JPH05171270A - Production of hot rolled steel plate excellent in stretch-flange formability - Google Patents

Production of hot rolled steel plate excellent in stretch-flange formability

Info

Publication number
JPH05171270A
JPH05171270A JP33691991A JP33691991A JPH05171270A JP H05171270 A JPH05171270 A JP H05171270A JP 33691991 A JP33691991 A JP 33691991A JP 33691991 A JP33691991 A JP 33691991A JP H05171270 A JPH05171270 A JP H05171270A
Authority
JP
Japan
Prior art keywords
less
rolling
rate
rolled steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33691991A
Other languages
Japanese (ja)
Inventor
Hirohide Asano
裕秀 浅野
Kazuo Koyama
一夫 小山
Nobuhiko Matsuzu
伸彦 松津
Masanori Nishimoto
正則 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33691991A priority Critical patent/JPH05171270A/en
Publication of JPH05171270A publication Critical patent/JPH05171270A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the hot rolled steel plate without deteriorating external appearance characteristic and economical efficiency by subjecting a steel having a specific composition free from Nb and Ti to heavy draft in the latter stage of finish rolling, to rolling at high finishing temp., and to air cooling after rolling. CONSTITUTION:A steel having a composition consisting of, by mass, <=0.01% C, <=0.3% Si, 0.8-2.0% Mn, <=0.1% Al, <=0.01% S, <=0.03% P, and the balance Fe is formed into a slab, which is hot-rolled without delay or after heating up to 1000-1200 deg.C. At this time, rolling is done while regulating the effective strain [epsiloneff = final pass draft(%) + 1/2(draft(%) at the last pass but one) + 1/4(draft(%) at the last pass but two)] to >=40% and the steel is rolled at 860-960 deg.C finishing temp., air-cooled for >=1 sec after rolling, successively cooled at >=10 deg.C/sec average cooling rate, and coiled at <=700 deg.C. By this method, the recrystallization of gamma-grains can be accelerated and in-blane anisotropy can be reduced, by which the hot rolled steel plate excellent in spreadability and used for members for machine structural use, including automobile use, and for steels for general working can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車をはじめとする機
械構造部材や一般加工用に使用される伸びフランジ性の
すぐれた熱延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot rolled steel sheet having excellent stretch flangeability, which is used for mechanical structural members such as automobiles and general processing.

【0002】[0002]

【従来の技術】近年、省エネルギーや燃費軽減のために
板厚を減少し高強度化する強い要求がある。これに対し
いわゆるDual Phase鋼等が開発されてきた
が、伸びフランジ加工の厳しい部材では、これらの高強
度熱延鋼板でも割れが生じるため、適用部材が限定され
ているのが現状であり、高強度−良加工性の鋼板が求め
られている。
2. Description of the Related Art In recent years, there is a strong demand for reducing the plate thickness and increasing the strength in order to save energy and reduce fuel consumption. On the other hand, so-called Dual Phase steels and the like have been developed. However, in the case of members with severe stretch flange processing, cracks occur even in these high-strength hot-rolled steel sheets, and thus the applicable materials are currently limited, A steel plate with high strength and good workability is required.

【0003】このような状況を打破すべく、伸びフラン
ジ性にすぐれた熱延鋼板の製造方法が特開昭60−14
9730号、特開昭51−44508号公報に各々開示
されている。しかし、特開昭60−149730号公報
に開示されているような高強度化のためにSiを添加す
る方法では、Siスケールの発生による外観不良の問題
があった。また、特開昭51−44508号公報に開示
されている方法は、Cr添加を必要とするため経済的に
不利であった。
In order to overcome such a situation, a method for producing a hot rolled steel sheet having excellent stretch flangeability is disclosed in JP-A-60-14.
9730 and JP-A-51-44508. However, the method of adding Si for high strength disclosed in JP-A-60-149730 has a problem of poor appearance due to generation of Si scale. Further, the method disclosed in JP-A-51-44508 is economically disadvantageous because it requires addition of Cr.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは鋭意検討
を重ねた結果、第2相の影響のない極低炭素系では伸び
フランジ性各方向のr値とは強い相関があることを見い
だした。即ち、伸びフランジ性を評価する穴拡げ試験で
は割れが板厚を貫通する時点をもって試験終了とする
が、このときの割れが生じる方向はr値の低い方向で生
じる。このr値の最小値を向上させるには各方向の特性
値の差を小さくすること、つまり面内異方性を低減する
ことが有効である。そのためにはγ粒の再結晶を促進さ
せることが重要である。
DISCLOSURE OF THE INVENTION As a result of intensive studies, the inventors of the present invention found that there is a strong correlation with the r-value in each direction of stretch-flangeability in an extremely low carbon system which is not affected by the second phase. It was That is, in the hole expansion test for evaluating stretch flangeability, the test ends when the crack penetrates the plate thickness, but the crack occurs at this time in the direction of low r value. In order to improve the minimum r value, it is effective to reduce the difference between the characteristic values in each direction, that is, reduce the in-plane anisotropy. For that purpose, it is important to promote the recrystallization of γ grains.

【0005】即ち、本発明者らは(1)仕上圧延後段で
の大圧下、高仕上温度および圧延後の空冷によりγ粒の
再結晶を促進する。(2)γ粒を未再結晶にさせる傾向
が強いNb,Tiを添加しない〜等の方法をベースに厳
密に製造条件を定めることにより面内異方性を低減し、
穴拡げ性のすぐれた熱延鋼板を製造する方法を完成し
た。
That is, the present inventors (1) promote recrystallization of γ grains by large reduction in the latter stage of finishing rolling, high finishing temperature and air cooling after rolling. (2) The in-plane anisotropy is reduced by strictly determining the manufacturing conditions based on a method such as not adding Nb or Ti, which has a strong tendency to unrecrystallize γ grains,
We have completed a method for producing hot-rolled steel sheets with excellent hole expandability.

【0006】即ち本発明は外観性状・経済性を損ねるこ
となく、伸びフランジ性がすぐれた熱延鋼板の製造方法
を提供するものである。
That is, the present invention provides a method for producing a hot-rolled steel sheet having excellent stretch-flange formability without impairing the appearance and economy.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)mass%でC:0.01%以下、Si:0.3
%以下、Mn:0.8〜2.0%、Al:0.1%以
下、S:0.01%以下、P:0.03%以下を含み、
残部Feおよび不可避的不純物よりなる鋼をスラブとし
た後、直ちにあるいは1000〜1250℃に加熱し、
熱間圧延を行うに当り、圧下を有効歪〔εeff =最終パ
ス圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))〕
を40%以上で行い、仕上温度860℃〜960℃で圧
延し、圧延後1秒以上空冷し、続いて平均冷却速度10
℃/s以上で冷却し700℃以下で巻取ることを特徴と
する伸びフランジ性がすぐれ、引張強度が350N/mm
2 以上の熱延鋼板の製造方法。
The main points of the present invention are as follows. (1) C: 0.01% or less by mass%, Si: 0.3
% Or less, Mn: 0.8 to 2.0%, Al: 0.1% or less, S: 0.01% or less, P: 0.03% or less,
Immediately or after heating to 1000 to 1250 ° C., a slab made of steel consisting of the balance Fe and unavoidable impurities,
In performing hot rolling, the reduction is effective strain [ε eff = final pass reduction rate (%) + 1/2 (first stage first stage pass reduction rate (%)) +1/4 (final second stage pass reduction) rate(%))〕
At a finishing temperature of 860 ° C. to 960 ° C., followed by air cooling for 1 second or more, and then an average cooling rate of 10%.
Features excellent stretch-flangeability and tensile strength of 350 N / mm, characterized by cooling at ℃ / s or higher and winding at 700 ℃ or lower.
Manufacturing method of two or more hot rolled steel sheets.

【0008】(2)mass%でC:0.01%以下、
Si:0.3%以下、Mn:0.1〜2%、Al:0.
1%以下、S:0.01%以下、P:0.03%以下を
含み、かつCu:0.8〜2.0%を含有し、残部Fe
および不可避的不純物よりなる鋼をスラブとした後、直
ちにあるいは1000〜1200℃に加熱し、熱間圧延
を行うに当り、圧下を有効歪〔εeff =最終パス圧下率
(%)+1/2(最終前1段目パス圧下率(%))+1
/4(最終前2段目パス圧下率(%))〕を40%以上
で行い、仕上温度860℃〜960℃で圧延し、圧延後
1秒以上空冷し、続いて平均冷却速度10℃/s以上で
冷却し400℃以下で巻取ることを特徴とする伸びフラ
ンジ性がすぐれ、引張強度が400N/mm2 以上の熱延
鋼板の製造方法。
(2) C in mass%: 0.01% or less,
Si: 0.3% or less, Mn: 0.1 to 2%, Al: 0.
1% or less, S: 0.01% or less, P: 0.03% or less, and Cu: 0.8 to 2.0%, balance Fe
Immediately after heating the steel made of unavoidable impurities into a slab or heating it to 1000 to 1200 ° C. and performing hot rolling, the reduction of the effective strain [ε eff = final pass reduction (%) + 1/2 ( First-stage pass reduction rate (%) before final +1
/ 4 (the second pass pass reduction rate (%) before final)] at 40% or more, rolling at a finishing temperature of 860 ° C. to 960 ° C., air cooling for 1 second or more after rolling, and then an average cooling rate of 10 ° C. / A method for producing a hot-rolled steel sheet having excellent stretch-flangeability and having a tensile strength of 400 N / mm 2 or more, which comprises cooling at s or more and winding at 400 ° C. or less.

【0009】(3)mass%でC:0.01%以下、
Si:0.3%以下、Mn:0.1〜2%、Al:0.
1%以下、S:0.01%以下、P:0.03%以下を
含み、かつCu:0.8〜2.0%、Ni:0.3〜
1.0%を含有し、残部Feおよび不可避的不純物より
なる鋼をスラブとした後、直ちにあるいは1000〜1
250℃に加熱し、熱間圧延を行うに当り、圧下を有効
歪〔εeff =最終パス圧下率(%)+1/2(最終前1
段目パス圧下率(%))+1/4(最終前2段目パス圧
下率(%))〕を40%以上で行い、仕上温度860℃
〜960℃で圧延し、圧延後1秒以上空冷し、続いて平
均冷却速度10℃/s以上で冷却し400℃以下で巻取
ることを特徴とする伸びフランジ性がすぐれ、引張強度
が400N/mm2 以上の熱延鋼板の製造方法。
(3) C in mass%: 0.01% or less,
Si: 0.3% or less, Mn: 0.1 to 2%, Al: 0.
1% or less, S: 0.01% or less, P: 0.03% or less, and Cu: 0.8 to 2.0%, Ni: 0.3 to
Immediately after the steel containing 1.0% and the balance Fe and unavoidable impurities was made into a slab or 1000 to 1
When performing hot rolling by heating to 250 ° C., the reduction is effective strain [ε eff = final pass reduction (%) + 1/2 (1 before final)
The finishing temperature is 860 ° C. at the finishing pass reduction rate (%)) + 1/4 (the second-stage rolling reduction rate before the final stage (%)) of 40% or more.
Rolling at ~ 960 ° C., air cooling after rolling for 1 second or more, followed by cooling at an average cooling rate of 10 ° C./s or more and winding at 400 ° C. or less, excellent stretch flangeability, tensile strength of 400 N / A method for manufacturing a hot rolled steel sheet having a size of mm 2 or more.

【0010】[0010]

【作用】次に本発明の各構成要件の限定理由について詳
述する。Cは0.01%以下とする。これを超えると炭
化物が生成し、伸びフランジ性が低下する。
Next, the reasons for limiting the constituents of the present invention will be described in detail. C is 0.01% or less. If it exceeds this, carbides are generated, and the stretch flangeability deteriorates.

【0011】Mnは強度を付与する元素であり、0.8
〜2.0%の範囲で添加する。下限値未満では、目標強
度が得られない。なお、Cuを添加する場合は下限値を
0.1%とした。上限値はC:0.01%以下を保ちつ
つ実機で製造できる範囲とした(Cのピックアップがあ
り高Mn系で極低C系とするのは高度な技術が必要であ
る)。
Mn is an element that imparts strength, and is 0.8
Add in the range of ~ 2.0%. If it is less than the lower limit, the target strength cannot be obtained. In addition, when adding Cu, the lower limit was made into 0.1%. The upper limit was set to a range that can be manufactured in an actual machine while keeping C: 0.01% or less (high technology is required to have a C pickup and to make it a high Mn type and an extremely low C type).

【0012】SiはSiスケールの原因となるとともに
化成処理性を劣化させるので0.3%以下とする。
Since Si causes Si scale and deteriorates the chemical conversion treatment property, it is made 0.3% or less.

【0013】Alは脱酸剤として必要であるが0.1%
を超えるとアルミナ系介在物が増加し、鋼の伸びフラン
ジ性を損ねる。
Al is necessary as a deoxidizer, but 0.1%
If it exceeds, alumina inclusions increase and the stretch flangeability of steel is impaired.

【0014】Sは圧延方向に伸びたA系介在物を増加さ
せ、そこを起点にして割れが伝播するので、穴拡げ性が
低下する。そこで上限値を0.01%とする。
[0014] S increases the amount of A-type inclusions extending in the rolling direction, and cracks propagate from there as a starting point, so the hole expandability decreases. Therefore, the upper limit value is set to 0.01%.

【0015】Pは耐食性を付与する元素である。しか
し、0.03%を超えると延性が落ち、伸びフランジ性
が低下する。
P is an element that imparts corrosion resistance. However, if it exceeds 0.03%, the ductility decreases and the stretch flangeability decreases.

【0016】Cuは強度を付与する元素で添加してもよ
い。その場合は0.8%未満では効果がなく、2.0%
を超える添加では効果が飽和するとともにCuヘゲと呼
ばれる表面欠陥が熱延中に生じることがある。また、こ
のCuヘゲを防止するにはNi添加が望ましい。0.3
%未満では効果がなく、1.0%を超えると効果が飽和
するばかりでなく経済性を損ねる。
Cu may be added as an element which imparts strength. In that case, less than 0.8% has no effect and 2.0%
If the addition exceeds the range, the effect is saturated and a surface defect called Cu heggling may occur during hot rolling. Further, it is desirable to add Ni to prevent the Cu hegging. 0.3
If it is less than 1.0%, there is no effect, and if it exceeds 1.0%, not only is the effect saturated, but the economy is impaired.

【0017】続いて熱延条件について説明する。上述し
たような鋼は通常転炉で溶製され連続鋳造にてスラブと
される。転炉溶製後種々の二次精錬がなされることもあ
る。このスラブは冷片、温片あるいは熱片のまま加熱炉
に挿入される。
Next, the hot rolling conditions will be described. The above-mentioned steel is usually melted in a converter and made into a slab by continuous casting. After the converter is melted, various secondary refining may be performed. This slab is inserted into the heating furnace as cold, hot or hot pieces.

【0018】この時の加熱温度は1000〜1250℃
とする。上限値は現状の設備で取り得る値とした。下限
は現状の連続熱延設備で生産性を落とさずに操業できる
範囲とした。Cuを添加した場合にはCuヘゲを防止す
るために加熱温度の上限値を1200℃とする。さらに
Niを前述の範囲で添加した場合には加熱温度の上限値
を1250℃とする。上限値はNi添加により向上する
が、これ以上だとやはりCuヘゲを生じるのを避けがた
い。下限値は同様に現状の設備でとりうる値とした。圧
下率は本発明では重要な条件である。特に仕上後段での
圧下率が有効であるため、本発明者らはεeff =最終パ
ス圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))を
有効歪と定義する。この有効歪は40%以上とする。こ
れ未満ではγ粒の未再結晶が残り集合組織が発達し、面
内異方性が大きくなり伸びフランジ性が低下する。
The heating temperature at this time is 1000 to 1250 ° C.
And The upper limit is a value that can be taken with the current equipment. The lower limit was set to the range where the current continuous hot rolling equipment can operate without lowering productivity. When Cu is added, the upper limit of the heating temperature is 1200 ° C. in order to prevent Cu hegging. Further, when Ni is added within the above range, the upper limit of the heating temperature is set to 1250 ° C. The upper limit is improved by adding Ni, but if it is more than this, it is unavoidable to cause Cu hegging. Similarly, the lower limit is set to a value that can be taken by the current equipment. The rolling reduction is an important condition in the present invention. In particular, since the reduction ratio in the latter stage of finishing is effective, the present inventors have used ε eff = final pass reduction ratio (%) + 1/2 (first stage first stage pass reduction ratio (%)) + 1/4 (final pre-final stage). The second pass rolling reduction rate (%) is defined as the effective strain. This effective strain is 40% or more. If it is less than this, unrecrystallized γ grains remain and a texture develops, the in-plane anisotropy increases and the stretch-flangeability deteriorates.

【0019】仕上温度は本発明では極めて重要な条件で
ある。即ち、熱延鋼板の集合組織をランダム化すること
により面内異方性を低減させるためである。従って仕上
温度は880〜960℃とする。下限値未満であると面
内異方性が増加し、伸びフランジ性が低下する。上限値
は加熱温度との兼ね合いで実機で製造可能な値とした。
仕上圧延後は1秒以上空冷する。これ未満ではγ粒の未
再結晶が残り、集合組織が発達し、伸びフランジ性が低
下する。
The finishing temperature is a very important condition in the present invention. That is, the in-plane anisotropy is reduced by randomizing the texture of the hot rolled steel sheet. Therefore, the finishing temperature is 880 to 960 ° C. If it is less than the lower limit, the in-plane anisotropy increases and the stretch flangeability decreases. The upper limit was set to a value that can be manufactured on an actual machine in consideration of the heating temperature.
After finish rolling, air cool for 1 second or longer. If it is less than this, unrecrystallized γ grains remain, a texture develops, and stretch-flangeability deteriorates.

【0020】空冷後の平均冷却速度は10℃/s以上と
する。これ未満では生産性が低下し生産コストが増加す
る。巻取温度は700℃以下とする。これを超えると冷
却に多大な時間がかかり、生産性が低下し生産コストが
増加する。Cuを添加する場合は巻取温度は400℃以
下とする。これを超えるとCuの析出ないしクラスター
強化により強度が上昇し、400N/mm2 級の強度が得
られない。
The average cooling rate after air cooling is 10 ° C./s or more. If it is less than this, the productivity is lowered and the production cost is increased. The winding temperature is 700 ° C or lower. If it exceeds this, cooling will take a lot of time, productivity will fall and production cost will increase. When Cu is added, the coiling temperature is 400 ° C or lower. If it exceeds this, the strength increases due to the precipitation of Cu or the strengthening of clusters, and the strength of 400 N / mm 2 class cannot be obtained.

【0021】[0021]

【実施例】表1に示す成分を有する鋼を転炉にて出鋼
し、真空脱ガス等の二次精錬を経てスラブとした。
EXAMPLE Steels having the components shown in Table 1 were tapped in a converter and subjected to secondary refining such as vacuum degassing to obtain slabs.

【0022】[0022]

【表1】 表1の中でA〜Fの符号で示す鋼は本発明範囲内であ
り、G〜Nで示す鋼は本発明外である。G鋼はCが上限
超、H鋼はSiが上限超、I鋼はCが上限超、J鋼はS
iが上限超、K,L鋼はP,Al,Sが上限超である。
M鋼はCuが上限超、N鋼はNiが下限未満である。
[Table 1] Steels indicated by symbols A to F in Table 1 are within the scope of the present invention, and steels indicated by G to N are outside the present invention. G steel has C above the upper limit, H steel has Si above the upper limit, I steel has C above the upper limit, and J steel has S.
i is above the upper limit, and for K and L steels, P, Al and S are above the upper limit.
Cu is above the upper limit for M steel, and Ni is below the lower limit for N steel.

【0023】これらの鋼を表2に示す熱延条件で熱延し
た。得られた熱延鋼板の特性値を同じく表2に示す。引
張試験片はJIS Z 2201に準じた5号試験片を
用い、JIS Z2241記載の方法に従って行った。
また、面内異方性はΔrで評価した。Δrは圧延方向,
90°方向,45°方向のr値(10%歪)を測定し、
Δr=〔{圧延方向のr値+90°方向のr値−(2×
45°方向のr値)}/2〕で計算した。
These steels were hot rolled under the hot rolling conditions shown in Table 2. The characteristic values of the obtained hot rolled steel sheet are also shown in Table 2. As the tensile test piece, a No. 5 test piece according to JIS Z 2201 was used, and the tensile test was performed according to the method described in JIS Z2241.
The in-plane anisotropy was evaluated by Δr. Δr is the rolling direction,
Measure the r value (10% strain) in the 90 ° and 45 ° directions,
Δr = [{r value in rolling direction + r value in 90 ° direction− (2 ×
The r value in the 45 ° direction)} / 2].

【0024】伸びフランジ性は打ち抜き穴拡げ試験にお
ける穴拡げ比で評価した。試験片は250mm角の鋼板に
直径20mmのパンチと板厚の10%のクリアランス(片
側)を持たせたダイスにより直径d0 (=ダイス径)の
穴を打ち抜いたものを用いた。穴拡げ試験はプレス試験
機にて上記の試験片を打ち抜き穴バリのない(バリとは
反対の)面側から30°円錐パンチで押し広げ(この際
押し広げ部への材料流入がないようにフランジには60
トンのしわ押えをかける)、クラックが板厚を貫通する
時点で止めることとし、この時の穴径(d)と元の穴径
(d0 )の比(d/d0 )を穴広げ比とした。
The stretch flangeability was evaluated by the hole expansion ratio in the punching hole expansion test. As the test piece, a 250 mm square steel plate punched out with a hole having a diameter d 0 (= die diameter) by a die having a 20 mm diameter punch and a die having a clearance (one side) of 10% of the plate thickness was used. In the hole expansion test, the above test piece was punched out by a press tester and expanded with a 30 ° conical punch from the side without the hole burr (opposite to the burr) (at this time, there was no inflow of material into the expanded part). 60 on the flange
Ton's crease is applied), and it is stopped when the crack penetrates the plate thickness, and the ratio (d / d 0 ) of the hole diameter (d) and the original hole diameter (d 0 ) at this time is calculated as the hole expansion ratio. And

【0025】[0025]

【表2】 [Table 2]

【表3】 表2においてNo.1〜No.6は本発明例の鋼であり、本
発明の目的とする強度と良好な穴拡げ比を有するととも
にSiスケールおよびCuヘゲの発生はなく、表面性状
も良好であった。
[Table 3] In Table 2, No. 1-No. No. 6 is the steel of the present invention, which has the strength intended for the present invention and a good hole expansion ratio, does not generate Si scale and Cu heggins, and has a good surface property.

【0026】No.7〜No.18は比較例鋼である。No.
7はCが高すぎたため、炭化物が生成し穴拡げ比が低下
した。No.8はSiが高すぎたためSiスケールが生成
し、表面性状が劣化した。No.9はCが高すぎたので炭
化物が生成し、穴拡げ比が低下した。No.10はSiが
高すぎたためSiスケールが生成し、表面性状が劣化し
た。No.11はP,S,Alが高すぎたので介在物が生
成し、穴拡げ比が低下した。No.12はP,S,Alが
高すぎたので介在物が生成し、穴拡げ比が低下した。N
o.13はCuが高すぎたのでCuヘゲが発生し、表面
性状が劣化した。No.14はNiが低すぎたのでCuヘ
ゲが発生し、表面性状が劣化した。No.15は加熱温度
が高すぎたのでCuヘゲが発生し、表面性状が劣化し
た。No.16は仕上温度が低すぎたので熱延鋼板の集合
組織が発達し、面内異方性が大きくなり、穴拡げ比が低
下した。
No. 7-No. 18 is a comparative example steel. No.
In No. 7, since C was too high, carbide was generated and the hole expansion ratio was lowered. No. In No. 8, since Si was too high, Si scale was generated and the surface quality was deteriorated. No. In No. 9, since C was too high, carbide was generated and the hole expansion ratio was lowered. No. In No. 10, since Si was too high, Si scale was generated and the surface quality was deteriorated. No. In No. 11, since P, S and Al were too high, inclusions were generated and the hole expansion ratio was lowered. No. In No. 12, since P, S and Al were too high, inclusions were generated and the hole expansion ratio was lowered. N
o. In No. 13, since Cu was too high, Cu hegging was generated and the surface quality was deteriorated. No. In No. 14, since Ni was too low, Cu hegging was generated and the surface quality was deteriorated. No. In No. 15, since the heating temperature was too high, Cu hegging occurred and the surface quality deteriorated. No. In No. 16, since the finishing temperature was too low, the texture of the hot rolled steel sheet developed, the in-plane anisotropy increased, and the hole expansion ratio decreased.

【0027】No.17は仕上温度が低すぎたので熱延鋼
板の集合組織が発達し、面内異方性が大きくなり、穴拡
げ比が低下した。No.18は仕上後の空冷時間が短かっ
たためγの未再結晶が残り集合組織が発達し、面内異方
性が大きくなり、穴拡げ比が低下した。No.19は有効
歪が小さかったためγの未再結晶が残り集合組織が発達
し、面内異方性が大きくなり、穴拡げ比が低下した。
No. In No. 17, since the finishing temperature was too low, the texture of the hot rolled steel sheet developed, the in-plane anisotropy increased, and the hole expansion ratio decreased. No. In No. 18, since the air-cooling time after finishing was short, unrecrystallized γ remained and the texture developed, the in-plane anisotropy increased, and the hole expansion ratio decreased. No. In No. 19, since the effective strain was small, unrecrystallized γ remained, the texture developed, the in-plane anisotropy increased, and the hole expansion ratio decreased.

【0028】[0028]

【発明の効果】本発明の製造方法によれば、伸びフラン
ジ性にすぐれた熱延鋼板を外観性状、経済性を損ねるこ
となく提供できる。これにより厳しい伸びフランジ加工
が必要な部材に本発明鋼板を適用することにより、例え
ば自動車等の軽量化が容易となり燃費の向上や省資源な
どを可能にしうるものであり工業的価値は極めて高い。
According to the manufacturing method of the present invention, it is possible to provide a hot-rolled steel sheet excellent in stretch-flange formability without impairing its appearance and economical efficiency. Thus, by applying the steel sheet of the present invention to a member that requires severe stretch-flange processing, it is possible to easily reduce the weight of, for example, an automobile, improve fuel efficiency, save resources, and the like, and have an extremely high industrial value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 正則 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Nishimoto 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 mass%で C :0.01%以下、 Si:0.3%以下、 Mn:0.8〜2.0%、 Al:0.1%以下、 S :0.01%以下、 P :0.03%以下、 残部Feおよび不可避的不純物よりなる鋼をスラブとし
た後、直ちにあるいは1000〜1250℃に加熱し、
熱間圧延を行うに当り、圧下を有効歪〔εeff =最終パ
ス圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))〕
を40%以上で行い、仕上温度860℃〜960℃で圧
延し、圧延後1秒以上空冷し、続いて平均冷却速度10
℃/s以上で冷却し700℃以下で巻取ることを特徴と
する伸びフランジ性のすぐれた熱延鋼板の製造方法。
1. Mass%: C: 0.01% or less, Si: 0.3% or less, Mn: 0.8 to 2.0%, Al: 0.1% or less, S: 0.01% or less. , P: 0.03% or less, steel made of balance Fe and unavoidable impurities is made into a slab, and immediately or thereafter heated to 1000 to 1250 ° C.,
In performing hot rolling, the reduction is effective strain [ε eff = final pass reduction rate (%) + 1/2 (first stage first stage pass reduction rate (%)) +1/4 (final second stage pass reduction) rate(%))〕
At a finishing temperature of 860 ° C. to 960 ° C., followed by air cooling for 1 second or more, and then an average cooling rate of 10%.
A method for producing a hot-rolled steel sheet having excellent stretch-flangeability, which comprises cooling at 700 ° C / s or more and winding at 700 ° C or less.
【請求項2】 mass%で C :0.01%以下、 Si:0.3%以下、 Mn:0.1〜2%、 Al:0.1%以下、 S :0.01%以下、 P :0.03%以下、 Cu:0.8〜2.0%、 残部Feおよび不可避的不純物よりなる鋼をスラブとし
た後、直ちにあるいは1000〜1200℃に加熱し、
熱間圧延を行うに当り、圧下を有効歪〔εeff =最終パ
ス圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))〕
を40%以上で行い、仕上温度860℃〜960℃で圧
延し、圧延後1秒以上空冷し、続いて平均冷却速度10
℃/s以上で冷却し400℃以下で巻取ることを特徴と
する伸びフランジ性のすぐれた熱延鋼板の製造方法。
2. Mass% C: 0.01% or less, Si: 0.3% or less, Mn: 0.1 to 2%, Al: 0.1% or less, S: 0.01% or less, P : 0.03% or less, Cu: 0.8 to 2.0%, steel made of balance Fe and unavoidable impurities is made into a slab and then immediately or heated to 1000 to 1200 ° C.,
In performing hot rolling, the reduction is effective strain [ε eff = final pass reduction rate (%) + 1/2 (first stage first stage pass reduction rate (%)) +1/4 (final second stage pass reduction) rate(%))〕
At a finishing temperature of 860 ° C. to 960 ° C., followed by air cooling for 1 second or more, and then an average cooling rate of 10%.
A method for producing a hot-rolled steel sheet having excellent stretch-flange formability, which comprises cooling at a rate of ℃ / s or higher and winding at a temperature of 400 ℃ or lower.
【請求項3】 mass%で C :0.01%以下、 Si:0.3%以下、 Mn:0.1〜2%、 Al:0.1%以下、 S :0.01%以下、 P :0.03%以下、 Cu:0.8〜2.0%、 Ni:0.3〜1.0%、 残部Feおよび不可避的不純物よりなる鋼をスラブとし
た後、直ちにあるいは1000〜1250℃に加熱し、
熱間圧延を行うに当り、圧下を有効歪〔εeff =最終パ
ス圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))〕
を40%以上で行い、仕上温度860℃〜960℃で圧
延し、圧延後1秒以上空冷し、続いて平均冷却速度10
℃/s以上で冷却し400℃以下で巻取ることを特徴と
する伸びフランジ性のすぐれた熱延鋼板の製造方法。
3. Mass% C: 0.01% or less, Si: 0.3% or less, Mn: 0.1 to 2%, Al: 0.1% or less, S: 0.01% or less, P : 0.03% or less, Cu: 0.8 to 2.0%, Ni: 0.3 to 1.0%, balance steel and unavoidable impurities are used as a slab and then immediately or 1000 to 1250 ° C. Heated to
In performing hot rolling, the reduction is effective strain [ε eff = final pass reduction rate (%) + 1/2 (first stage first stage pass reduction rate (%)) +1/4 (final second stage pass reduction) rate(%))〕
At a finishing temperature of 860 ° C. to 960 ° C., followed by air cooling for 1 second or more, and then an average cooling rate of 10%.
A method for producing a hot-rolled steel sheet having excellent stretch-flange formability, which comprises cooling at a rate of ℃ / s or higher and winding at a temperature of 400 ℃ or lower.
JP33691991A 1991-12-19 1991-12-19 Production of hot rolled steel plate excellent in stretch-flange formability Withdrawn JPH05171270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33691991A JPH05171270A (en) 1991-12-19 1991-12-19 Production of hot rolled steel plate excellent in stretch-flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33691991A JPH05171270A (en) 1991-12-19 1991-12-19 Production of hot rolled steel plate excellent in stretch-flange formability

Publications (1)

Publication Number Publication Date
JPH05171270A true JPH05171270A (en) 1993-07-09

Family

ID=18303848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33691991A Withdrawn JPH05171270A (en) 1991-12-19 1991-12-19 Production of hot rolled steel plate excellent in stretch-flange formability

Country Status (1)

Country Link
JP (1) JPH05171270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643354B1 (en) * 2004-12-27 2006-11-10 주식회사 포스코 Method for manufacturing high strength hot rolled steel sheet having excellent flangeability and ductility
KR100711476B1 (en) * 2005-12-26 2007-04-24 주식회사 포스코 Method for manufacturing high strength hot rolled steel sheet having excellent formability
JP2009263718A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643354B1 (en) * 2004-12-27 2006-11-10 주식회사 포스코 Method for manufacturing high strength hot rolled steel sheet having excellent flangeability and ductility
KR100711476B1 (en) * 2005-12-26 2007-04-24 주식회사 포스코 Method for manufacturing high strength hot rolled steel sheet having excellent formability
JP2009263718A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
CN113073262A (en) Double-gradient ultrafine-grained steel plate with excellent ultralow-temperature toughness and preparation method thereof
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPH05171270A (en) Production of hot rolled steel plate excellent in stretch-flange formability
JP3046146B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability and shape
JPH05222484A (en) Hot rolled steel strip with low yield ratio for construction use excellent in refractoriness and toughness and its production
JP3592490B2 (en) High ductility and high strength steel sheet with excellent low temperature toughness
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
EP4265795A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JPH05271758A (en) Manufacture of high strength hot rolled steel plate excellent in stretch-flanging property
JP3293001B2 (en) Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability
JP3338499B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent workability
JPH0583609B2 (en)
JPH05345916A (en) Production of high strength hot rolled steel plate for automobile under carriage parts excellent in stretch flange formability and corrosion resistance
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JPH10280115A (en) Manufacture of high strength hop dip galvanized steel sheet, excellent in workability
JPH0382708A (en) Production of high strength hot rolled steel plate for high degree working excellent in fatigue characteristic
JP3448422B2 (en) Manufacturing method of good workability steel sheet without annealing
JP2790018B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH0551634A (en) Production of hot rolled steel sheet excellent in stretch-flanging property
JPH04371527A (en) Production of high-strength cold rolled steel sheet for deep drawing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311