JP2861636B2 - kitchenware - Google Patents

kitchenware

Info

Publication number
JP2861636B2
JP2861636B2 JP4147244A JP14724492A JP2861636B2 JP 2861636 B2 JP2861636 B2 JP 2861636B2 JP 4147244 A JP4147244 A JP 4147244A JP 14724492 A JP14724492 A JP 14724492A JP 2861636 B2 JP2861636 B2 JP 2861636B2
Authority
JP
Japan
Prior art keywords
cooking
physical quantity
output
food
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4147244A
Other languages
Japanese (ja)
Other versions
JPH05340544A (en
Inventor
一成 西井
博久 今井
祥浩 石嵜
謙三 黄地
基孫 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4147244A priority Critical patent/JP2861636B2/en
Publication of JPH05340544A publication Critical patent/JPH05340544A/en
Application granted granted Critical
Publication of JP2861636B2 publication Critical patent/JP2861636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動調理を目的とした
調理器具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooking appliance for automatic cooking.

【0002】[0002]

【従来の技術】従来、この種の調理器具、例えば電子オ
ーブンレンジで図22に示すように構成されていた。以
下、その構成について説明する。
2. Description of the Related Art Conventionally, this type of cooking utensil, for example, an electronic microwave oven has been configured as shown in FIG. Hereinafter, the configuration will be described.

【0003】図に示すように、調理器具1は、調理物を
入れる加熱室2と、調理物を調理する調理手段3、調理
室2の絶対湿度を検出し絶対湿度センサー等から構成さ
れる湿度検出手段4、湿度検出手段4からの情報でもっ
て調理手段3を制御する制御手段5から構成されてい
た。このような構成で自動調理を可能にしていた。例え
ば、再加熱を例にとると、電子レンジの操作部上で、”
ごはん、味噌汁、その他一般”、”牛乳”、”酒カ
ン”、”葉菜、根菜等”の4つのカテゴリーに分けられ
ており、そのカテゴリーを選択し調理を開始すれば、そ
のカテゴリーの同一の自動調理シーケンスで調理手段3
を制御するような制御プログラムを制御手段5に備えて
いた。この自動調理シーケンスは、調理開始から湿度検
出手段5がある量の湿度を検出するまでの時間Tに選択
カテゴリーの定数Kを乗じた時間だか加熱させるもので
ある。調理物の重量によって、前記時間Tは変わってく
ることが自動調理の1つのポイントである。また前記定
数Kは、多くの調理実験をすることにより、カテゴリー
での最適値を決定していた。
As shown in FIG. 1, a cooking utensil 1 comprises a heating chamber 2 for storing foods, a cooking means 3 for cooking the foods, and a humidity comprising an absolute humidity sensor for detecting the absolute humidity of the cooking chamber 2. The control means 5 controls the cooking means 3 based on information from the detecting means 4 and the humidity detecting means 4. With such a configuration, automatic cooking has been enabled. For example, in the case of reheating, for example,
There are four categories: rice, miso soup, other general, milk, liquor, leafy vegetables, root vegetables, etc. If you select a category and start cooking, the same category Cooking means 3 in automatic cooking sequence
Is provided in the control means 5. In this automatic cooking sequence, heating is performed for a time obtained by multiplying a time T from the start of cooking to the time when the humidity detecting means 5 detects a certain amount of humidity by a constant K of a selected category. One point of the automatic cooking is that the time T varies depending on the weight of the food. In addition, the constant K has been determined to be an optimal value in a category by performing many cooking experiments.

【0004】[0004]

【発明が解決しようとする課題】このような従来の調理
器具(ここでは、電子レンジ)では、調理開始から調理
室内の湿度がある値になるまでの時間を計測し、その時
間にカテゴリー毎に定められた定数Kを乗じた時間を調
理時間として決定していたために、カテゴリーの数だけ
操作部に操作キーが必要となる。又調理の出来上がりに
かなりバラツキがあった。例えば”ごはん”と”味噌
汁”の再加熱を異なるカテゴリーとして分けると問題は
ないが、同一カテゴリーとすると、定数Kを”ごはん”
にあわせるか、”味噌汁”に合わせるかによって出来ば
えが異なり、”ごはん”が熱くなりすぎたり、”味噌
汁”がぬるいといった調理状態となっていた。これを解
決しようとすると、カテゴリーをもっと細分化すれば良
いが、操作キーが細分化の数だけ増える事になり、使い
勝手上、大変不便なものになるという課題を有してい
た。
In such a conventional cooking device (here, a microwave oven), the time from the start of cooking until the humidity in the cooking chamber reaches a certain value is measured, and the time is measured for each category. Since the time multiplied by the determined constant K is determined as the cooking time, operation keys are required on the operation unit by the number of categories. In addition, there was considerable variation in the completion of cooking. For example, there is no problem if the reheating of “rice” and “miso soup” are divided into different categories, but if they are the same category, the constant K will be “rice”.
The result was different depending on whether it was mixed with miso soup or "miso soup". The cooked rice was too hot or the miso soup was too warm. In order to solve this problem, the category may be further subdivided, but the number of operation keys increases by the number of subdivisions, and there is a problem that the usability becomes very inconvenient.

【0005】本発明は上記課題を解決するもので、調理
物の種類を、現実に計測・検出できる調理室内の環境物
理量と調理物固有の調理物固有物理量で推定することに
より、カテゴリーの分類が不要でワンボタン操作が可能
な電子レンジを提供することを目的としている。
[0005] The present invention solves the above-mentioned problems, and the category of the category is estimated by estimating the type of the food based on the environmental physical quantity in the cooking chamber that can be actually measured and detected and the physical quantity unique to the food. An object of the present invention is to provide a microwave oven that can be operated with one button without being required.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために下記構成とした。すなわち第1の解決手段
として、調理物を調理する調理手段と、調理物周辺の環
境を検出する環境物理量検出手段と、前記調理物の固有
物理量を検出する調理物固有物理量検出手段と、前記環
境物理量検出手段と前記調理物固有物理量検出手段の出
力に基づき前記調理物を推定する調理物推定手段と、前
記調理物推定手段の出力に基づき前記調理手段を制御す
る制御手段とからなる構成とした。
The present invention has the following configuration to achieve the above object. That is, as first solution means, cooking means for cooking food, environmental physical quantity detection means for detecting an environment around the food, cooking unique physical quantity detection means for detecting a unique physical quantity of the food, A cooking quantity estimating means for estimating the food based on the outputs of the physical quantity detecting means and the cooking specific physical quantity detecting means; and a control means for controlling the cooking means based on the output of the cooking estimating means. .

【0007】また第2の解決手段として、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、商用電源電圧の電圧レベルを検出
する電圧レベル検出手段と、前記環境物理量検出手段、
前記電圧レベル検出手段の出力に基づき前記調理物を推
定する調理物推定手段と、前記調理物推定手段の出力と
前記環境物理量推定手段の出力および前記電圧レベル検
出手段の出力に基づき調理物の調理度合を推定する調理
度合推定手段と、前記調理度合推定手段の出力に基づき
前記調理手段を制御する制御手段とからなる構成とし
た。
[0007] Further, as a second solution means, cooking means for cooking food, environmental physical quantity detection means for detecting environmental physical quantities around the food, voltage level detection means for detecting the voltage level of the commercial power supply voltage, Said environmental physical quantity detection means,
A food estimating means for estimating the food based on an output of the voltage level detecting means; cooking of the food based on an output of the food estimating means, an output of the environmental physical quantity estimating means, and an output of the voltage level detecting means; A cooking degree estimating means for estimating the degree and a control means for controlling the cooking means based on an output of the cooking degree estimating means are provided.

【0008】また第3の解決手段として、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記皿位置検出手段の出力と前記環境物理量
検出手段との出力に基づき前記調理物を推定する調理物
推定手段と、前記調理物推定手段の出力と前記環境物理
量検出手段の出力に基づき調理物の調理度合を推定する
調理度合推定手段と、前記調理度合推定手段の出力に基
づき前記調理手段を制御する制御手段とからなる構成と
した。
Further, as a third solution means, a cooking means for cooking the food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the cooking dish, and the dish Cooking estimating means for estimating the food based on the output of the position detecting means and the output of the environmental physical quantity detecting means; and the cooking degree of the cooking based on the output of the cooking estimating means and the output of the environmental physical quantity detecting means. And a control means for controlling the cooking means based on the output of the cooking degree estimation means.

【0009】また第4の解決手段として、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、商用電源電圧の電圧レベルを検出する電圧レ
ベル検出手段と、前記皿位置検出手段の出力と前記環境
物理量検出手段の出力および前記電圧レベル検出手段の
出力に基づき前記調理物を推定する調理物推定手段と、
前記調理物推定手段の出力と前記環境物理量推定手段の
出力および前記電圧レベル検出手段の出力に基づき調理
物の調理度合を推定する調理度合推定手段と、前記調理
度合推定手段の出力に基づき前記調理手段を制御する制
御手段とからなる構成とした。
Further, as a fourth solution means, a cooking means for cooking food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and a commercial power supply Voltage level detecting means for detecting a voltage level of a voltage; cooking product estimating means for estimating the food based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the voltage level detecting means;
Cooking degree estimating means for estimating the degree of cooking of the food based on the output of the cooking estimating means, the output of the environmental physical quantity estimating means, and the output of the voltage level detecting means; and the cooking based on the output of the cooking degree estimating means. And control means for controlling the means.

【0010】また第5の解決手段として、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、前記調理物の固有物理量を検出す
る固有物理量検出手段と、前記環境物理量検出手段の出
力と前記固有物理量検出手段との出力に基づき前記調理
物を推定する調理物推定手段と、前記調理物推定手段の
出力と前記環境物理量推定手段の出力および前記固有物
理量検出手段の出力とに基づき調理物の調理度合を推定
する調理度合推定手段と、前記調理度合推定手段の出力
に基づき前記調理手段を制御する制御手段とからなる構
成とした。
Further, as a fifth solution means, a cooking means for cooking the food, an environmental physical quantity detection means for detecting an environmental physical quantity around the food, a unique physical quantity detection means for detecting a unique physical quantity of the food, Cooking estimating means for estimating the food based on the output of the environmental physical quantity detecting means and the output of the eigenphysical quantity detecting means; the output of the cooking estimating means, the output of the environmental physical quantity estimating means, and the eigenphysical quantity detection A cooking degree estimating means for estimating the degree of cooking of the food based on the output of the means, and a control means for controlling the cooking means based on the output of the cooking degree estimating means.

【0011】また第6の解決手段として、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、前記調理物の固有物理量を検出す
る固有物理量検出手段と、商用電源電圧の電圧レベルを
検出する電圧レベル検出手段と、前記環境物理量検出手
段の出力と前記固有物理量検出手段の出力および前記電
圧レベル検出手段の出力に基づき前記調理物を推定する
調理物推定手段と、前記調理物推定手段の出力と前記環
境物理量推定手段の出力と前記固有物理量検出手段の出
力および前記電圧レベル検出手段の出力に基づき調理物
の調理度合を推定する調理度合推定手段と、前記調理度
合推定手段の出力に基づき前記調理手段を制御する制御
手段とからなる構成とした。
Further, as a sixth solution means, a cooking means for cooking the food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, a unique physical quantity detecting means for detecting a unique physical quantity of the food, Voltage level detecting means for detecting a voltage level of a commercial power supply voltage; and cooked food estimating means for estimating the cooked food based on an output of the environmental physical quantity detecting means, an output of the unique physical quantity detecting means, and an output of the voltage level detecting means. A cooking degree estimating means for estimating a cooking degree of a food based on an output of the food estimating means, an output of the environmental physical quantity estimating means, an output of the unique physical quantity detecting means, and an output of the voltage level detecting means; And control means for controlling the cooking means based on the output of the cooking degree estimating means.

【0012】また第7の解決手段として、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記調理物の固有物理量を検出する固有物理
量検出手段と、前記皿位置検出手段の出力と前記環境物
理量検出手段の出力と前記固有物理量検出手段との出力
に基づき前記調理物を推定する調理物推定手段と、前記
調理物推定手段の出力と前記環境物理量推定手段の出力
および前記固有物理量検出手段の出力とに基づき調理物
の調理度合を推定する調理度合推定手段と、前記調理度
合推定手段の出力に基づき前記調理手段を制御する制御
手段とからなる構成とした。
Further, as a seventh solving means, a cooking means for cooking the food, a dish position detecting means for detecting a position of the cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, A unique physical quantity detecting means for detecting a unique physical quantity of an object; a cooking product estimating means for estimating the cooking based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the unique physical quantity detecting means; A cooking degree estimating means for estimating a cooking degree of the cooking based on an output of the cooking estimating means, an output of the environmental physical quantity estimating means, and an output of the unique physical quantity detecting means, based on an output of the cooking degree estimating means. The control means controls the cooking means.

【0013】また第8の解決手段として、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記調理物の固有物理量を検出する固有物理
量検出手段と、商用電源電圧の電圧レベルを検出する電
圧レベル検出手段と、前記皿位置検出手段の出力と前記
環境物理量検出手段の出力と前記固有物理量検出手段の
出力および前記電圧レベル検出手段の出力に基づき前記
調理物を推定する調理物推定手段と、前記調理物推定手
段の出力と前記環境物理量推定手段の出力と前記固有物
理量検出手段の出力および前記電圧レベル検出手段の出
力に基づき調理物の調理度合を推定する調理度合推定手
段と、前記調理度合推定手段の出力に基づき前記調理手
段を制御する制御手段とからなる調理器具。
As an eighth solving means, a cooking means for cooking the food, a dish position detecting means for detecting a position of the cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and the cooking means An intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of an object, a voltage level detecting means for detecting a voltage level of a commercial power supply voltage, an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the intrinsic physical quantity detecting means. A food estimating means for estimating the food based on an output and an output of the voltage level detecting means; an output of the cooking estimating means, an output of the environmental physical quantity estimating means, an output of the unique physical quantity detecting means, and the voltage level Cooking degree estimating means for estimating the degree of cooking of the food based on the output of the detecting means; and controlling the cooking means based on the output of the cooking degree estimating means Cookware consisting of the stage.

【0014】さらに、前記調理物推定手段と前記調理度
合推定手段は、複数の神経素子より構成される神経回路
網をモデル化した手法により得られ、調理物と調理度合
を推定する複数の固定された結合重み係数を内部に持つ
神経回路網模式手段を有する構成とした。または、複数
の神経素子より構成される層が多数組み合わされて構築
される階層型の神経回路網模式手段を有する構成とし
た。
Further, the cooking product estimation means and the cooking degree estimation means are obtained by a method of modeling a neural network composed of a plurality of neural elements, and a plurality of fixed food and cooking degree estimation means are provided. And a neural network model having a connection weight coefficient therein. Alternatively, a configuration having a hierarchical neural network model means constructed by combining many layers composed of a plurality of neural elements is adopted.

【0015】[0015]

【作用】本発明は上記した構成によって、下記の作用が
得られる。第1の課題解決手段により、環境物理量検出
手段からの調理室内の環境情報と、調理物固有物理量検
出手段からの固有物理量情報を、時々刻々、調理物推定
手段に入力することにより、調理物推定手段は調理物を
推定する。調理度合推定手段は調理物推定手段からの推
定調理物情報と環境物理量情報をもとに調理度合を推定
し、制御手段は調理度合推定手段の出力に基づき調理手
段を制御する。
According to the present invention, the following effects can be obtained by the above-described structure. By means of the first problem solving means, the environment information in the cooking chamber from the environmental physical quantity detecting means and the unique physical quantity information from the cooking unique physical quantity detecting means are input to the food estimating means from time to time, thereby estimating the food. The means estimates the food. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information and the environmental physical quantity information from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means.

【0016】また第2の解決手段により、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、商用電源電圧の電圧レベルを検出
する電圧レベル検出手段と、環境物理量検出手段、電圧
レベル検出手段の出力を、時々刻々、調理物推定手段に
入力することにより、調理物推定手段は調理物を推定す
る。調理度合推定手段は調理物推定手段からの推定調理
物情報と環境物理量情報と電圧レベル検出手段の出力を
もとに調理度合を推定し、制御手段は調理度合推定手段
の出力に基づき調理手段を制御する。
According to a second aspect of the present invention, there is provided a cooking means for cooking a food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and a voltage level detecting means for detecting a voltage level of a commercial power supply voltage. By inputting the outputs of the environmental physical quantity detecting means and the voltage level detecting means to the food estimating means every moment, the food estimating means estimates the food. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information, the environmental physical quantity information and the output of the voltage level detecting means from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means. Control.

【0017】また第3の解決手段により、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記皿位置検出手段の出力と前記環境物理量
検出手段との出力を、時々刻々、調理物推定手段に入力
することにより、調理物推定手段は調理物を推定する。
調理度合推定手段は調理物推定手段からの推定調理物情
報と環境物理量情報をもとに調理度合を推定し、制御手
段は調理度合推定手段の出力に基づき調理手段を制御す
る。
According to a third aspect of the present invention, there is provided a cooking means for cooking a dish, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the cooking dish, and the dish. By inputting the output of the position detecting means and the output of the environmental physical quantity detecting means from time to time to the food estimating means, the food estimating means estimates the food.
The cooking degree estimating means estimates the cooking degree based on the estimated cooking information and the environmental physical quantity information from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means.

【0018】また第4の解決手段により、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、商用電源電圧の電圧レベルを検出する電圧レ
ベル検出手段と、前記皿位置検出手段の出力と前記環境
物理量検出手段の出力および前記電圧レベル検出手段の
出力に基づき前記調理物を推定する調理物推定手段と、
前記調理物推定手段の出力と前記環境物理量推定手段の
出力および前記電圧レベル検出手段の出力を、時々刻
々、調理物推定手段に入力することにより、調理物推定
手段は調理物を推定する。調理度合推定手段は調理物推
定手段からの推定調理物情報と環境物理量情報と電圧レ
ベル情報をもとに調理度合を推定し、制御手段は調理度
合推定手段の出力に基づき調理手段を制御する。
According to a fourth aspect of the present invention, there is provided a cooking means for cooking food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and a commercial power supply. Voltage level detecting means for detecting a voltage level of a voltage; cooking product estimating means for estimating the food based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the voltage level detecting means;
By inputting the output of the cooked food estimating unit, the output of the environmental physical quantity estimating unit, and the output of the voltage level detecting unit to the cooked food estimating unit every moment, the cooked food estimating unit estimates the cooked food. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information, environmental physical quantity information and voltage level information from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means.

【0019】また第5の解決手段により、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、前記調理物の固有物理量を検出す
る固有物理量検出手段と、前記環境物理量検出手段の出
力と前記固有物理量検出手段との出力を、時々刻々、調
理物推定手段に入力することにより、調理物推定手段は
調理物を推定する。調理度合推定手段は調理物推定手段
からの推定調理物情報と環境物理量情報と固有物理量情
報をもとに調理度合を推定し、制御手段は調理度合推定
手段の出力に基づき調理手段を制御する。
According to a fifth aspect of the present invention, there is provided a cooking means for cooking a food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, By inputting the output of the environmental physical quantity detecting means and the output of the unique physical quantity detecting means to the food estimating means every moment, the food estimating means estimates the food. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information, the environmental physical quantity information, and the unique physical quantity information from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means.

【0020】また第6の解決手段により、調理物を調理
する調理手段と、調理物周辺の環境物理量を検出する環
境物理量検出手段と、前記調理物の固有物理量を検出す
る固有物理量検出手段と、商用電源電圧の電圧レベルを
検出する電圧レベル検出手段と、前記環境物理量検出手
段の出力と前記固有物理量検出手段の出力および前記電
圧レベル検出手段の出力を、時々刻々、調理物推定手段
に入力することにより、調理物推定手段は調理物を推定
する。調理度合推定手段は調理物推定手段からの推定調
理物情報と環境物理量情報と固有物理量情報と電圧レベ
ル情報をもとに調理度合を推定し、制御手段は調理度合
推定手段の出力に基づき調理手段を制御する。
According to a sixth aspect of the present invention, there is provided a cooking means for cooking a food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, Voltage level detecting means for detecting the voltage level of the commercial power supply voltage, and outputs of the environmental physical quantity detecting means, outputs of the unique physical quantity detecting means, and outputs of the voltage level detecting means are input to the food estimating means every moment. Thereby, the food estimating means estimates the food. The cooking degree estimating means estimates the cooking degree based on the estimated cooked food information, the environmental physical quantity information, the unique physical quantity information and the voltage level information from the cooked food estimating means, and the control means estimates the cooking degree based on the output of the cooking degree estimating means. Control.

【0021】また第7の解決手段により、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記調理物の固有物理量を検出する固有物理
量検出手段と、前記皿位置検出手段の出力と前記環境物
理量検出手段の出力と前記固有物理量検出手段との出力
を、時々刻々、調理物推定手段に入力することにより、
調理物推定手段は調理物を推定する。調理度合推定手段
は調理物推定手段からの推定調理物情報と環境物理量情
報と固有物理量情報をもとに調理度合を推定し、制御手
段は調理度合推定手段の出力に基づき調理手段を制御す
る。
According to a seventh aspect of the present invention, there is provided a cooking means for cooking food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and the cooking means. A unique physical quantity detecting means for detecting a unique physical quantity of an object, and an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the unique physical quantity detecting means are input to the food estimating means every moment. By
The cooking estimating means estimates the cooking. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information, the environmental physical quantity information, and the unique physical quantity information from the cooking estimating means, and the control means controls the cooking means based on the output of the cooking degree estimating means.

【0022】また第8の解決手段により、調理物を調理
する調理手段と、調理皿の位置を検出する皿位置検出手
段と、調理物周辺の環境物理量を検出する環境物理量検
出手段と、前記調理物の固有物理量を検出する固有物理
量検出手段と、商用電源電圧の電圧レベルを検出する電
圧レベル検出手段と、前記皿位置検出手段の出力と前記
環境物理量検出手段の出力と前記固有物理量検出手段の
出力および前記電圧レベル検出手段の出力を、時々刻
々、調理物推定手段に入力することにより、調理物推定
手段は調理物を推定する。調理度合推定手段は調理物推
定手段からの推定調理物情報と環境物理量情報と固有物
理量情報と電圧レベル情報をもとに調理度合を推定し、
制御手段は調理度合推定手段の出力に基づき調理手段を
制御する。
According to an eighth aspect of the present invention, there is provided a cooking means for cooking a food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, An intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of an object, a voltage level detecting means for detecting a voltage level of a commercial power supply voltage, an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the intrinsic physical quantity detecting means. By inputting the output and the output of the voltage level detecting means to the food estimating means every moment, the food estimating means estimates the food. The cooking degree estimating means estimates the cooking degree based on the estimated cooking information, the environmental physical quantity information, the specific physical quantity information, and the voltage level information from the cooking estimating means,
The control means controls the cooking means based on the output of the cooking degree estimating means.

【0023】また第9の解決手段により、調理物推定手
段と調理度合推定手段を構成する神経回路網模式手段
は、調理される環境下で既に学習された結合重み係数を
備えており、調理物と調理中の調理度合を推定すること
ができる。
Further, according to the ninth solution means, the neural network schematic means constituting the cooked food estimating means and the cooking degree estimating means has the connection weight coefficient already learned in the environment in which the cooked food is cooked. And the degree of cooking during cooking can be estimated.

【0024】また第10の解決手段により、調理物推定
手段と調理度合推定手段を構成する神経回路網模式手段
は、複数の神経素子が多層組み合わされて構築されてい
るので、緒理物と調理度合の推定をより正確に行なうこ
とができる。
Further, according to the tenth solution means, the neural network schematic means constituting the cooked food estimating means and the cooking degree estimating means is constructed by combining a plurality of neural elements in multiple layers. The degree can be estimated more accurately.

【0025】[0025]

【実施例】以下、本発明の一実施例を図1から図3を参
照しながら説明する。なお、従来例と同じ構成のものは
同一符号を付して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. The same components as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.

【0026】(実施例1)本実施例では、調理器具とし
て電子オーブンレンジに応用した例について説明する。
図1に示すように、環境物理量検出手段6は調理室内の
環境を検出する。本実施例では、調理室内の絶対湿度の
検出と調理室3内の温度と調理室内のガス量を検出する
ものであり、湿度センサ6a、サーミスタ6bおよびガ
スセンサ6cとより構成されている。本実施例で用いた
ガスセンサ6cは、半導体で構成されており、調理加熱
中にでる臭い分子の半導体表面にもたらす変化でガス量
を検出するものである。計時手段7は調理開始時からの
時間をカウントする。調理物推定手段8は環境物理量検
出手段6、計時手段7の出力に基づき調理物が何である
のかをを推定するものである。また調理度合推定手段9
は調理物推定手段8と環境物理量検出手段6の出力に基
づき調理度合を推定していく。制御手段5は調理度合推
定手段9の出力に基づき調理手段3を制御する。調理手
段3は、本実施例では、マイクロ波供給手段3aと、ヒ
ーター3bからなり調理室2に配設されている。さら
に、10、11、12はA/D変換手段であり環境物理
量検出手段6の湿度センサ6aとサーミスタ6bとガス
センサ6cの出力をディジタル値に変換している。図9
は、操作手段13のキー構成を示した構成図である。
(Embodiment 1) In this embodiment, an example in which the present invention is applied to an electronic microwave oven as a cooking appliance will be described.
As shown in FIG. 1, the environmental physical quantity detection means 6 detects the environment in the cooking room. In the present embodiment, the absolute humidity in the cooking chamber is detected, the temperature in the cooking chamber 3 and the gas amount in the cooking chamber are detected, and includes a humidity sensor 6a, a thermistor 6b, and a gas sensor 6c. The gas sensor 6c used in the present embodiment is made of a semiconductor, and detects the amount of gas by a change in odor molecules generated during cooking and heating on the semiconductor surface. The timer 7 counts the time from the start of cooking. The food estimating means 8 is for estimating what the food is based on the outputs of the environmental physical quantity detecting means 6 and the timing means 7. Cooking degree estimating means 9
Estimates the degree of cooking based on the outputs of the food estimating means 8 and the environmental physical quantity detecting means 6. The control means 5 controls the cooking means 3 based on the output of the cooking degree estimating means 9. In the present embodiment, the cooking means 3 includes a microwave supply means 3a and a heater 3b, and is disposed in the cooking chamber 2. A / D converters 10, 11, and 12 convert the outputs of the humidity sensor 6a, thermistor 6b, and gas sensor 6c of the environmental physical quantity detector 6 into digital values. FIG.
FIG. 2 is a configuration diagram showing a key configuration of the operation unit 13.

【0027】調理物推定手段8と調理度合推定手段9を
構成する手段は、従来の制御手法に用いられている解決
的な方法が適用できないため、多次元情報処理手法とし
て最適な神経回路網を模した方法で構成している。神経
回路網を模した手法においては、調理物を推定する神経
回路網の複数の結合重み係数を固定されたテ−ブルとし
て用いる方法と、学習機能を残し環境と使用者に適応で
きるようにする方法とがある。本実施例は、神経回路網
を模した手法によって得られ、調理物を推定する複数の
固定された結合重み係数を内部にもつ神経回路網模式手
段を有する調理物推定手段8と、同様にして得られた調
理度合推定手段9を設けている。
The means constituting the cooked food estimating means 8 and the cooking degree estimating means 9 cannot be applied to the solution method used in the conventional control method. It is configured in a simulated way. In a method simulating a neural network, a method of using a plurality of connection weight coefficients of a neural network for estimating a food as a fixed table, and a method of leaving a learning function to be adaptable to an environment and a user. There is a way. This embodiment is obtained by a method simulating a neural network, and is the same as the cooked food estimating unit 8 having a neural network model unit having a plurality of fixed connection weight coefficients for estimating the cooked food therein. The obtained cooking degree estimating means 9 is provided.

【0028】調理物によって、調理開始にともなう時々
刻々の調理室2内の温度、又調理物から発生する蒸気に
よる調理室2内の湿度変化が異なる。
The temperature in the cooking chamber 2 at the moment of the start of cooking and the change in humidity in the cooking chamber 2 due to steam generated from the cooking substance differ depending on the food.

【0029】調理物を推定する神経回路網において固定
された結合重み係数は、実際に自動調理の対象となる調
理物を調理した場合、調理室2内の温度と調理室2内の
絶対湿度がどのように変化するかというデ−タを収集
し、調理物と調理室2内の絶対湿度デ−タと調理室2内
の温度デ−タとの相関を神経回路網模式手段に学習させ
ることによって得ることができる。調理度合を推定する
神経回路網も同様に神経回路網模式手段に学習させるこ
とにより得ることができる。用いるべき神経回路網模式
手段としては、文献1(D.E.ラメルハ−ト他2名
著、甘利俊一監訳「PDPモデル」(株)産業図書、1
989年)、文献2(中野馨他7名著「ニュ−ロコンピ
ュ−タの基礎」(株)コロナ社刊、P102、1990
年)、特公昭63−55106号公報などに示されたも
のがある。以下、文献1に記載された最もよく知られた
学習アルゴリズムとして誤差逆伝搬法を用いた多層パ−
セプトロンを例にとり、具体的な神経回路網模式手段の
構成および動作について説明する。
The fixed connection weighting factor in the neural network for estimating the food is such that when the food to be automatically cooked is actually cooked, the temperature in the cooking chamber 2 and the absolute humidity in the cooking chamber 2 are calculated. Collecting data on how it changes and letting the neural network model learn the correlation between the cooked food, the absolute humidity data in the cooking chamber 2 and the temperature data in the cooking chamber 2 Can be obtained by Similarly, the neural network for estimating the degree of cooking can be obtained by learning the neural network model. The neural network model to be used is described in Document 1 (DE Ramelhart et al., 2 authors, edited by Shunichi Amari, "PDP Model", Sangyo Tosho, 1st Edition).
989), Reference 2 (Kaoru Nakano et al., "Basics of Neurocomputers", published by Corona Co., Ltd., P102, 1990
And Japanese Patent Publication No. 63-55106. Hereinafter, a multi-layer parsing using an error backpropagation method as the most well-known learning algorithm described in Document 1 will be described.
The configuration and operation of a specific neural network model will be described using a Septron as an example.

【0030】図10は、神経回路網模式手段の構成単位
となる神経素子の概念図である。図10において、21
〜2Nは神経のシナプス結合を模擬する疑似シナプス結
合変換器であり、2aは疑似シナプス結合変換器21〜
2Nからの出力を加算する加算器であり、2bは設定さ
れた非線形関数、たとえば、しきい値をhとするシグモ
イド関数、 f(y,h)=1/(1+exp(−y+h)) (式1) によって加算器2aの出力を非線形変換する非線形変換
器である。なお、図面が煩雑になるので省略したが、修
正手段からの修正信号を受ける入力線が疑似シナプス結
合変換器21〜2Nと非線形変換器2bにつながってい
る。また、疑似シナプス結合変換器21〜2Nが神経回
路網模式手段の結合重み係数となる。この神経素子に
は、信号処理モ−ドと学習モ−ドの2つの種類の動作モ
−ドがある。
FIG. 10 is a conceptual diagram of a neural element which is a constituent unit of the neural network model. In FIG. 10, 21
2N are pseudo-synaptic connection converters that simulate nerve synaptic connections, and 2a is a pseudo-synaptic connection converter 21-
An adder for adding the output from 2N, 2b is a set nonlinear function, for example, a sigmoid function with a threshold value h, f (y, h) = 1 / (1 + exp (-y + h)) 1) is a non-linear converter for non-linearly converting the output of the adder 2a. Although not shown for simplicity of the drawing, an input line for receiving a correction signal from the correction means is connected to the pseudo-synaptic coupling converters 21 to 2N and the nonlinear converter 2b. Further, the pseudo synapse connection converters 21 to 2N serve as connection weight coefficients of the neural network model. This neural element has two types of operation modes, a signal processing mode and a learning mode.

【0031】以下、図10に基づいて神経素子のそれぞ
れのモ−ドの動作について説明する。まず、信号処理モ
−ドの動作の説明をする。神経素子はN個の入力X1〜
Xnを受けて1つの出力を出す。i番目の入力信号Xi
は、四角で示されたi番目の疑似シナプス結合変換器2
iにおいてWi・Xiに変換される。疑似シナプス結合
変換器21〜2Nで変換されたN個の信号W1・X1〜
Wn・Xnは加算器2aに入り、加算結果yが非線形変
換器2bに送られ、最終出力f(y,h)となる。
Hereinafter, the operation of each mode of the neural element will be described with reference to FIG. First, the operation of the signal processing mode will be described. The neural element has N inputs X1 to X1.
Receives Xn and produces one output. i-th input signal Xi
Is the i-th pseudo-synaptic coupling converter 2 indicated by a square.
In i, it is converted to Wi · Xi. N signals W1.X1 to N1 converted by the pseudo-synaptic coupling converters 21 to 2N
Wn · Xn enters the adder 2a, and the addition result y is sent to the non-linear converter 2b, and becomes the final output f (y, h).

【0032】つぎに、学習モ−ドの動作について説明す
る。学習モ−ドでは、疑似シナプス結合変換器21〜2
Nと非線形変換器2bの変換パラメ−タW1〜Wnとh
を、修正手段からの変換パラメ−タの修正量△W1〜△
Wnと△hを表す修正信号を受けて、 Wi+△Wi ; i=1,2,・・ ,N h+△h (式2) と修正する。
Next, the operation of the learning mode will be described. In the learning mode, the pseudo synapse connection converters 21 to 2
N and the conversion parameters W1 to Wn and h of the nonlinear converter 2b.
To the correction amount {W1} of the conversion parameter from the correction means.
Receiving the correction signals representing Wn and Δh, Wi + ΔWi; i = 1, 2,..., Nh + Δh (Expression 2).

【0033】図11は上記神経素子を4つ並列につない
で構成した信号変換手段の概念図である。いうまでもな
く、以下の説明は、この信号変換手段を構成する神経素
子の個数を4個に特定するものではない。図11におい
て、211〜244は疑似シナプス結合変換器であり、
201〜204は、図10で説明した加算器2aと非線
形変換器2bをまとめた加算非線形変換器である。図1
1において、図10と同様に図面が煩雑になるので省略
したが、修正手段からの修正信号を受ける入力線が疑似
シナプス結合変換器211〜244と加算非線形変換器
201〜204につながっている。疑似シナプス結合変
換器211〜244も結合重み係数となる。この信号変
換手段の動作については、図10で説明した神経素子の
動作が並列してなされるものである。
FIG. 11 is a conceptual diagram of a signal converting means constituted by connecting four of the above neural elements in parallel. Needless to say, the following description does not specify the number of neural elements constituting the signal conversion means as four. In FIG. 11, reference numerals 211 to 244 denote pseudo-synaptic coupling converters,
Numerals 201 to 204 denote addition nonlinear converters which combine the adder 2a and the nonlinear converter 2b described in FIG. FIG.
In FIG. 1, the input line for receiving the correction signal from the correction means is connected to the pseudo-synaptic coupling converters 211 to 244 and the addition non-linear converters 201 to 204, although the drawing becomes complicated as in FIG. The pseudo synapse connection converters 211 to 244 also become connection weight coefficients. As for the operation of this signal conversion means, the operation of the neural element described in FIG. 10 is performed in parallel.

【0034】図12は、学習アルゴリズムとして誤差逆
伝搬法を採用した場合の信号処理手段の構成を示したブ
ロック図で、31は上述の信号変換手段である。ただ
し、ここではN個の入力を受ける神経素子がM個並列に
並べられたものである。32は学習モ−ドにおける信号
変換手段31の修正量を算出する修正手段である。以
下、図12に基づいて信号処理手段の学習を行う場合の
動作について説明する。信号変換手段31はN個の入力
in(X)を受け、M個の出力Sout(X)を出力す
る。修正手段32は、入力信号Sin(X)と出力信号S
out(X)とを受け、誤差計算手段または後段の信号変
換手段からのM個の誤差信号δi(X)の入力があるま
で待機する。誤差信号δi(X)が入力され修正量を △Wij=δi(X)・Siout(X)・(1−Siout(X))・Sjin(X) (i=1〜N,j=1〜M) (式3) と計算し、修正信号を信号変換手段31に送る。信号変
換手段31は、内部の神経素子の変換パラメ−タを上で
説明した学習モ−ドにしたがって修正する。
FIG. 12 is a block diagram showing the structure of the signal processing means when the error backpropagation method is adopted as the learning algorithm. Reference numeral 31 denotes the above-described signal conversion means. However, here, M neural elements receiving N inputs are arranged in parallel. Numeral 32 denotes a correction means for calculating the correction amount of the signal conversion means 31 in the learning mode. Hereinafter, the operation in the case of learning the signal processing means will be described with reference to FIG. The signal converting means 31 receives N inputs S in (X) and outputs M outputs S out (X). The correction means 32 includes an input signal S in (X) and an output signal S
out (X), and waits until M error signals δ i (X) are input from the error calculation means or the signal conversion means at the subsequent stage. The error signal δ i (X) is input and the correction amount is represented by ΔW ij = δ i (X) · S iout (X) · (1−S iout (X)) · S jin (X) (i = 1 to N , J = 1 to M) (Equation 3), and sends the correction signal to the signal conversion means 31. The signal conversion means 31 corrects the conversion parameters of the internal neural elements according to the learning mode described above.

【0035】図13は、神経回路網模式手段を用いた多
層パ−セプトロンの構成を示すブロック図であり、31
X、31Y、31ZはそれぞれK個、L個、M個の神経
素子からなる信号変換手段であり、32X、32Y、3
2Zは修正手段であり、33は誤差計算手段である。以
上のように構成された多層パ−セプトロンについて、図
13を参照しながらその動作を説明する。信号処理手段
34Xにおいて、信号変換手段31Xは、入力S
iin(X)(i=1〜N)を受け、出力Sjout(X)
(j=1〜K)を出力する。修正手段32Xは、信号S
iin(X)と信号Sjout(X)を受け、誤差信号δ
j(X)(j=1〜K)が入力されるまで待機する。以
下同様の処理が、信号処理手段34Y、34Zにおいて
行われ、信号変換手段31Zより最終出力Shout(Z)
(h=1〜M)が出力される。最終出力Shout(Z)
は、誤差計算手段33にも送られる。誤差計算手段33
においては、2乗誤差の評価関数COST(式4)に基
づいて理想的な出力T(T1 ,・・・・・,TM )との
誤差が計算され、誤差信号δh(Z)が修正手段32Z
に送られる。
FIG. 13 is a block diagram showing the configuration of a multilayer perceptron using a neural network model.
X, 31Y, and 31Z are signal conversion means composed of K, L, and M neural elements, respectively.
2Z is a correction means, and 33 is an error calculation means. The operation of the multilayer perceptron configured as described above will be described with reference to FIG. In the signal processing unit 34X, the signal conversion unit 31X
iin (X) (i = 1 to N) and output Sjout (X)
(J = 1 to K) is output. The correction means 32X outputs the signal S
iin (X) and the signal Sjout (X), and the error signal δ
Wait until j (X) (j = 1 to K) is input. Hereinafter, similar processing is performed in the signal processing units 34Y and 34Z, and the final output S hout (Z) is output from the signal conversion unit 31Z.
(H = 1 to M) are output. Final output S hout (Z)
Is also sent to the error calculation means 33. Error calculation means 33
, An error from the ideal output T (T1,..., TM) is calculated based on the square error evaluation function COST (Equation 4), and the error signal δ h (Z) is corrected. 32Z
Sent to

【0036】[0036]

【数1】 (Equation 1)

【0037】ただし、ηは多層パ−セプトロンの学習速
度を定めるパラメ−タである。つぎに、評価関数を2乗
誤差とした場合には誤差信号は、 δh(Z)=−η・(Shout(Z)−Th) (式5) となる。修正手段32Zは、上で説明した手続きにした
がって、信号変換手段31Zの変換パラメ−タの修正量
△W(Z)を計算し、修正手段32Yに送る誤差信号を
(式6)に基づき計算し、修正信号△W(Z)を信号変
換手段31Zに送り、誤差信号δ(Y)を修正手段32
Yに送る。信号変換手段31Zは、修正信号△W(Z)
に基づいて内部のパラメ−タを修正する。なお、誤差信
号δ(Y)は(式6)で与えられる。
Where η is a parameter that determines the learning speed of the multilayer perceptron. Next, when the evaluation function is a square error, the error signal is δh (Z) = − η · (S hout (Z) −T h ) (Equation 5). The correction means 32Z calculates the correction amount △ W (Z) of the conversion parameter of the signal conversion means 31Z according to the procedure described above, and calculates the error signal to be sent to the correction means 32Y based on (Equation 6). , The correction signal △ W (Z) to the signal conversion means 31Z, and the error signal δ (Y) to the correction means 32Z.
Send to Y The signal conversion means 31Z outputs the correction signal △ W (Z)
Modify the internal parameters based on. Note that the error signal δ (Y) is given by (Equation 6).

【0038】[0038]

【数2】 (Equation 2)

【0039】ここで、Wij(Z)は信号変換手段31Z
の疑似シナプス結合変換器の変換パラメ−タである。以
下、同様の処理が信号処理手段34X、34Yにおいて
行われる。学習と呼ばれる以上の手続きを繰り返し行う
ことにより、多層パ−セプトロンは入力が与えられると
理想出力Tをよく近似する出力を出すようになる。な
お、上記の説明においては、3段の多層パ−セプトロン
を用いたが、これは何段であってもよい。また、文献1
にある信号変換手段のなかの非線形変換手段の変換パラ
メ−タhの修正法についてと慣性項として知られる学習
高速化の方法については、説明の簡略化のため省略した
が、この省略は以下に述べる本発明を拘束するものでは
ない。
Here, W ij (Z) is the signal conversion means 31Z.
Are the conversion parameters of the pseudo-synaptic coupling converter. Hereinafter, similar processing is performed in the signal processing units 34X and 34Y. By repeatedly performing the above procedure called learning, the multilayer perceptron, when given an input, produces an output that approximates the ideal output T well. In the above description, a three-stage multilayer perceptron is used, but the number of stages may be any. Reference 1
The method for correcting the conversion parameter h of the non-linear conversion means in the signal conversion means and the method for increasing the learning speed, which is known as the inertia term, are omitted for simplicity of description. It does not limit the invention described.

【0040】こうして、神経回路網模式手段は、実際に
自動調理の対象となる調理物と、その調理物を調理した
場合、調理室2内の温度と調理室2内の絶対湿度と調理
室2内のガス量がどのように変化するかというデ−タを
収集し、調理物と調理室2内の絶対湿度デ−タと温度デ
−タとガス量データとの関係を学習し、簡単なル−ルで
記述することが容易でない調理物の推定と調理度合の推
定の仕方を自然な形で表現することができる。但し、調
理度合の学習時には調理開始からの経過時間も学習させ
ている。本実施例は、こうして得られた情報を組み込ん
で、調理物推定手段8と調理度合推定手段9を構成する
ものである。具体的には、十分学習を終えた後の多層パ
−セプトロンの信号変換手段31X、31Y、31Zの
みを神経回路網模式手段として用いて、調理物推定手段
8と調理度合推定手段9を構成する。
As described above, the neural network model means is used to determine the actual food to be automatically cooked and, when the food is cooked, the temperature in the cooking chamber 2, the absolute humidity in the cooking chamber 2, and the cooking chamber 2. It collects data on how the gas amount in the cooking chamber changes, learns the relationship between the cooking product, the absolute humidity data in the cooking chamber 2, the temperature data, and the gas amount data, It is possible to express in a natural manner a method of estimating a cooking item and a cooking degree that are not easy to describe in a rule. However, when learning the cooking degree, the elapsed time from the start of cooking is also learned. In the present embodiment, the information obtained in this way is incorporated into the cooking product estimating means 8 and the cooking degree estimating means 9. Specifically, the cooked food estimating means 8 and the cooking degree estimating means 9 are constituted by using only the signal converting means 31X, 31Y and 31Z of the multi-layer perceptron after the learning is sufficiently completed as the neural network schematic means. .

【0041】実際に学習させたデ−タについて説明す
る。図14は、”パイ”をオーブン調理した時の環境物
理量検出手段8の出力電圧の変化を示している。図14
(a)は調理室内の湿度の変化を示し、図14(b)は
調理室内の温度変化を示し、図14(c)は調理室内の
ガス量変化を示し、図14(d)は調理度合を示してい
る。図15は”スポンジケーキ”、図16は”ハンバー
グ”、図17は”グラタン”を、それぞれオーブン調理
した時の環境物理量検出手段6の出力電圧の変化と調理
度合を示している。図15(a)、図16(a)および
図17(a)は図14(a)と同様に調理室内の湿度の
変化を示し、図15(b)、図16(b)および図17
(b)は調理室内の温度変化を示し、図15(c)、図
16(c)および図17(c)は調理室内のガス量変化
を示し、図15(d)、図16(d)および図17
(d)は調理度合を調理未終了と調理終了の2値状態で
示している。
Next, the data actually learned will be described. FIG. 14 shows a change in the output voltage of the environmental physical quantity detection means 8 when the “pie” is cooked in the oven. FIG.
14A illustrates a change in humidity in the cooking chamber, FIG. 14B illustrates a change in temperature in the cooking chamber, FIG. 14C illustrates a change in gas amount in the cooking chamber, and FIG. Is shown. FIG. 15 shows the change of the output voltage of the environmental physical quantity detection means 6 and the degree of cooking when “sponge cake”, FIG. 16 shows “hamburger”, and FIG. FIGS. 15 (a), 16 (a) and 17 (a) show changes in the humidity in the cooking chamber similarly to FIG. 14 (a), and FIGS. 15 (b), 16 (b) and 17
(B) shows the temperature change in the cooking chamber, and FIGS. 15 (c), 16 (c) and 17 (c) show the gas amount changes in the cooking chamber, and FIGS. 15 (d) and 16 (d). And FIG.
(D) shows the cooking degree in a binary state of cooking not completed and cooking completed.

【0042】図14、図15から”パイ”と”スポンジ
ケーキ”では調理室内の温度変化は、それほど変わらな
いが、明かにガスの出方と調理室内の湿度変化が異なっ
ている。又、図16、図17から”ハンバーグ”と”グ
ラタン”においても、ガス量の変化が異なっている。自
動調理の対象となる調理メニューすべてについて実験を
しデータを採取した。そして、その実験デ−タを神経回
路網模式手段に入力し学習をさせた。
FIGS. 14 and 15 show that the temperature change in the cooking chamber of the "pie" and the "sponge cake" does not change so much, but the gas emission and the humidity change in the cooking chamber are clearly different. Also, from FIGS. 16 and 17, the change in the gas amount is different between “hamburg” and “gratin”. Experiments were performed on all cooking menus to be automatically cooked, and data were collected. Then, the experimental data was input to the neural network model means for learning.

【0043】つまり、神経回路網模式手段へは環境物理
量手段6の調理室内の絶対湿度情報と、温度情報と、ガ
ス量情報の3つの入力情報と、理想出力として調理物の
メニューを入力し学習させ、神経回路網模式手段の中の
信号変換手段31X、31Y、31Zを確立し、それら
を神経回路網模式手段として調理物推定手段8に組み込
んでいる。また調理度合推定手段9の神経回路網模式手
段へも同様に環境物理量手段6の調理室内の絶対湿度情
報と、温度情報と、ガス量情報と調理物推定情報および
調理開始時からの経過時間情報の5入力情報と、理想出
力として調理物の調理度合を入力し学習させ、神経回路
網模式手段の中の信号変換手段31X、31Y、31Z
を確立し、それらを神経回路網模式手段として調理度合
推定手段9に組み込んでいる。
That is, the neural network network model means learns by inputting the absolute humidity information in the cooking chamber of the environmental physical quantity means 6, the temperature information, the gas quantity information, and the menu of the food as ideal output. Then, the signal conversion means 31X, 31Y, 31Z in the neural network schematic means are established, and they are incorporated in the food estimating means 8 as the neural network schematic means. Similarly, the absolute humidity information, the temperature information, the gas amount information, the cooked food estimation information, and the elapsed time information from the start of cooking for the environmental physical quantity means 6 are also sent to the neural network model means of the cooking degree estimation means 9. And learning the degree of cooking of the food as an ideal output, and the signal conversion means 31X, 31Y, 31Z in the neural network model means.
Are incorporated in the cooking degree estimating means 9 as a neural network model means.

【0044】つぎに、図1に示した構成ブロック図に基
づき動作を説明する。まず、調理物を調理室2に入れ
る。本実施例では、対象となる自動オーブン調理メニュ
ーとして、12種類を考慮している。操作手段13のオ
ーブン調理キー13aによりオーブン調理モードを選択
する。そして調理キー13bにより調理が開始される。
制御手段5は、調理手段7を駆動すべく加熱開始信号を
出力する。そして調理室内の環境物理情報は環境物理量
検出手段6の出力がA/D変換手段10、11、12で
ディジタル変換され、時々刻々調理物推定手段8と調理
度合推定手段9に入力されている。調理物推定手段8
は、これらの入力された信号・情報をもとに調理物が何
であるのかを推定し、その情報を制御手段5に出力し、
さらに制御手段5を介して調理度合推定手段9にも出力
している。調理物推定手段8は、調理室内の環境物理量
情報の変化から学習された神経回路網により調理メニュ
ーを推定するように動作する。制御手段5は、この推定
調理物情報で調理メニューが認識できたので、調理度合
推定手段9に調理物が何であるかの推定調理物情報を出
力する。調理度合推定手段9は、推定調理物情報と、環
境物理量情報と計時手段7からの調理開始からの経過時
間情報で推定調理メニューに応じた調理度合を推定して
いく。この調理度合推定手段9の調理度合推定情報は制
御手段5に出力されており、制御手段5はこの調理度合
推定情報で調理手段3を制御し出来上りを認識して調理
手段3を停止させる。
Next, the operation will be described with reference to the block diagram shown in FIG. First, the food is put into the cooking chamber 2. In this embodiment, 12 types of automatic oven cooking menus are considered. The oven cooking mode is selected by the oven cooking key 13a of the operation means 13. Then, cooking is started by the cooking key 13b.
The control means 5 outputs a heating start signal to drive the cooking means 7. The output of the environmental physical quantity detecting means 6 is digitally converted by A / D converting means 10, 11, and 12, and the environmental physical information in the cooking chamber is input to the food estimating means 8 and the cooking degree estimating means 9 every moment. Cooking estimation means 8
Estimates what the food is based on these input signals and information, and outputs the information to the control means 5,
Further, it outputs to the cooking degree estimating means 9 via the control means 5. The cooking estimating means 8 operates to estimate a cooking menu by a neural network learned from a change in environmental physical quantity information in the cooking chamber. Since the cooking menu has been recognized from the estimated cooking information, the control means 5 outputs the estimated cooking information to the cooking degree estimating means 9 as to what the food is. The cooking degree estimating means 9 estimates the cooking degree according to the estimated cooking menu based on the estimated cooked food information, the environmental physical quantity information, and the elapsed time information from the start of cooking from the timing means 7. The cooking degree estimation information of the cooking degree estimation means 9 is output to the control means 5, and the control means 5 controls the cooking means 3 based on the cooking degree estimation information, stops the cooking means 3 upon recognizing the completion.

【0045】以上のように本実施例によれば、実際に自
動調理の対象となる調理メニューについて調理をし、調
理中の時々刻々の調理室内の温度情報と湿度情報とガス
量情報を、既に学習した神経回路網の複数の固定結合重
み係数を有する神経回路網模式手段を組み込んだ調理物
推定手段と調理度合推定手段を備えた構成としているの
で、調理物のメニューが認識でき、各々のメニューにつ
いて最適な調理シーケンスを駆動することができるの
で、従来に比べ、メニュー選択キーの数を集約すること
ができ、使い勝手上大変便利なものとなる。
As described above, according to the present embodiment, cooking is actually performed for a cooking menu to be automatically cooked, and temperature information, humidity information, and gas amount information in the cooking chamber at each moment during cooking are already obtained. Since it has a configuration including a cooking estimating means and a cooking degree estimating means incorporating a neural network model having a plurality of fixed connection weight coefficients of the learned neural network, the menu of the cooking can be recognized, and each menu can be recognized. Since the optimal cooking sequence can be driven, the number of menu selection keys can be reduced as compared with the related art, which is very convenient for usability.

【0046】(実施例2)本実施例では、電子オーブン
レンジに応用した例について説明する。特にオーブン調
理においては、調理手段3として、ヒータを用いるので
商用電源電圧の電圧レベルが調理時に特に影響を与え
る。本実施例の構成は、図2に示すように、実施例1と
同様であるが、商用電源電圧の電圧レベルを検出する電
圧レベル検出手段14を有している点が異なる。この電
圧レベル検出手段14の出力を調理物推定手段8と調理
度合推定手段9に入力することにより、調理物の種類と
調理度合の推定に、より精度をあげることができる。ま
た調理物推定手段8と調理度合推定手段9を構成する神
経回路網模式手段には、実際に自動調理の対象となる調
理物を調理した場合、商用電源電圧とともに調理物周辺
の環境物理量(絶対湿度)がどのように変化するかとい
うデータを収集し、調理物と調理物周辺の環境物理量
(絶対湿度データ)と商用電源電圧レベルとの関係を学
習し、簡単なルールで記述することが容易でない調理物
の推定の仕方を自然な形で表現することができる。本実
施例は、こうして得られた情報を組み込んで、調理物推
定手段8と調理度合推定手段9を構成するものである。
(Embodiment 2) In this embodiment, an example applied to an electronic microwave oven will be described. In particular, in oven cooking, since a heater is used as the cooking means 3, the voltage level of the commercial power supply voltage particularly affects cooking. As shown in FIG. 2, the configuration of the present embodiment is the same as that of the first embodiment, except that a voltage level detecting means 14 for detecting the voltage level of the commercial power supply voltage is provided. By inputting the output of the voltage level detecting means 14 to the food estimating means 8 and the cooking degree estimating means 9, it is possible to more accurately estimate the type of the food and the cooking degree. In addition, when the food to be automatically cooked is actually cooked, the environmental physical quantity (absolute value) around the food is added to the neural network schematic means constituting the food estimation means 8 and the cooking degree estimation means 9 together with the commercial power supply voltage. Data on how humidity (humidity) changes can be collected, and the relationship between the physical quantity of the food and its surroundings (absolute humidity data) and the voltage level of the commercial power supply can be easily learned and described using simple rules. It is possible to express in a natural manner how to estimate a non-cooked food. In the present embodiment, the information obtained in this way is incorporated into the cooking product estimating means 8 and the cooking degree estimating means 9.

【0047】以上のように本実施例によれば、商用電源
電圧レベルは90vから110vぐらいまで変動すると
いわれているが、調理物推定手段を構成する神経回路網
模式手段には、電源電圧が変動しても、環境物理量と商
用電源電圧レベルと調理物の関係をあらかじめ学習させ
た構成としているので、調理物の種類と調理度合を推定
する精度がより向上する。
As described above, according to the present embodiment, it is said that the commercial power supply voltage level fluctuates from about 90 V to about 110 V. However, the power supply voltage fluctuates in the neural network schematic means constituting the cooking estimation means. Even so, since the relationship between the environmental physical quantity, the commercial power supply voltage level, and the cooking is learned in advance, the accuracy of estimating the type of the cooking and the cooking degree is further improved.

【0048】(実施例3)本実施例では、同様に電子オ
ーブンレンジに応用した例について説明する。本実施例
の構成は、図3に示すように、実施例1と同様である
が、調理物を載せる調理皿15の位置を検出する皿位置
検出手段16を設けた点が異なる。皿位置検出手段16
は調理皿15を調理室2内のどの棚17に載せたかを検
出するものであり、本実施例ではマイクロスイッチより
構成されているが、皿位置を検出できるものであれば何
でも良く、本発明を拘束するものではない。調理物推定
手段8は環境物理量検出手段6、計時手段7、皿位置検
出手段14の出力に基づき調理物が何であるのかを推定
するものであり、制御手段5は調理物推定手段8の出力
に基づき調理手段3を制御する。
(Embodiment 3) In this embodiment, an example in which the present invention is similarly applied to an electronic microwave oven will be described. The configuration of the present embodiment is the same as that of the first embodiment, as shown in FIG. 3, except that a dish position detecting means 16 for detecting the position of the cooking dish 15 on which the food is placed is provided. Plate position detecting means 16
Is for detecting on which shelf 17 in the cooking chamber 2 the cooking dish 15 is placed. In the present embodiment, a micro switch is used. It is not binding. The food estimating means 8 is for estimating what the food is based on the outputs of the environmental physical quantity detecting means 6, the timing means 7, and the dish position detecting means 14, and the control means 5 outputs the output of the food estimating means 8 The cooking means 3 is controlled based on the cooking means.

【0049】つぎに、図3に示した構成ブロック図に基
づき動作を説明する。まず、調理物を調理皿15にの
せ、あらかじめ決められた調理室2の棚17にセットす
る。本実施例では、対象となる自動オーブン調理メニュ
ーとして、12種類を考慮しており、”パイ”、”ケー
キ類”であれば、棚位置は下であり、”ハンバー
グ”、”グラタン”であれば、棚位置は上である。操作
手段13のオーブン調理キー13aによりオーブン調理
モードを選択する。そして調理キー13bにより調理が
開始される。制御手段5は、調理手段3を駆動すべく加
熱開始信号を出力する。又、皿位置検出手段14の皿位
置情報は調理皿のセットされた棚位置であり、調理物推
定手段8に入力されている。そして調理室内の環境物理
量情報は環境物理量検出手段6の出力がA/D変換手段
9でディジタル変換され、時々刻々調理物推定手段8と
調理度合推定手段9に入力されている。調理物推定手段
8は、これらの入力された信号・情報をもとに調理物が
何であるのかを推定し、その情報を制御手段5に出力し
ている。そして制御手段5はこの推定調理物情報を調理
度合推定手段9に出力する。調理物推定手段8は、皿位
置検出情報により、調理物をどの調理カテゴリーに含ま
れるメニューなのかを大分類し、調理室内の環境物理量
情報の変化から詳細メニューを推定するように動作す
る。制御手段5は、この推定調理物情報で調理メニュー
が認識できたので、調理度合推定手段9に調理物が何で
あるかの推定調理物情報を出力する。調理度合推定手段
9は、推定調理物情報と、環境物理量情報と計時手段7
からの調理開始からの経過時間情報で推定調理メニュー
に応じた調理度合を推定していく。この調理度合推定手
段9の調理度合推定情報は制御手段5に出力されてお
り、制御手段5はこの調理度合推定情報で調理手段3を
制御し出来上りを認識して調理手段3を停止させる。以
上のように本実施例によれば、実際に自動調理の対象と
なる調理メニューについて調理をし、セットされた調理
皿の棚位置と、調理中の時々刻々の調理室内の温度情報
と湿度情報とガス量情報を、既に学習した複数の固定結
合重み係数を有する神経回路網模式手段を組み込んだ調
理物推定手段を備えた構成としているので、調理メニュ
ーを認識数が大幅に増え、かつ調理度合推定手段を備え
ていることより、そのメニューに対応して最適な調理シ
ーケンスを駆動することができるので、従来に比べ、メ
ニュー選択キーの数を集約することができ、使い勝手上
大変便利なものとなる。また出来上りも向上する。
Next, the operation will be described with reference to the block diagram shown in FIG. First, the food is placed on the cooking dish 15 and set on the shelf 17 of the cooking chamber 2 determined in advance. In the present embodiment, 12 types of automatic oven cooking menus are considered, and if "pie" or "cakes", the shelf position is below and "hamburger" or "gratin" is used. If so, the shelf position is up. The oven cooking mode is selected by the oven cooking key 13a of the operation means 13. Then, cooking is started by the cooking key 13b. The control means 5 outputs a heating start signal to drive the cooking means 3. The dish position information of the dish position detecting means 14 is the position of the shelf on which the cooking dish is set, and is input to the food estimating means 8. The output of the environmental physical quantity detection means 6 is digitally converted by the A / D conversion means 9, and the information of the environmental physical quantity in the cooking chamber is input to the cooked food estimation means 8 and the cooking degree estimation means 9 every moment. The food estimating means 8 estimates what the food is based on these input signals and information, and outputs the information to the control means 5. Then, the control means 5 outputs the estimated cooked food information to the cooking degree estimating means 9. The cooking estimating means 8 operates so as to roughly classify a cooking category into a cooking category based on the dish position detection information, and to estimate a detailed menu from changes in environmental physical quantity information in the cooking chamber. Since the cooking menu has been recognized from the estimated cooking information, the control means 5 outputs the estimated cooking information to the cooking degree estimating means 9 as to what the food is. The cooking degree estimating means 9 includes estimated cooked food information, environmental physical quantity information,
The cooking degree according to the estimated cooking menu is estimated based on the elapsed time information from the start of cooking from. The cooking degree estimation information of the cooking degree estimation means 9 is output to the control means 5, and the control means 5 controls the cooking means 3 based on the cooking degree estimation information, stops the cooking means 3 upon recognizing the completion. As described above, according to the present embodiment, cooking is actually performed for the cooking menu to be automatically cooked, the shelf position of the set cooking dish, and the temperature information and humidity information in the cooking chamber every moment during cooking. And the amount of gas information are provided with cooking object estimating means incorporating neural network model means having a plurality of learned fixed connection weighting factors. By providing the estimating means, it is possible to drive the optimal cooking sequence corresponding to the menu, so that the number of menu selection keys can be reduced compared to the conventional one, and it is very convenient for usability. Become. Also, the finished quality is improved.

【0050】(実施例4)本実施例では、電子オーブン
レンジに応用した例について説明する。構成は図4に示
すように、実施例1による調理物の推定を、より精度を
向上させるために商用電源電圧の電圧レベルを検出する
電圧レベル検出手段14と、調理室2にセットされる調
理皿15の位置を検出する皿位置検出手段16の情報を
調理物推定手段8に入力することにより実現している。
具体的な内容は実施例1、実施例2、および実施例3で
説明したので省略する。効果は、電圧レベル検出手段1
4と皿位置検出手段16を備えているので、調理物の推
定と調理度合推定の精度は実施例2の場合と同様により
向上する。
(Embodiment 4) In this embodiment, an example applied to an electronic microwave oven will be described. As shown in FIG. 4, in order to further improve the accuracy of the estimation of the food according to the first embodiment, the voltage level detecting means 14 for detecting the voltage level of the commercial power supply voltage, and the cooking set in the cooking chamber 2 This is realized by inputting information of the dish position detecting means 16 for detecting the position of the dish 15 to the food estimating means 8.
Specific contents have been described in the first, second, and third embodiments, and a description thereof will not be repeated. The effect is as follows.
4 and the dish position detecting means 16, the accuracy of the estimation of the food and the estimation of the degree of cooking are further improved as in the case of the second embodiment.

【0051】(実施例5)本実施例では、調理器具とし
て、電子レンジに応用した例について説明する。構成を
図5に示す。実施例1とほぼ同様の構成であるが、調理
物固有の物理量を検出する固有物理量検出手段18を設
けた点が異なる。そして調理物推定手段8と調理度合推
定手段9には、調理中に生じる調理物からの環境物理量
だけでなく、調理物固有の物理量をも学習させている。
固有物理量検出手段18は、本実施例では調理物の重量
を検出するものであり、重量センサ等で構成されてい
る。これは、重量を検出できるものであれば良く、本発
明を拘束するものではない。
(Embodiment 5) In this embodiment, an example in which the present invention is applied to a microwave as a cooking appliance will be described. The configuration is shown in FIG. The configuration is almost the same as that of the first embodiment, except that a unique physical quantity detection unit 18 for detecting a physical quantity unique to the food is provided. The cooking estimating means 8 and the cooking degree estimating means 9 are made to learn not only the environmental physical quantity from the cooking that occurs during cooking, but also the physical quantity unique to the cooking.
In the present embodiment, the unique physical quantity detection means 18 detects the weight of the food, and is constituted by a weight sensor or the like. This only needs to be able to detect the weight, and does not restrict the present invention.

【0052】実際に学習させたデ−タについて説明す
る。図18は、”パイ”をオーブン調理した時の環境物
理量検出手段8の出力電圧の変化を示している。図18
(a)は調理室内の湿度の変化を示し、図18(b)は
調理室内の温度変化を示し、図18(c)は調理室内の
ガス量変化を示し、図18(d)は重量量変化を示し、
図18(e)は調理度合を示している。図19は”スポ
ンジケーキ”、図20は”ハンバーグ”、図21は”グ
ラタン”を、それぞれオーブン調理した時の環境物理量
検出手段6の出力電圧の変化と固有物理量検出手段18
の出力電圧と調理度合を示している。図19(a)、図
20(a)および図21(a)は図18(a)と同様に
調理室内の湿度の変化を示し、図19(b)、図20
(b)および図21(b)は調理室内の温度変化を示
し、図19(c)、図20(c)および図21(c)は
調理室内のガス量変化を示し、図19(d)、図20
(d)および図21(d)は調理物の重量変化を示し、
図19(e)、図20(e)および図21(e)は調理
度合を調理未終了と調理終了の2値状態で示している。
図18、図19から”パイ”と”スポンジケーキ”で
は調理室内の温度変化は、それほど変わらないが、明か
にガスの出方と調理室内の湿度変化が異なっている。さ
らに重量変化にも差異がみられる。又、図20、図21
から”ハンバーグ”と”グラタン”においても、ガス量
の変化が異なっており、重量変化も異なる。自動調理の
対象となる調理メニューすべてについて実験をしデータ
を採取した。そして、その実験デ−タを神経回路網模式
手段に入力し学習をさせた。
The data actually learned will be described. FIG. 18 shows a change in the output voltage of the environmental physical quantity detection means 8 when the “pie” is cooked in the oven. FIG.
18A shows a change in humidity in the cooking chamber, FIG. 18B shows a change in temperature in the cooking chamber, FIG. 18C shows a change in gas amount in the cooking chamber, and FIG. Show change,
FIG. 18E shows the degree of cooking. FIG. 19 shows “sponge cake”, FIG. 20 shows “hamburger”, and FIG. 21 shows “gratin”.
5 shows the output voltage and the degree of cooking. FIGS. 19 (a), 20 (a) and 21 (a) show changes in the humidity in the cooking chamber as in FIG. 18 (a).
(B) and FIG. 21 (b) show the temperature change in the cooking chamber, and FIGS. 19 (c), 20 (c) and 21 (c) show the gas amount change in the cooking chamber, and FIG. 19 (d). , FIG.
(D) and FIG. 21 (d) show the change in weight of the food,
FIGS. 19 (e), 20 (e) and 21 (e) show the degree of cooking in a binary state of unfinished cooking and completed cooking.
From FIGS. 18 and 19, the temperature change in the cooking chamber is not so different between “pie” and “sponge cake”, but the outflow of gas and the humidity change in the cooking chamber are clearly different. There is also a difference in weight change. 20 and FIG.
From "hamburg" to "gratin", the change in gas amount is different, and the change in weight is also different. Experiments were performed on all cooking menus to be automatically cooked, and data were collected. Then, the experimental data was input to the neural network model means for learning.

【0053】つまり、神経回路網模式手段へは環境物理
量手段6の調理室内の絶対湿度情報と、温度情報と、ガ
ス量情報および調理物の重量情報の4つの入力情報と、
理想出力として調理物のメニューを入力し学習させ、神
経回路網模式手段の中の信号変換手段31X、31Y、
31Zを確立し、それらを神経回路網模式手段として調
理物推定手段8に組み込んでいる。また調理度合推定手
段9の神経回路網模式手段へも同様に環境物理量手段6
の調理室内の絶対湿度情報と、温度情報と、ガス量情報
と調理物の重量情報と調理物推定情報および調理開始時
からの経過時間情報の6入力情報と、理想出力として調
理物の調理度合を入力し学習させ、神経回路網模式手段
の中の信号変換手段31X、31Y、31Zを確立し、
それらを神経回路網模式手段として調理度合推定手段9
に組み込んでいる。
That is, to the neural network model means, there are four input information of absolute humidity information in the cooking chamber of the environmental physical quantity means 6, temperature information, gas amount information and weight information of the food,
The menu of the food is input and learned as an ideal output, and the signal conversion means 31X, 31Y,
31Z have been established, and they have been incorporated into the food estimation means 8 as a neural network schematic means. Similarly, the environmental physical quantity means 6 is also applied to the neural network model means of the cooking degree estimating means 9.
6 input information of absolute humidity information in the cooking chamber, temperature information, gas amount information, weight information of the cooked food, estimated cooked food information, and elapsed time information from the start of cooking, and the cooking degree of the cooked food as an ideal output. To learn, establish signal conversion means 31X, 31Y, 31Z in the neural network schematic means,
The cooking degree estimating means 9 is used as a neural network model means.
Incorporated in.

【0054】以上のように本実施例によれば、実際に自
動調理の対象となる調理メニューについて調理をし、調
理中の時々刻々の調理室内の温度情報と湿度情報とガス
量情報と調理物の重量情報および調理開始からの経過時
間情報を、既に学習した複数の固定結合重み係数を有す
る神経回路網模式手段を組み込んだ調理物推定手段と調
理度合推定手段を備えた構成としているので、調理物の
メニューが認識でき、かつ各々のメニューについて最適
な調理の出来映えを実現することができ、従来に比べ、
メニュー選択キーの数を集約することができるとともに
調理性能を向上させることができる。
As described above, according to the present embodiment, cooking is actually performed for a cooking menu to be automatically cooked, and temperature information, humidity information, gas amount information, and cooked food in the cooking chamber are constantly being cooked. Since the weight information and the elapsed time information from the start of cooking are provided with a cooking object estimating means and a cooking degree estimating means incorporating a neural network schematic means having a plurality of learned fixed connection weight coefficients, the cooking is performed. The menu of things can be recognized, and the optimal workmanship of each menu can be realized.
The number of menu selection keys can be reduced and cooking performance can be improved.

【0055】(実施例6)本実施例では、電子オーブン
レンジに応用した例について説明する。特にオーブン調
理においては、調理手段3として、ヒータを用いるので
商用電源電圧の電圧レベルが調理時に特に影響を与え
る。本実施例の構成は、図2に示すように、実施例5と
同様であるが、商用電源電圧の電圧レベルを検出する電
圧レベル検出手段14を有している点が異なる。具体的
な内容は、実施例2および実施例5と同様であり、実施
例2および実施例5と同様の効果が得られる。
(Embodiment 6) In this embodiment, an example applied to an electronic microwave oven will be described. In particular, in oven cooking, since a heater is used as the cooking means 3, the voltage level of the commercial power supply voltage particularly affects cooking. As shown in FIG. 2, the configuration of the present embodiment is the same as that of the fifth embodiment, except that a voltage level detecting unit 14 for detecting the voltage level of the commercial power supply voltage is provided. The specific contents are the same as those of the second and fifth embodiments, and the same effects as those of the second and fifth embodiments can be obtained.

【0056】(実施例7)本実施例では、同様に電子オ
ーブンレンジに応用した例について説明する。本実施例
の構成は、図7に示すように、実施例5と同様である
が、調理物を載せる調理皿15の位置を検出する皿位置
検出手段16を設けた点が異なる。具体的な内容は、実
施例3および実施例5と同様であり、実施例3および実
施例5と同様の効果が得られる。
(Embodiment 7) In this embodiment, an example in which the present invention is similarly applied to an electronic microwave oven will be described. As shown in FIG. 7, the configuration of the present embodiment is the same as that of the fifth embodiment, except that a dish position detecting means 16 for detecting the position of the cooking dish 15 on which the food is placed is provided. The specific contents are the same as those of the third and fifth embodiments, and the same effects as those of the third and fifth embodiments can be obtained.

【0057】(実施例8)本実施例では、電子オーブン
レンジに応用した例について説明する。構成は図8に示
すように、実施例5による調理物の推定を、より精度を
向上させるために商用電源電圧の電圧レベルを検出する
電圧レベル検出手段14と、調理室2にセットされる調
理皿15の位置を検出する皿位置検出手段16の情報を
調理物推定手段8に入力することにより実現している。
具体的な内容は実施例1、実施例2、実施例3および実
施例5で説明したので省略する。効果は、電圧レベル検
出手段14と皿位置検出手段16を備えているので、調
理物の推定と調理度合推定の精度は実施例2の場合と同
様により向上する。
(Embodiment 8) In this embodiment, an example applied to an electronic microwave oven will be described. As shown in FIG. 8, in order to further improve the accuracy of the estimation of the food according to the fifth embodiment, the voltage level detecting means 14 for detecting the voltage level of the commercial power supply voltage, and the cooking set in the cooking chamber 2 This is realized by inputting information of the dish position detecting means 16 for detecting the position of the dish 15 to the food estimating means 8.
Specific contents have been described in the first, second, third, and fifth embodiments, and a description thereof will be omitted. The effect is that the voltage level detecting means 14 and the dish position detecting means 16 are provided, so that the accuracy of the estimation of the food and the estimation of the cooking degree are further improved as in the case of the second embodiment.

【0058】以上の実施例では、制御手段5、計時手段
7、調理物推定手段8および調理度合推定手段9は、す
べて4ビットマイクロコンピュータで構成したが、これ
らは1つのマイクロコンピュータで構成することはもち
ろん可能である。なお、調理物推定手段9には環境物理
量情報として温度情報、湿度情報、ガス情報等を適切に
加工して入力し、固有物理量情報として重量情報を加工
して入力しているが、この限定は本発明を拘束するもの
でなく加工方法を変えたり、情報量を増やして推定の精
度を向上させることは可能である。また、環境物理量情
報として上記の以外にも、温度情報、煙情報、調理物か
らでるにおい情報や調理物の色情報などでも適用でき、
また固有物理量情報として上記以外にも調理物の形状、
体積、高さ等の情報も適用できる。また相互に事前に演
算を施し加工した値を入力しても同様の効果が得られ、
複数のセンサを用いれば更に精度が向上する。また、本
実施例では、調理室を持つ電子レンジ、電子オーブンレ
ンジについて説明したが、ガステーブル、電磁調理器な
どの調理室を持たない調理器具にも適用できる。さらに
本実施例では、電子レンジの再加熱機能や、オーブンレ
ンジでのお菓子の調理を説明したが、惣菜やレンジ料理
の煮込み、下ごしらえにも適用できる。
In the embodiment described above, the control means 5, the time keeping means 7, the cooked food estimating means 8 and the cooking degree estimating means 9 are all constituted by 4-bit microcomputers, but these may be constituted by one microcomputer. Is of course possible. In addition, temperature information, humidity information, gas information, and the like are appropriately processed and input as the environmental physical quantity information and the weight information is processed and input as the unique physical quantity information in the cooked food estimating means 9. It is possible to improve the estimation accuracy by changing the processing method without increasing the present invention and increasing the amount of information. Also, in addition to the above as the environmental physical quantity information, temperature information, smoke information, smell information coming out of the food, and color information of the food can also be applied,
In addition, other than the above, the shape of the food,
Information such as volume and height can also be applied. The same effect can be obtained by inputting values processed and processed in advance with each other.
The accuracy is further improved by using a plurality of sensors. Further, in the present embodiment, the microwave oven and the microwave oven having a cooking room have been described. However, the present invention can be applied to a cooking appliance having no cooking room such as a gas table and an electromagnetic cooker. Further, in the present embodiment, the reheating function of the microwave oven and the cooking of sweets in the microwave oven have been described. However, the present invention can also be applied to cooking and preparing prepared dishes and microwave dishes.

【0059】[0059]

【発明の効果】以上の実施例から明らかなように本発明
によれば、調理物を調理する調理手段と、調理物周辺の
環境を検出する環境物理量検出手段と、前記調理物の固
有物理量を検出する調理物固有物理量検出手段と、前記
環境物理量検出手段と前記調理物固有物理量検出手段の
出力に基づき前記調理物を推定する調理物推定手段と、
前記調理物推定手段の出力に基づき前記調理手段を制御
する制御手段とからなるから、調理物の種類を自動的に
認識し、かつその調理物にあった調理の出来上りも認識
するので、操作キーの集約と同時に出来上りも向上す
る。
As is apparent from the above embodiments, according to the present invention, cooking means for cooking food, environmental physical quantity detecting means for detecting the environment around the food, and the intrinsic physical quantity of the food are determined. A cooking-specific physical quantity detecting means for detecting, a cooking-estimating means for estimating the cooking based on outputs of the environmental physical quantity detecting means and the cooking-specific physical quantity detecting means,
Since the control means controls the cooking means based on the output of the food estimating means, the operation keys are used to automatically recognize the type of the food and also recognize the completion of the cooking corresponding to the food. At the same time, the result is improved.

【0060】また調理物を調理する調理手段と、調理物
周辺の環境物理量を検出する環境物理量検出手段と、商
用電源電圧の電圧レベルを検出する電圧レベル検出手段
と、前記環境物理量検出手段、前記電圧レベル検出手段
の出力に基づき前記調理物を推定する調理物推定手段
と、前記調理物推定手段の出力と前記環境物理量推定手
段の出力および前記電圧レベル検出手段の出力に基づき
調理物の調理度合を推定する調理度合推定手段と、前記
調理度合推定手段の出力に基づき前記調理手段を制御す
る制御手段とからなるから、電源電圧の変動が生じて
も、調理物の自動認識と出来上り検出が可能となる。
Further, cooking means for cooking the food, environmental physical quantity detecting means for detecting the environmental physical quantity around the food, voltage level detecting means for detecting the voltage level of the commercial power supply voltage, the environmental physical quantity detecting means, A cooking estimating means for estimating the food based on an output of the voltage level detecting means; a cooking degree of the cooking based on an output of the cooking estimating means, an output of the environmental physical quantity estimating means and an output of the voltage level detecting means; And the control means for controlling the cooking means based on the output of the cooking degree estimating means. Therefore, even if the power supply voltage fluctuates, the automatic recognition of the food and the detection of the finished food are possible. Becomes

【0061】また調理物を調理する調理手段と、調理皿
の位置を検出する皿位置検出手段と、調理物周辺の環境
物理量を検出する環境物理量検出手段と、前記皿位置検
出手段の出力と前記環境物理量検出手段との出力に基づ
き前記調理物を推定する調理物推定手段と、前記調理物
推定手段の出力と前記環境物理量推定手段の出力に基づ
き調理物の調理度合を推定する調理度合推定手段と、前
記調理度合推定手段の出力に基づき前記調理手段を制御
する制御手段とからなるから、調理カテゴリーごとに調
理物が認識できるので、調理物の総認識数が増え自動調
理の対象となるメニューを増やすことができる。
[0061] Further, cooking means for cooking the food, dish position detecting means for detecting the position of the cooking dish, environmental physical quantity detecting means for detecting the environmental physical quantity around the cooked food, and the output of the dish position detecting means. A food estimating means for estimating the food based on the output from the environmental physical quantity detecting means; and a cooking degree estimating means for estimating the cooking degree of the food based on the output of the food estimating means and the output of the environmental physical quantity estimating means. And control means for controlling the cooking means based on the output of the cooking degree estimating means, so that the food can be recognized for each cooking category, so that the total number of recognized foods increases and the menu to be automatically cooked is selected. Can be increased.

【0062】また調理物を調理する調理手段と、調理皿
の位置を検出する皿位置検出手段と、調理物周辺の環境
物理量を検出する環境物理量検出手段と、商用電源電圧
の電圧レベルを検出する電圧レベル検出手段と、前記皿
位置検出手段の出力と前記環境物理量検出手段の出力お
よび前記電圧レベル検出手段の出力に基づき前記調理物
を推定する調理物推定手段と、前記調理物推定手段の出
力と前記環境物理量推定手段の出力および前記電圧レベ
ル検出手段の出力に基づき調理物の調理度合を推定する
調理度合推定手段と、前記調理度合推定手段の出力に基
づき前記調理手段を制御する制御手段とからなるから、
電源電圧が変動しても調理物の種類の自動認識や出来上
り検出が可能となり、さらに調理カテゴリーごとに調理
物が認識できるので、調理物の総認識数が増え自動調理
の対象となるメニューを増やすことができる。
Further, cooking means for cooking the food, dish position detecting means for detecting the position of the cooking dish, environmental physical quantity detecting means for detecting the environmental physical quantity around the food, and detecting the voltage level of the commercial power supply voltage. Voltage level detecting means, cooking estimating means for estimating the food based on the output of the dish position detecting means, the output of the environmental physical quantity detecting means, and the output of the voltage level detecting means, and the output of the cooking estimating means And cooking degree estimating means for estimating the cooking degree of the food based on the output of the environmental physical quantity estimating means and the output of the voltage level detecting means; and control means for controlling the cooking means based on the output of the cooking degree estimating means. Consists of
Even if the power supply voltage fluctuates, it is possible to automatically recognize the type of food and detect the completion of the food, and further, it is possible to recognize the food for each cooking category. be able to.

【0063】また調理物を調理する調理手段と、調理物
周辺の環境物理量を検出する環境物理量検出手段と、前
記調理物の固有物理量を検出する固有物理量検出手段
と、前記環境物理量検出手段の出力と前記固有物理量検
出手段との出力に基づき前記調理物を推定する調理物推
定手段と、前記調理物推定手段の出力と前記環境物理量
推定手段の出力および前記固有物理量検出手段の出力と
に基づき調理物の調理度合を推定する調理度合推定手段
と、前記調理度合推定手段の出力に基づき前記調理手段
を制御する制御手段とからなるから、調理物の種類の自
動認識や出来上り検出の精度が向上する。
A cooking means for cooking the food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, and an output of the environmental physical quantity detecting means Cooking estimating means for estimating the food based on the output of the characteristic physical quantity detecting means; and cooking based on the output of the cooking estimating means, the output of the environmental physical quantity estimating means, and the output of the specific physical quantity detecting means. Since the cooking degree estimating means for estimating the cooking degree of the food and the control means for controlling the cooking means based on the output of the cooking degree estimating means, the accuracy of the automatic recognition of the type of the food and the detection accuracy of the completion are improved. .

【0064】また調理物を調理する調理手段と、調理物
周辺の環境物理量を検出する環境物理量検出手段と、前
記調理物の固有物理量を検出する固有物理量検出手段
と、商用電源電圧の電圧レベルを検出する電圧レベル検
出手段と、前記環境物理量検出手段の出力と前記固有物
理量検出手段の出力および前記電圧レベル検出手段の出
力に基づき前記調理物を推定する調理物推定手段と、前
記調理物推定手段の出力と前記環境物理量推定手段の出
力と前記固有物理量検出手段の出力および前記電圧レベ
ル検出手段の出力に基づき調理物の調理度合を推定する
調理度合推定手段と、前記調理度合推定手段の出力に基
づき前記調理手段を制御する制御手段とからなるから、
電源電圧の変動が生じても、調理物の自動認識と出来上
り検出がより精度よく可能となる。
A cooking means for cooking the food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, and a voltage level of a commercial power supply voltage. Voltage level detecting means for detecting, food estimating means for estimating the food based on the output of the environmental physical quantity detecting means, the output of the unique physical quantity detecting means, and the output of the voltage level detecting means, and the food estimating means The cooking degree estimating means for estimating the cooking degree of the food based on the output of the environmental physical quantity estimating means, the output of the unique physical quantity detecting means and the output of the voltage level detecting means, and the output of the cooking degree estimating means And control means for controlling the cooking means on the basis of
Even if the power supply voltage fluctuates, the automatic recognition of the food and the completion detection can be performed with higher accuracy.

【0065】また調理物を調理する調理手段と、調理皿
の位置を検出する皿位置検出手段と、調理物周辺の環境
物理量を検出する環境物理量検出手段と、前記調理物の
固有物理量を検出する固有物理量検出手段と、前記皿位
置検出手段の出力と前記環境物理量検出手段の出力と前
記固有物理量検出手段との出力に基づき前記調理物を推
定する調理物推定手段と、前記調理物推定手段の出力と
前記環境物理量推定手段の出力および前記固有物理量検
出手段の出力とに基づき調理物の調理度合を推定する調
理度合推定手段と、前記調理度合推定手段の出力に基づ
き前記調理手段を制御する制御手段とからなるから、調
理物の種類の自動認識や出来上り検出の精度が向上す
る。また調理カテゴリーごとに調理物が認識できるの
で、調理物の総認識数が増え自動調理の対象となるメニ
ューを増やすことができる。
Further, cooking means for cooking the food, dish position detecting means for detecting the position of the cooking dish, environmental physical quantity detecting means for detecting the environmental physical quantity around the food, and detecting the intrinsic physical quantity of the food. A unique physical quantity detecting means, a food estimating means for estimating the food based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the unique physical quantity detecting means; and Cooking degree estimating means for estimating the degree of cooking of the food based on the output, the output of the environmental physical quantity estimating means and the output of the unique physical quantity detecting means, and control for controlling the cooking means based on the output of the cooking degree estimating means Therefore, the accuracy of the automatic recognition of the type of food and the accuracy of completion detection are improved. In addition, since the food can be recognized for each cooking category, the total number of recognized foods can be increased and the number of menus to be automatically cooked can be increased.

【0066】また調理物を調理する調理手段と、調理皿
の位置を検出する皿位置検出手段と、調理物周辺の環境
物理量を検出する環境物理量検出手段と、前記調理物の
固有物理量を検出する固有物理量検出手段と、商用電源
電圧の電圧レベルを検出する電圧レベル検出手段と、前
記皿位置検出手段の出力と前記環境物理量検出手段の出
力と前記固有物理量検出手段の出力および前記電圧レベ
ル検出手段の出力に基づき前記調理物を推定する調理物
推定手段と、前記調理物推定手段の出力と前記環境物理
量推定手段の出力と前記固有物理量検出手段の出力およ
び前記電圧レベル検出手段の出力に基づき調理物の調理
度合を推定する調理度合推定手段と、前記調理度合推定
手段の出力に基づき前記調理手段を制御する制御手段と
からなるから、調理物の種類の自動認識や出来上り検出
の精度が向上する。また電源電圧が変動しても調理物の
種類の自動認識や出来上り検出が可能となり、さらに調
理カテゴリーごとに調理物が認識できるので、調理物の
総認識数が増え自動調理の対象となるメニューを増やす
ことができる。
Further, cooking means for cooking the food, dish position detecting means for detecting the position of the cooking dish, environmental physical quantity detecting means for detecting the environmental physical quantity around the food, and detecting the intrinsic physical quantity of the food. Unique physical quantity detection means, voltage level detection means for detecting the voltage level of the commercial power supply voltage, output of the dish position detection means, output of the environmental physical quantity detection means, output of the unique physical quantity detection means, and the voltage level detection means Cooking estimating means for estimating the cooking based on the output of the cooking object; cooking based on the output of the cooking estimating means, the output of the environmental physical quantity estimating means, the output of the unique physical quantity detecting means, and the output of the voltage level detecting means. A cooking degree estimating means for estimating the degree of cooking of the food; and a control means for controlling the cooking means based on an output of the cooking degree estimating means. Type of precision of automatic recognition and ready detection of an object can be improved. In addition, even if the power supply voltage fluctuates, it is possible to automatically recognize the type of food and detect the completion of the food, and since the food can be recognized for each cooking category, the total number of recognized foods increases, and menus that are targeted for automatic cooking are increased. Can be increased.

【0067】また調理物推定手段と調理度合推定手段
は、複数の神経素子より構成される神経回路網をモデル
化し学習によって得られ、調理物の種類および調理度合
を推定する複数の固定された結合重み係数を内部に持つ
神経回路網模式手段を有し、または、複数の神経素子よ
り構成される層が多数組み合わされて構築される階層型
の神経回路網模式手段を有するから、自動調理の対象と
なる学習させた調理メニューについては、調理物の種類
と調理度合の推定ができ自動調理が可能となり、調理メ
ニュー選択の操作が不要な使い勝手の良く、調理性能の
良い調理器具を提供できる。
The food estimating means and the cooking degree estimating means are obtained by learning and modeling a neural network composed of a plurality of neural elements, and are provided with a plurality of fixed connections for estimating the type and cooking degree of the food. Since it has a neural network model having a weight coefficient therein, or has a hierarchical neural network model constructed by combining a plurality of layers composed of a plurality of neural elements, the automatic cooking target With respect to the learned cooking menu, it is possible to estimate the type of the food and the degree of cooking, perform automatic cooking, and provide a convenient cooking device that does not require a cooking menu selection operation and has good cooking performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の調理器具の構成ブロック図FIG. 1 is a block diagram showing the configuration of a cooking appliance according to one embodiment of the present invention.

【図2】本発明の他の実施例の調理器具の構成ブロック
FIG. 2 is a block diagram showing the configuration of a cooking appliance according to another embodiment of the present invention.

【図3】本発明の他の実施例の調理器具の構成ブロック
FIG. 3 is a block diagram showing a configuration of a cooking apparatus according to another embodiment of the present invention.

【図4】本発明の他の実施例の調理器具の構成ブロック
FIG. 4 is a block diagram illustrating a configuration of a cooking apparatus according to another embodiment of the present invention.

【図5】本発明の他の実施例の調理器具の構成ブロック
FIG. 5 is a block diagram showing a configuration of a cooking apparatus according to another embodiment of the present invention.

【図6】本発明の他の実施例の調理器具の構成ブロック
FIG. 6 is a block diagram showing the configuration of a cooking appliance according to another embodiment of the present invention.

【図7】本発明の他の実施例の調理器具の構成ブロック
FIG. 7 is a block diagram showing the configuration of a cooking appliance according to another embodiment of the present invention.

【図8】本発明の他の実施例の調理器具の構成ブロック
FIG. 8 is a block diagram showing the configuration of a cooking apparatus according to another embodiment of the present invention.

【図9】本発明の一実施例の調理器具に用いた操作部の
構成図
FIG. 9 is a configuration diagram of an operation unit used for a cooking appliance according to one embodiment of the present invention.

【図10】同調理器具に用いた神経回路網模式手段の構
成単位となる神経素子の概念図
FIG. 10 is a conceptual diagram of a neural element which is a constituent unit of a neural network model used in the cooking appliance.

【図11】同調理器具に用いた神経素子で構成した信号
変換手段の概念図
FIG. 11 is a conceptual diagram of a signal conversion unit composed of neural elements used in the cooking appliance.

【図12】同調理器具に用いた学習アルゴリズムとして
誤差逆伝搬法を採用した信号処理手段のブロック図
FIG. 12 is a block diagram of a signal processing means employing an error back propagation method as a learning algorithm used in the cooking appliance.

【図13】同調理器具に用いた神経回路網模式手段を用
いた多層パーセプトロンの構成を示すブロック図
FIG. 13 is a block diagram showing a configuration of a multilayer perceptron using a neural network model used in the cooking appliance.

【図14】図1の構成ブロック図に基づく調理器具の実
験データの一例を示す図
FIG. 14 is a diagram showing an example of experimental data of cooking utensils based on the configuration block diagram of FIG. 1;

【図15】同調理器具の実験データの他の例を示す図FIG. 15 is a view showing another example of the experimental data of the cooking appliance.

【図16】同調理器具の実験データの他の例を示す図FIG. 16 is a view showing another example of the experimental data of the cooking appliance.

【図17】同調理器具の実験データの他の例を示す図FIG. 17 is a view showing another example of the experimental data of the cooking appliance.

【図18】図5の構成ブロック図に基づく調理器具の実
験データの一例を示す図
FIG. 18 is a diagram showing an example of experimental data of cooking utensils based on the configuration block diagram of FIG. 5;

【図19】同調理器具の実験データの他の例を示す図FIG. 19 is a view showing another example of the experimental data of the cooking appliance.

【図20】同調理器具の実験データの他の例を示す図FIG. 20 is a view showing another example of the experimental data of the cooking appliance.

【図21】同調理器具の実験データの他の例を示す図FIG. 21 is a view showing another example of the experimental data of the cooking appliance.

【図22】従来の調理器具の構成ブロック図FIG. 22 is a configuration block diagram of a conventional cooking appliance.

【符号の説明】[Explanation of symbols]

1 調理器具 3 調理手段 5 制御手段 6 環境物理量検出手段 8 調理物推定手段 9 調理度合推定手段 14 電圧レベル検出手段 15 調理皿 16 皿位置検出手段 18 固有物理量検出手段 DESCRIPTION OF SYMBOLS 1 Cookware 3 Cooking means 5 Control means 6 Environmental physical quantity detection means 8 Cooking thing estimation means 9 Cooking degree estimation means 14 Voltage level detection means 15 Cooking dish 16 Dish position detection means 18 Unique physical quantity detection means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黄地 謙三 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中 基孫 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (56)参考文献 特開 平4−292714(JP,A) 特開 平4−297723(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24C 7/02 310──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Kenzo Koji 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. No. 1 Matsushita Giken Co., Ltd. (56) References JP-A-4-292714 (JP, A) JP-A-4-297723 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F24C 7/02 310

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】調理物を調理する調理手段と、調理物周辺
の環境物理量を検出する環境物理量検出手段と、前記環
境物理量検出手段の出力に基づき前記調理物を推定する
調理物推定手段と、前記調理物推定手段の出力と前記環
境物理量推定手段の出力に基づき調理物の調理度合を推
定する調理度合推定手段と、前記調理度合推定手段の出
力に基づき前記調理手段を制御する制御手段とからなる
調理器具。
A cooking means for cooking the food; an environmental physical quantity detection means for detecting an environmental physical quantity around the food; a food estimation means for estimating the food based on an output of the environmental physical quantity detection means; A cooking degree estimating means for estimating the cooking degree of the cooking based on an output of the cooking estimating means and an output of the environmental physical quantity estimating means; and a controlling means for controlling the cooking means based on the output of the cooking degree estimating means. Cooking utensils.
【請求項2】調理物を調理する調理手段と、調理物周辺
の環境物理量を検出する環境物理量検出手段と、商用電
源電圧の電圧レベルを検出する電圧レベル検出手段と、
前記環境物理量検出手段、前記電圧レベル検出手段の出
力に基づき前記調理物を推定する調理物推定手段と、前
記調理物推定手段の出力と前記環境物理量推定手段の出
力および前記電圧レベル検出手段の出力に基づき調理物
の調理度合を推定する調理度合推定手段と、前記調理度
合推定手段の出力に基づき前記調理手段を制御する制御
手段とからなる調理器具。
2. Cooking means for cooking a food, environmental physical quantity detecting means for detecting an environmental physical quantity around the food, voltage level detecting means for detecting a voltage level of a commercial power supply voltage,
A food estimating means for estimating the food based on the outputs of the environmental physical quantity detecting means and the voltage level detecting means; an output of the cooking estimating means, an output of the environmental physical quantity estimating means, and an output of the voltage level detecting means; A cooking appliance comprising: cooking degree estimating means for estimating a cooking degree of a food based on the cooking degree; and control means for controlling the cooking means based on an output of the cooking degree estimating means.
【請求項3】調理物を調理する調理手段と、調理皿の位
置を検出する皿位置検出手段と、調理物周辺の環境物理
量を検出する環境物理量検出手段と、前記皿位置検出手
段の出力と前記環境物理量検出手段との出力に基づき前
記調理物を推定する調理物推定手段と、前記調理物推定
手段の出力と前記環境物理量検出手段の出力に基づき調
理物の調理度合を推定する調理度合推定手段と、前記調
理度合推定手段の出力に基づき前記調理手段を制御する
制御手段とからなる調理器具。
A cooking means for cooking the food; a dish position detecting means for detecting a position of the cooking dish; an environmental physical quantity detecting means for detecting an environmental physical quantity around the food; and an output of the dish position detecting means. A cooking estimating means for estimating the food based on an output from the environmental physical quantity detecting means; and a cooking degree estimating means for estimating a cooking degree of the cooking based on an output of the cooking estimating means and an output of the environmental physical quantity detecting means. And a control means for controlling the cooking means based on the output of the cooking degree estimating means.
【請求項4】調理物を調理する調理手段と、調理皿の位
置を検出する皿位置検出手段と、調理物周辺の環境物理
量を検出する環境物理量検出手段と、商用電源電圧の電
圧レベルを検出する電圧レベル検出手段と、前記皿位置
検出手段の出力と前記環境物理量検出手段の出力および
前記電圧レベル検出手段の出力に基づき前記調理物を推
定する調理物推定手段と、前記調理物推定手段の出力と
前記環境物理量推定手段の出力および前記電圧レベル検
出手段の出力に基づき調理物の調理度合を推定する調理
度合推定手段と、前記調理度合推定手段の出力に基づき
前記調理手段を制御する制御手段とからなる調理器具。
4. A cooking means for cooking food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the cooking food, and detecting a voltage level of a commercial power supply voltage. A voltage level detecting means, a food estimating means for estimating the food based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the voltage level detecting means; Cooking degree estimating means for estimating the degree of cooking of the cooking based on the output, the output of the environmental physical quantity estimating means and the output of the voltage level detecting means, and control means for controlling the cooking means based on the output of the cooking degree estimating means Cooking utensils consisting of
【請求項5】調理物を調理する調理手段と、調理物周辺
の環境物理量を検出する環境物理量検出手段と、前記調
理物の固有物理量を検出する固有物理量検出手段と、前
記環境物理量検出手段の出力と前記固有物理量検出手段
との出力に基づき前記調理物を推定する調理物推定手段
と、前記調理物推定手段の出力と前記環境物理量推定手
段の出力および前記固有物理量検出手段の出力とに基づ
き調理物の調理度合を推定する調理度合推定手段と、前
記調理度合推定手段の出力に基づき前記調理手段を制御
する制御手段とからなる調理器具。
5. A cooking means for cooking a food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, and an environmental physical quantity detecting means. A food estimating means for estimating the food based on the output and the output of the unique physical quantity detecting means, based on an output of the cooking estimating means, an output of the environmental physical quantity estimating means, and an output of the unique physical quantity detecting means. A cooking appliance comprising: cooking degree estimating means for estimating a cooking degree of a cook; and control means for controlling the cooking means based on an output of the cooking degree estimating means.
【請求項6】調理物を調理する調理手段と、調理物周辺
の環境物理量を検出する環境物理量検出手段と、前記調
理物の固有物理量を検出する固有物理量検出手段と、商
用電源電圧の電圧レベルを検出する電圧レベル検出手段
と、前記環境物理量検出手段の出力と前記固有物理量検
出手段の出力および前記電圧レベル検出手段の出力に基
づき前記調理物を推定する調理物推定手段と、前記調理
物推定手段の出力と前記環境物理量推定手段の出力と前
記固有物理量検出手段の出力および前記電圧レベル検出
手段の出力に基づき調理物の調理度合を推定する調理度
合推定手段と、前記調理度合推定手段の出力に基づき前
記調理手段を制御する制御手段とからなる調理器具。
6. A cooking means for cooking a food, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, an intrinsic physical quantity detecting means for detecting an intrinsic physical quantity of the food, and a voltage level of a commercial power supply voltage. Voltage level detecting means for detecting the output of the environmental physical quantity detecting means, the output of the unique physical quantity detecting means, and the output of the voltage level detecting means, and the food estimating means; A cooking degree estimating means for estimating a cooking degree of the food based on an output of the means, an output of the environmental physical quantity estimating means, an output of the unique physical quantity detecting means, and an output of the voltage level detecting means; and an output of the cooking degree estimating means. And a control means for controlling the cooking means based on the cooking tool.
【請求項7】調理物を調理する調理手段と、調理皿の位
置を検出する皿位置検出手段と、調理物周辺の環境物理
量を検出する環境物理量検出手段と、前記調理物の固有
物理量を検出する固有物理量検出手段と、前記皿位置検
出手段の出力と前記環境物理量検出手段の出力と前記固
有物理量検出手段との出力に基づき前記調理物を推定す
る調理物推定手段と、前記調理物推定手段の出力と前記
環境物理量推定手段の出力および前記固有物理量検出手
段の出力とに基づき調理物の調理度合を推定する調理度
合推定手段と、前記調理度合推定手段の出力に基づき前
記調理手段を制御する制御手段とからなる調理器具。
7. A cooking means for cooking food, a dish position detecting means for detecting a position of a cooking dish, an environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and detecting a unique physical quantity of the food. A unique physical quantity detecting means, a food estimating means for estimating the food based on an output of the dish position detecting means, an output of the environmental physical quantity detecting means, and an output of the unique physical quantity detecting means; Cooking degree estimating means for estimating the degree of cooking of the cooked food based on the output of the environmental physical quantity estimating means and the output of the unique physical quantity detecting means, and controlling the cooking means based on the output of the cooking degree estimating means. Cooking utensils comprising control means.
【請求項8】調理物を調理する調理手段と、調理皿の位
置を検出する皿位置検出手段と、調理物周辺の環境物理
量を検出する環境物理量検出手段と、前記調理物の固有
物理量を検出する固有物理量検出手段と、商用電源電圧
の電圧レベルを検出する電圧レベル検出手段と、前記皿
位置検出手段の出力と前記環境物理量検出手段の出力と
前記固有物理量検出手段の出力および前記電圧レベル検
出手段の出力に基づき前記調理物を推定する調理物推定
手段と、前記調理物推定手段の出力と前記環境物理量推
定手段の出力と前記固有物理量検出手段の出力および前
記電圧レベル検出手段の出力に基づき調理物の調理度合
を推定する調理度合推定手段と、前記調理度合推定手段
の出力に基づき前記調理手段を制御する制御手段とから
なる調理器具。
8. Cooking means for cooking the food, dish position detecting means for detecting the position of the cooking dish, environmental physical quantity detecting means for detecting an environmental physical quantity around the food, and detecting a unique physical quantity of the food. An intrinsic physical quantity detecting means, a voltage level detecting means for detecting a voltage level of a commercial power supply voltage, an output of the dish position detecting means, an output of the environmental physical quantity detecting means, an output of the intrinsic physical quantity detecting means, and the voltage level detection. A food estimating means for estimating the food based on an output of the means; an output of the cooking estimating means, an output of the environmental physical quantity estimating means, an output of the unique physical quantity detecting means, and an output of the voltage level detecting means. A cooking appliance comprising: cooking degree estimating means for estimating a cooking degree of a cook; and control means for controlling the cooking means based on an output of the cooking degree estimating means.
【請求項9】調理物推定手段と調理度合推定手段は、複
数の神経素子より構成される神経回路網をモデル化した
手法により獲得され、かつ調理物と調理度合を推定する
神経回路網の固定された結合重み係数を内部に持つ神経
回路網模式手段を備えたことを特徴とする請求項1ない
し請求項8記載の調理器具。
9. A method for estimating the degree of cooking and the degree of cooking estimating means, the method comprising: modeling a neural network composed of a plurality of neural elements; and fixing the neural network for estimating the degree of cooking and the degree of cooking. 9. The cooking utensil according to claim 1, further comprising a neural network model means having the determined connection weight coefficient therein.
【請求項10】調理物推定手段と調理度合推定手段は、
複数の神経素子より構成される層が多層組み合わされて
構築される階層型の神経回路網模式手段を備えたことを
特徴とする請求項1ないし請求項8記載の調理器具。
10. The cooking product estimation means and the cooking degree estimation means,
9. The cooking utensil according to claim 1, further comprising a hierarchical neural network model means constructed by combining a plurality of layers composed of a plurality of neural elements.
JP4147244A 1992-06-08 1992-06-08 kitchenware Expired - Fee Related JP2861636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147244A JP2861636B2 (en) 1992-06-08 1992-06-08 kitchenware

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147244A JP2861636B2 (en) 1992-06-08 1992-06-08 kitchenware

Publications (2)

Publication Number Publication Date
JPH05340544A JPH05340544A (en) 1993-12-21
JP2861636B2 true JP2861636B2 (en) 1999-02-24

Family

ID=15425846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147244A Expired - Fee Related JP2861636B2 (en) 1992-06-08 1992-06-08 kitchenware

Country Status (1)

Country Link
JP (1) JP2861636B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902801B2 (en) * 1991-03-20 1999-06-07 三洋電機株式会社 Cooker

Also Published As

Publication number Publication date
JPH05340544A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
KR0150799B1 (en) Cooking appliance
CN108459500B (en) Intelligent cooking method and device and stove
JP3818601B2 (en) Cooking apparatus and method for controlling cooking apparatus
JPH06241463A (en) Cooking appliance
JP2548320B2 (en) microwave
JP2861636B2 (en) kitchenware
JP3088506B2 (en) kitchenware
JP2936838B2 (en) kitchenware
JPH05312329A (en) Cooker
JP2855902B2 (en) kitchenware
JP2936839B2 (en) kitchenware
JP2943504B2 (en) kitchenware
JPH05172334A (en) Cooking implement
JP2936853B2 (en) kitchenware
JP2855901B2 (en) kitchenware
JP2917675B2 (en) kitchenware
CN115363432A (en) Model training method, cooking control method, system, device and medium
JP2943468B2 (en) kitchenware
JP3110505B2 (en) kitchenware
JP2943467B2 (en) kitchenware
JPH05288353A (en) Cooking utensils
JP2902801B2 (en) Cooker
JPH05113221A (en) Cooking equipment
JP3072928B2 (en) Cooking device
JPH0556860A (en) Cooker

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees