storage means for storing a predetermined predetermined temperature around the cooking product, an output of the temperature detection means and the humidity detection until the output of the temperature detection means reaches the storage value of the predetermined temperature storage means. A cooking utensil comprising a cooking product estimation unit that estimates the cooking product based on the output of the cooking unit and the output of the weight detection unit, and a control unit that controls the cooking unit based on the output of the cooking product estimation unit.
の温度を検出する温度検出手段と、調理物周辺の湿度を
検出する湿度検出手段と、商用電源電圧の電圧レベルを
検出する電圧レベル検出手段と、前記調理物の重量を検
出する重量検出手段と、予め定めた調理物周辺の所定温
度を記憶する所定温度記憶手段と、前記電圧レベル検出
手段の出力と前記温度検出手段の出力が前記所定温度記
憶手段の記憶値に達するまでの前記温度検出手段の出力
と前記湿度検出手段の出力および前記重量検出手段の出
力に基づき前記調理物を推定する調理物推定手段と、前
記調理物推定手段の出力に基づき前記調理手段を制御す
る制御手段とからなる調理器具。6. Cooking means for cooking food, temperature detection means for detecting the temperature around the food, humidity detection means for detecting the humidity around the food, and voltage for detecting the voltage level of the commercial power supply voltage. Level detection means, weight detection means for detecting the weight of the food, predetermined temperature storage means for storing a predetermined temperature around the food, output of the voltage level detection means and output of the temperature detection means And a cooked food estimating means for estimating the cooked food based on the output of the temperature detecting means, the output of the humidity detecting means and the output of the weight detecting means until the value reaches the stored value of the predetermined temperature storing means. A cooking utensil comprising a control means for controlling the cooking means based on the output of the estimation means.
の温度を検出する温度検出手段と、調理物周辺の湿度を
検出する湿度検出手段と、前記調理物を載せる調理皿の
位置を検出する皿位置検出手段と、前記調理物の重量を
検出する重量検出手段と、予め定めた調理物周辺の所定
温度を記憶する所定温度記憶手段と、前記皿位置検出手
段の出力と前記温度検出手段の出力が前記所定温度記憶
手段の記憶値に達するまでの前記温度検出手段の出力と
前記湿度検出手段の出力および前記重量検出手段の出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力に基づき前記調理手段を制御する
制御手段とからなる調理器具。7. A cooking means for cooking food, a temperature detecting means for detecting a temperature around the food, a humidity detecting means for detecting humidity around the food, and a position of a cooking plate on which the food is placed. Dish position detecting means for detecting, weight detecting means for detecting the weight of the cooked food, predetermined temperature storing means for storing a predetermined temperature around the cooked food, output of the dish position detecting means and the temperature detection Cooked food estimating means for estimating the cooked food based on the output of the temperature detecting means, the output of the humidity detecting means and the output of the weight detecting means until the output of the means reaches the stored value of the predetermined temperature storing means, A cooking device comprising: a control unit that controls the cooking unit based on the output of the cooking product estimation unit.
の温度を検出する温度検出手段と、調理物周辺の湿度を
検出する湿度検出手段と、前記調理物を載せる調理皿の
位置を検出する皿位置検出手段と、商用電源電圧の電圧
レベルを検出する電圧レベル検出手段と、前記調理物の
重量を検出する重量検出手段と、予め定めた調理物周辺
の所定温度を記憶する所定温度記憶手段と、前記皿位置
検出手段の出力と前記電圧レベル検出手段の出力と前記
温度検出手段の出力が前記所定温度記憶手段の記憶値に
達するまでの前記温度検出手段の出力と前記湿度検出手
段の出力および前記重量検出手段の出力に基づき前記調
理物を推定する調理物推定手段と、前記調理物推定手段
の出力に基づき前記調理手段を制御する制御手段とから
なる調理器具。8. A cooking means for cooking food, a temperature detecting means for detecting a temperature around the food, a humidity detecting means for detecting humidity around the food, and a position of a cooking plate on which the food is placed. Dish position detecting means for detecting, voltage level detecting means for detecting the voltage level of the commercial power supply voltage, weight detecting means for detecting the weight of the food, and predetermined temperature for storing a predetermined temperature around the predetermined food. Storage means, output of the plate position detection means, output of the voltage level detection means, and output of the temperature detection means until the output of the temperature detection means reaches the storage value of the predetermined temperature storage means, and the humidity detection means And a control means for controlling the cooking means on the basis of the output of the cooked product estimating means.
低い第2の所定温度を記憶する第2所定温度記憶部を有
し、温度検出手段からの出力が初期に第2所定温度より
高い時に第2所定温度より低くなるまで調理手段を停止
させる待機部を設けた請求項5ないし請求項9記載の調
理器具。9. The control means has a second predetermined temperature storage section for storing a second predetermined temperature lower than the storage value of the predetermined temperature storage means, and the output from the temperature detection means is initially higher than the second predetermined temperature. 10. The cooking utensil according to claim 5, further comprising a standby portion for stopping the cooking means until the temperature becomes lower than the second predetermined temperature.
構成される神経回路網をモデル化し学習によって得ら
れ、調理物を推定する複数の固定された結合重み係数を
内部に持つ神経回路網模式手段を有する請求項1ないし
請求項8記載の調理器具。10. The cooking food estimation means is a neural network which has a plurality of fixed connection weight coefficients inside which is obtained by learning by modeling a neural network composed of a plurality of neural elements and estimates a cooking food. The cooking utensil according to any one of claims 1 to 8, which has a schematic means.
構成される層が多数組み合わされて構築される階層型の
神経回路網模式手段を備えたことを特徴とする請求項1
ないし請求項8記載の調理器具。11. The cooked product estimating means comprises hierarchical neural network schematic means constructed by combining a number of layers composed of a plurality of neural elements.
9. The cooking utensil according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14724192A JPH05172334A (en) | 1991-10-21 | 1992-06-08 | Cooking implement |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-272267 | 1991-10-21 | ||
JP27226791 | 1991-10-21 | ||
JP14724192A JPH05172334A (en) | 1991-10-21 | 1992-06-08 | Cooking implement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05172334A true JPH05172334A (en) | 1993-07-09 |
Family
ID=26477848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14724192A Pending JPH05172334A (en) | 1991-10-21 | 1992-06-08 | Cooking implement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05172334A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701387A2 (en) * | 1994-09-07 | 1996-03-13 | Sharp Kabushiki Kaisha | Apparatus for and method of controlling a cooker and a cooker controlled thereby |
FR2773390A1 (en) * | 1998-01-08 | 1999-07-09 | Europ Equip Menager | AUTOMATIC COOKING DEVICE USING A NEURON ARRAY |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04292714A (en) * | 1991-03-20 | 1992-10-16 | Sanyo Electric Co Ltd | Heating cooker |
-
1992
- 1992-06-08 JP JP14724192A patent/JPH05172334A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04292714A (en) * | 1991-03-20 | 1992-10-16 | Sanyo Electric Co Ltd | Heating cooker |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701387A2 (en) * | 1994-09-07 | 1996-03-13 | Sharp Kabushiki Kaisha | Apparatus for and method of controlling a cooker and a cooker controlled thereby |
EP0701387A3 (en) * | 1994-09-07 | 1996-11-27 | Sharp Kk | Apparatus for and method of controlling a cooker and a cooker controlled thereby |
US5681496A (en) * | 1994-09-07 | 1997-10-28 | Sharp Kabushiki Kaisha | Apparatus for and method of controlling a microwave oven and a microwave oven controlled thereby |
FR2773390A1 (en) * | 1998-01-08 | 1999-07-09 | Europ Equip Menager | AUTOMATIC COOKING DEVICE USING A NEURON ARRAY |
EP0928929A1 (en) * | 1998-01-08 | 1999-07-14 | Compagnie Europeenne Pour L'equipement Menager "Cepem" | Automatic cooking device using a neural network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5681496A (en) | Apparatus for and method of controlling a microwave oven and a microwave oven controlled thereby | |
AU647956B2 (en) | Cooking appliance | |
JPH0697096B2 (en) | Heating device | |
JPH06241463A (en) | Cooking appliance | |
JPH05172334A (en) | Cooking implement | |
JPH05312328A (en) | Cooker | |
JP2861636B2 (en) | kitchenware | |
JP3088506B2 (en) | kitchenware | |
CN114568962A (en) | Steaming and baking equipment and cooking control method and device thereof | |
JP2936838B2 (en) | kitchenware | |
JP2943504B2 (en) | kitchenware | |
JPH05172338A (en) | Cooking implement | |
JP3110505B2 (en) | kitchenware | |
JP2855901B2 (en) | kitchenware | |
JPH05280743A (en) | Cooking device | |
JPH05172337A (en) | Cooking implement | |
JPH05288353A (en) | Cooking utensils | |
JP2943468B2 (en) | kitchenware | |
JPH0556860A (en) | Cooker | |
JPH05113221A (en) | Cooking equipment | |
JPH05158562A (en) | Heating cooker | |
JPH04230991A (en) | Heat cooking appliance | |
JP3072928B2 (en) | Cooking device | |
JP3232582B2 (en) | Electric carpet | |
JPH04356620A (en) | High-frequency heating device |