JPH05171218A - Production of sintered titanium alloy member having hollow part - Google Patents

Production of sintered titanium alloy member having hollow part

Info

Publication number
JPH05171218A
JPH05171218A JP34136691A JP34136691A JPH05171218A JP H05171218 A JPH05171218 A JP H05171218A JP 34136691 A JP34136691 A JP 34136691A JP 34136691 A JP34136691 A JP 34136691A JP H05171218 A JPH05171218 A JP H05171218A
Authority
JP
Japan
Prior art keywords
jig
titanium alloy
small
round bar
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34136691A
Other languages
Japanese (ja)
Inventor
Toshiya Yamaguchi
登士也 山口
Taku Saito
卓 斎藤
Tadahiko Furuta
忠彦 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP34136691A priority Critical patent/JPH05171218A/en
Publication of JPH05171218A publication Critical patent/JPH05171218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of a sintered titanium alloy member having a hollow part. CONSTITUTION:A large round bar-shaped jig 21 and a small round bar-shaped jig 22 are inserted respectively into hollow large-journal parts 11 and hollow small-journal parts 12 of a green compact molding 1. These jigs 21, 22 consist of a material having the higher coefft. of linear expansion than the coefft. of linear expansion of a titanium alloy and is hardly reactable with the titanium alloy at a sintering temp. The inside surfaces of the large-journal parts 11 and small-journal parts 12 are adhered to the outside surfaces of the jigs 21, 22 by the linear expansion of the jigs 21, 22 and the shrinkage of the green compact molding 1, by which the inside surface shapes of the large-journal parts 11 and small-journal parts 12 are corrected along the outside surface shapes of the jigs. Clearances are made between the jigs 21, 22 and the respective journal parts 11, 12 by a difference in the coefft. of linear expansion after cooling down to room temp., by which the jigs 21, 22 are easily removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中空部を有する焼結チ
タン合金部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy member having a hollow portion.

【0002】[0002]

【従来の技術】チタン合金は低比重であるとともに、超
強力鋼や高力アルミ合金等の高強度材と比べてもより高
い比強度、比靱性を有する。このため、チタン合金は軽
量化及び高強度化が不可欠な構造部品、例えば航空機や
宇宙機器、レーシングカー等の構造部品に広く利用され
ている。
2. Description of the Related Art Titanium alloy has a low specific gravity and also has higher specific strength and specific toughness as compared with high strength materials such as super strong steel and high strength aluminum alloy. For this reason, titanium alloys are widely used for structural parts in which weight reduction and high strength are essential, such as structural parts for aircraft, space equipment, racing cars, and the like.

【0003】このチタン合金は、素材価格が高く、また
難加工性のために材料歩留りが悪い。このような理由か
ら、チタン合金を量産車用の部品等に適用することは困
難とされてきたが、近年の粉末冶金技術の進歩、具体的
には焼結技術の向上や、CIP成形、HIP処理などの
新しい成形技術の実用化により、上記問題も解消されつ
つある。
This titanium alloy has a high material cost and has a poor material yield because of its difficult workability. For these reasons, it has been difficult to apply titanium alloys to parts for mass-produced vehicles, but recent advances in powder metallurgy technology, specifically improvement of sintering technology, CIP molding, and HIP The above problems are being solved by the practical application of new molding techniques such as processing.

【0004】粉末冶金法は合金粉末法と素粉末混合法と
に大別され、前者は予め合金化した粉末を原料としてH
IP処理などにより直接固化する方法であり、後者は純
チタン粉末と強化用母合金粉末とを混合し成形、焼結す
る方法である。両者を比較すると、素粉末混合法の方が
原料粉末、製造プロセスともに極めて低コストであり、
大幅なコストダウンが期待できる。
The powder metallurgy method is roughly classified into an alloy powder method and an elemental powder mixing method.
This is a method of directly solidifying by IP treatment or the like, and the latter is a method of mixing pure titanium powder and strengthening mother alloy powder, molding and sintering. Comparing the two, the raw powder mixing method is extremely low in both raw material powder and manufacturing process,
A significant cost reduction can be expected.

【0005】[0005]

【発明が解決しようとする課題】上記素粉末混合法で焼
結チタン合金部材を製造する場合、原料粉末から成形し
た圧粉成形体を焼結する際に、焼結による緻密化に伴っ
て5〜10%程度の寸法収縮を生じる。また、焼結は通
常1300℃程度の高温で行われるため、圧粉成形体の
自重などにより反りを生じやすい。特に、中空部を有す
る部材は、焼結時にその形状が変形しやすい。また、チ
タン合金製コネクティングロッドなどを製造する場合、
その中空部の内面形状や内径を精密に加工する必要があ
る。このため、焼結後の機械加工により中空部の寸法精
度を向上させることが不可欠となり、コストアップを強
いられる。
When a sintered titanium alloy member is manufactured by the above-mentioned raw powder mixing method, when a green compact molded from raw material powder is sintered, it is accompanied by densification due to sintering. Dimensional shrinkage of about 10% occurs. Further, since the sintering is usually performed at a high temperature of about 1300 ° C., the powder compact tends to warp due to its own weight. Particularly, a member having a hollow portion is likely to be deformed in shape during sintering. In addition, when manufacturing connecting rods made of titanium alloy,
It is necessary to precisely process the inner surface shape and inner diameter of the hollow portion. For this reason, it is indispensable to improve the dimensional accuracy of the hollow portion by machining after sintering, and the cost is increased.

【0006】本発明は上記実情に鑑みてなされたもので
あり、素粉末混合法で中空部を有する焼結チタン合金部
材を製造する際、焼結したままの状態で中空部の寸法精
度を向上させることのできる焼結方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and when manufacturing a sintered titanium alloy member having a hollow portion by an elementary powder mixing method, the dimensional accuracy of the hollow portion is improved in the as-sintered state. An object of the present invention is to provide a sintering method that can be performed.

【0007】[0007]

【課題を解決するための手段】本発明の中空部を有する
焼結チタン合金部材の製造方法は、中空部を有するチタ
ン合金の圧粉成形体の該中空部の内面形状より小さな外
面形状を有し、チタン合金より線膨張係数が大きい材料
よりなり、かつ少なくともその外表面が焼結温度でチタ
ン合金と反応しにくい材料よりなる治具を、該圧粉成形
体の中空部に挿通する工程と、前記中空部に治具が挿通
された圧粉成形体を焼結温度に加熱し、前記圧粉成形体
の中空部の内面を前記治具の外表面に密着させつつ、前
記圧粉成形体を焼結して焼結体とする工程と、前記治具
及び焼結体を冷却し、前記焼結体の中空部から前記治具
を抜き取る工程とからなることを特徴とする。
A method for producing a sintered titanium alloy member having a hollow portion according to the present invention has an outer surface shape smaller than an inner surface shape of the hollow portion of a titanium alloy powder compact having a hollow portion. And a step of inserting a jig made of a material having a linear expansion coefficient larger than that of the titanium alloy and at least the outer surface of which is difficult to react with the titanium alloy at the sintering temperature into the hollow portion of the powder compact. The powder compact formed by inserting a jig into the hollow is heated to a sintering temperature, and the inner surface of the hollow of the compact is closely adhered to the outer surface of the jig. And a step of cooling the jig and the sintered body and withdrawing the jig from the hollow portion of the sintered body.

【0008】[0008]

【作用】本発明の中空部を有する焼結チタン合金部材の
製造方法は、圧粉成形体の中空部に、該中空部の内面形
状より小さな外面形状を有する治具を挿入し、これらを
所定の焼結温度で加熱保持して行う。図4に焼結前後に
おける中空部の内径と治具の外形との関係を概略的に説
明するように、焼結温度まで加熱する昇温過程中、圧粉
成形体及び治具共に熱膨張する。焼結温度で所定時間保
持する焼結過程中、圧粉成形体は収縮し、圧粉成形体の
中空部も収縮する。このため、上記焼結中に、中空部の
内面が治具の外表面に密着し、中空部の内面形状が治具
の外面形状に沿って矯正される。また、治具の外表面は
焼結温度でチタン合金と反応しにくい材料よりなるの
で、高活性なチタン合金であっても上記焼結中に治具と
反応する不都合はない。このように、圧粉成形体の焼結
による収縮を利用して、中空部の内面形状を治具の外面
形状で矯正しつつ圧粉成形体を焼結できるので、中空部
内面の寸法精度を向上させることが可能となる。
According to the method for producing a sintered titanium alloy member having a hollow portion of the present invention, a jig having an outer surface shape smaller than the inner surface shape of the hollow portion is inserted into the hollow portion of the powder compact, and these are predetermined. It is performed by heating and holding at the sintering temperature. As schematically illustrated in FIG. 4, the relationship between the inner diameter of the hollow portion and the outer shape of the jig before and after sintering, both the green compact and the jig are thermally expanded during the heating process of heating to the sintering temperature. .. During the sintering process in which the powder compact is held at the sintering temperature for a predetermined time, the powder compact shrinks, and the hollow part of the powder compact also shrinks. Therefore, during the sintering, the inner surface of the hollow portion comes into close contact with the outer surface of the jig, and the inner surface shape of the hollow portion is corrected along the outer surface shape of the jig. Further, since the outer surface of the jig is made of a material that does not easily react with the titanium alloy at the sintering temperature, even a highly active titanium alloy does not have the disadvantage of reacting with the jig during the sintering. In this way, the shrinkage due to sintering of the powder compact can be used to correct the inner surface shape of the hollow part with the outer surface shape of the jig while sintering the powder compact, so that the dimensional accuracy of the inner surface of the hollow part can be improved. It is possible to improve.

【0009】また上記焼結後、焼結温度から室温などに
冷却される冷却過程では、焼結体及び治具はともに熱収
縮するが、治具はチタン合金より線膨張係数の大きい材
料よりなるので、チタン合金からなる焼結体よりも大き
く収縮する。この結果、焼結体の中空部の内面と治具の
外面との間には隙間が形成され、治具を中空部から容易
に抜き出すことができる。
In the cooling process of cooling from the sintering temperature to room temperature after the above-mentioned sintering, both the sintered body and the jig thermally contract, but the jig is made of a material having a larger linear expansion coefficient than the titanium alloy. Therefore, it shrinks more than the sintered body made of titanium alloy. As a result, a gap is formed between the inner surface of the hollow portion of the sintered body and the outer surface of the jig, and the jig can be easily extracted from the hollow portion.

【0010】[0010]

【実施例】以下、本発明をチタン合金製コネクティング
ロッドを製造する場合に適用した実施例を説明する。 (実施例1)目標組成をTi−6Al−4Vとして、純
チタン粉末(−100メッシュ、平均粒径70μm)と
Al−40V合金粉末(−100メッシュ、平均粒径1
0μm)とを混合した。この混合物をCIP成形にて圧
力4ton/cm2 でコネクティングロッド形状の圧粉
成形体1を複数成形した。この圧粉成形体1は、その両
端にそれぞれ中空状の大ジャーナル部11、小ジャーナ
ル部12をもっている。なお、この圧粉成形体1は、焼
結による収縮を見越してコネクティングロッドの実部品
寸法より全体的に大きく形成されている。
EXAMPLES Examples in which the present invention is applied to the production of a titanium alloy connecting rod will be described below. (Example 1) Pure titanium powder (-100 mesh, average particle size 70 µm) and Al-40V alloy powder (-100 mesh, average particle size 1) with Ti-6Al-4V as the target composition.
0 μm). A plurality of connecting rod-shaped powder compacts 1 were molded from this mixture by CIP molding at a pressure of 4 ton / cm 2 . The green compact 1 has a hollow large journal portion 11 and a hollow large journal portion 12 at both ends thereof. The green compact 1 is generally larger than the actual part size of the connecting rod in consideration of shrinkage due to sintering.

【0011】コネクティングロッドの大ジャーナル部の
内径の実部品寸法よりやや小さい外径を有する大丸棒状
治具21、及び小ジャーナル部の内径の実部品寸法より
やや小さい外径を有する小丸棒状治具22を準備した。
この大丸棒状治具21、小丸棒状治具22は、ジルコニ
ア(ZrO2 、線膨張係数:約10.5×10-6/℃)
からなり、チタン合金(Ti−6Al−4V合金、線膨
張係数:約9×10-6/℃)より線膨張係数が大きく、
かつ高温(1200〜1300℃)においてもチタン合
金と反応しにくいものである。
A large round bar jig 21 having an outer diameter slightly smaller than the actual part size of the inner diameter of the large journal part of the connecting rod, and a small round bar jig 22 having an outer diameter slightly smaller than the actual part size of the inner diameter of the small journal part. Prepared.
The large round bar jig 21 and the small round bar jig 22 are made of zirconia (ZrO 2 , linear expansion coefficient: about 10.5 × 10 −6 / ° C.).
It has a larger linear expansion coefficient than titanium alloy (Ti-6Al-4V alloy, linear expansion coefficient: about 9 × 10 −6 / ° C.),
Moreover, it is difficult to react with the titanium alloy even at high temperatures (1200 to 1300 ° C.).

【0012】大丸棒状治具21、小丸棒状治具22を圧
粉成形体1の大ジャーナル部11、小ジャーナル部12
にそれぞれ挿通した。なお、圧粉成形体1は上述したよ
うに実部品寸法より大きく形成されているので、大ジャ
ーナル部11と大丸棒状治具21との間、及び小ジャー
ナル部12と小丸棒状治具22との間にはそれぞれ隙間
が存在している。
The large round bar jig 21 and the small round bar jig 22 are connected to the large journal portion 11 and the small journal portion 12 of the powder compact 1.
Inserted into each. Since the green compact 1 is formed larger than the actual part size as described above, the space between the large journal portion 11 and the large round bar jig 21 and between the small journal portion 12 and the small round bar jig 22 is increased. There are gaps between them.

【0013】そして、大丸棒状治具21、小丸棒状治具
22を平行に維持するとともに軸間距離を所定の値にす
る目的で、大ジャーナル部11に挿通した大丸棒状治具
21の両端を一対の保持台3の下方部に水平に固定する
とともに、小ジャーナル部12に挿通した小丸棒状治具
22の両端を一対の保持台3の上方部に水平に横架し
た。なお、一対の保持台3の下方部には、それぞれ同高
さの位置に貫通孔31が形成されており、この貫通孔3
1に大丸棒状治具21の両端が挿嵌される。また、一対
の保持台3の上方部には、それぞれ同深さのU状溝32
が形成されており、このU状溝32内に小丸棒状治具2
2の両端部分が配置される。なお、このとき小丸棒状治
具22とU状溝32の底部とは接触していない。すなわ
ち、U状溝32の深さは、圧粉成形体1の収縮により小
丸棒状治具22がU状溝32の底部に支承されたとき
に、大丸棒状治具21と小丸棒状治具22との距離がコ
ネクティングロッドの軸間距離の実部品寸法に等しくな
るように設定されている。したがって、圧粉成形体1が
上述したように実部品寸法より大きく形成されているの
で、小丸棒状治具22とU状溝32の底部とは接触して
いない。
In order to maintain the large round bar jig 21 and the small round bar jig 22 in parallel and to set the axial distance to a predetermined value, a pair of both ends of the large round bar jig 21 inserted into the large journal portion 11 is formed. While being horizontally fixed to the lower part of the holding table 3, the both ends of the small round rod-shaped jig 22 inserted into the small journal portion 12 were horizontally mounted above the pair of holding tables 3. In addition, through holes 31 are formed in the lower portions of the pair of holding bases 3 at the same height position.
Both ends of the large round bar-shaped jig 21 are inserted and fitted in 1. Further, the U-shaped grooves 32 having the same depth are provided on the upper portions of the pair of holding bases 3, respectively.
Is formed in the U-shaped groove 32.
Two end portions of 2 are arranged. At this time, the small round bar jig 22 and the bottom of the U-shaped groove 32 are not in contact with each other. That is, the depth of the U-shaped groove 32 depends on the size of the large round bar-shaped jig 21 and the small round bar-shaped jig 22 when the small round bar-shaped jig 22 is supported on the bottom of the U-shaped groove 32 due to the contraction of the powder compact 1. Is set to be equal to the actual part dimension of the distance between the axes of the connecting rods. Therefore, since the powder compact 1 is formed larger than the actual part size as described above, the small round bar jig 22 and the bottom of the U-shaped groove 32 are not in contact with each other.

【0014】このようにセットしたものを真空炉内に挿
入し、10-5torr、1300℃の条件で4時間真空
焼結を行った。なお、この焼結過程において圧粉成形体
1は収縮するので、大ジャーナル部11、小ジャーナル
部12の内周面は、それぞれ大丸棒状治具21、小丸棒
状治具22の外周面に密着し、各ジャーナル部11、1
2の真円度が矯正される。
The thus set product was inserted into a vacuum furnace and vacuum-sintered for 4 hours under the conditions of 10 -5 torr and 1300 ° C. Since the green compact 1 shrinks during this sintering process, the inner peripheral surfaces of the large journal portion 11 and the small journal portion 12 are in close contact with the outer peripheral surfaces of the large round bar jig 21 and the small round bar jig 22, respectively. , Each journal section 11, 1
A roundness of 2 is corrected.

【0015】焼結終了後、室温に冷却したら、圧粉成形
体1の収縮により、大ジャーナル部11と小ジャーナル
部12との軸間距離が縮み、一対の保持台3の上方部に
横架された小丸棒状治具22はU状溝31の底部に当接
して保持されていた。すなわち、コネクティングロッド
の軸間距離の実部品寸法と等しい距離を隔てて一対の保
持台3に平行に保持された大丸棒状治具21、小丸棒状
治具22により、上記大ジャーナル部11、小ジャーナ
ル部12の軸間距離や平行度を正しく矯正して焼結する
ことができた。また、チタン合金とジルコニアとの線膨
張係数の差に応じて、大ジャーナル部11と大丸棒状治
具21との間、及び小ジャーナル部12と小丸棒状治具
22との間にはそれぞれ隙間が生じており、大丸棒状治
具21、小丸棒状治具22はともに容易に抜き取ること
ができた。そして、大ジャーナル部11、小ジャーナル
部12の真円度も極めて良好だった。 (実施例2)本実施例2は、コネクティングロッドの大
ジャーナル部11、小ジャーナル部12の両端面(スラ
スト面)の平面度及び平行度も良好にするようにしたも
のである。
After the completion of sintering, when cooled to room temperature, the axial distance between the large journal portion 11 and the small journal portion 12 is shortened due to the contraction of the powder compact 1, and it is laid horizontally above the pair of holding bases 3. The small round bar jig 22 thus abutted and held on the bottom of the U-shaped groove 31. That is, the large journal portion 11 and the small journal portion are held by the large round rod-shaped jig 21 and the small round rod-shaped jig 22 which are held in parallel by the pair of holding bases 3 with a distance equal to the actual part dimension of the axial distance of the connecting rod. It was possible to sinter by correcting the axial distance and parallelism of the part 12 correctly. Further, depending on the difference in linear expansion coefficient between the titanium alloy and zirconia, there are gaps between the large journal portion 11 and the large round bar jig 21, and between the small journal portion 12 and the small round bar jig 22, respectively. The large round bar-shaped jig 21 and the small round bar-shaped jig 22 could be easily removed. The roundnesses of the large journal section 11 and the small journal section 12 were also extremely good. (Embodiment 2) In Embodiment 2, the flatness and parallelism of both end surfaces (thrust surfaces) of the large journal portion 11 and the small journal portion 12 of the connecting rod are improved.

【0016】上記実施例1と同様に、純チタン粉末とA
l−40V合金粉末との混合物からCIP成形により、
その両端にそれぞれ中空状の大ジャーナル部11、小ジ
ャーナル部12をもつコネクティングロッド形状の圧粉
成形体1を複数形成した。図2及び図3に示すように、
それぞれジルコニア製のスペーサ4、大丸棒状治具2
1、小丸棒状治具22を準備した。大丸棒状治具21の
外径はコネクティングロッドの大ジャーナル部の内径の
実部品寸法よりやや小さく、小丸棒状治具22の外径は
小ジャーナル部の内径の実部品寸法よりやや小さく設定
されている。
As in Example 1, pure titanium powder and A
From a mixture with 1-40V alloy powder by CIP molding,
A plurality of connecting rod-shaped powder compacts 1 each having a hollow large journal portion 11 and a hollow large journal portion 12 at both ends thereof were formed. As shown in FIGS. 2 and 3,
Zirconia spacer 4 and large round bar jig 2
1. A small round bar jig 22 was prepared. The outer diameter of the large round bar jig 21 is set to be slightly smaller than the actual part size of the inner diameter of the large journal portion of the connecting rod, and the outer diameter of the small round bar jig 22 is set to be slightly smaller than the actual part size of the inner diameter of the small journal portion. ..

【0017】上記スペーサ4は、大ジャーナル部11の
端面に対応したリング状突部41a、中央凹部41b及
び案内孔41cをもつ下スペーサ部41と、下ジャーナ
ル部12の端面に対応したリング状突部42a、中央凹
部42b及び案内棒42cをもつ上スペーサ部42とか
ら構成されている。そして、上スペーサ部42の案内棒
42bが下スペーサ部41の案内孔41b内にスライド
可能に保持されている。なお、下スペーサ部41の上端
面41dが上スペーサ部42の下端面42dに当接した
ときに、中央凹部41bに保持される大丸棒状治具21
と中央凹部42bに保持される小丸棒状治具22との距
離がコネクティングロッドの軸間距離の実部品寸法に等
しくなるように設定されている。また、上記下スペーサ
部41の中央凹部41bの内径は大丸棒状治具21の外
径にほぼ等しく、上記上スペーサ部42の中央凹部42
bの内径は小丸棒状治具22の外径にほぼ等しく設定さ
れている。
The spacer 4 includes a lower spacer portion 41 having a ring-shaped protrusion 41a corresponding to the end face of the large journal portion 11, a central recess 41b and a guide hole 41c, and a ring-shaped protrusion corresponding to the end face of the lower journal portion 12. The upper spacer portion 42 has a portion 42a, a central recess 42b, and a guide rod 42c. The guide rod 42b of the upper spacer portion 42 is slidably held in the guide hole 41b of the lower spacer portion 41. When the upper end surface 41d of the lower spacer portion 41 abuts on the lower end surface 42d of the upper spacer portion 42, the large round bar jig 21 held in the central recess 41b.
And the distance between the small round bar jig 22 held in the central recess 42b is set to be equal to the actual part dimension of the axial distance of the connecting rod. Further, the inner diameter of the central recess 41b of the lower spacer portion 41 is substantially equal to the outer diameter of the large round bar jig 21, and the central recess 42 of the upper spacer portion 42 is formed.
The inner diameter of b is set to be substantially equal to the outer diameter of the small round bar jig 22.

【0018】大丸棒状治具21、小丸棒状治具22を圧
粉成形体1の大ジャーナル部11、小ジャーナル部12
にそれぞれ挿通した。なお、圧粉成形体1は上述したよ
うに実部品寸法より大きく形成されているので、大ジャ
ーナル部11と大丸棒状治具21との間、及び小ジャー
ナル部12と小丸棒状治具22との間にはそれぞれ隙間
が存在している。
The large round bar-shaped jig 21 and the small round bar-shaped jig 22 are attached to the large journal portion 11 and the small journal portion 12 of the powder compact 1.
Inserted into each. Since the green compact 1 is formed larger than the actual part size as described above, the space between the large journal portion 11 and the large round bar jig 21 and between the small journal portion 12 and the small round bar jig 22 is increased. There are gaps between them.

【0019】そして、大ジャーナル部11に挿通した大
丸棒状治具21の両端を隣合う各下スペーサ部41の中
央凹部41bに挿入し、小ジャーナル部12に挿通した
小丸棒状治具22の両端を隣合う各上スペーサ部42の
中央凹部42bに挿入した。このようにして、3個の圧
粉成形体1を4個のスペーサ4でそれぞれ挟むようにセ
ットした。なお、このとき大丸棒状治具21の両端と各
下スペーサ部41の中央凹部41bの底部との間、及び
小丸棒状治具22の両端と各上スペーサ部42の中央凹
部42bの底部との間にはそれぞれ隙間が存在してい
る。
Then, both ends of the large round rod-shaped jig 21 inserted into the large journal portion 11 are inserted into the central concave portions 41b of the adjacent lower spacer portions 41, and both ends of the small round rod-shaped jig 22 inserted into the small journal portion 12 are inserted. It was inserted into the central recess 42b of each adjacent upper spacer portion 42. In this way, the three green compacts 1 were set so as to be sandwiched by the four spacers 4, respectively. At this time, between both ends of the large round bar jig 21 and the bottom of the central recess 41b of each lower spacer section 41, and between both ends of the small round bar jig 22 and the bottom of the central recess 42b of each upper spacer section 42. There are gaps in each.

【0020】このようにセットしたものを真空炉内に挿
入し、両外側のスペーサ4から1kgの荷重を加えなが
ら、10-5torr、1300℃の条件で4時間真空焼
結を行った。なお、この焼結過程において圧粉成形体1
は収縮するので、大ジャーナル部11、小ジャーナル部
12の内周面は、それぞれ大丸棒状治具21、小丸棒状
治具22の外周面に密着し、各ジャーナル部11、12
の真円度が矯正される。また、大ジャーナル部11、小
ジャーナル部12の両端面は、それぞれ下スペーサ部4
1のリング状突部41a、上スペーサ部42のリング状
突部42aに密着し、その平行度及び平面度が矯正され
る。このとき、各リング状突部41a同士による大ジャ
ーナル部11の圧縮量は、大丸棒状治具21の両端が各
リング状突部41aの底部にそれぞれ当接することによ
り規制される。また、各リング状突部42a同士による
小ジャーナル部12の圧縮量も、同様に小丸棒状治具2
2の両端が各リング状突部42aの底部にそれぞれ当接
することにより規制される。
The thus set product was inserted into a vacuum furnace, and vacuum sintering was carried out for 4 hours under conditions of 10 -5 torr and 1300 ° C. while applying a load of 1 kg from the spacers 4 on both outer sides. In this sintering process, the green compact 1
Contract, the inner peripheral surfaces of the large journal portion 11 and the small journal portion 12 are in close contact with the outer peripheral surfaces of the large round rod-shaped jig 21 and the small round rod-shaped jig 22, respectively.
The roundness of is corrected. Further, both end surfaces of the large journal portion 11 and the small journal portion 12 are respectively attached to the lower spacer portion 4
The ring-shaped protrusion 41a of No. 1 and the ring-shaped protrusion 42a of the upper spacer 42 are brought into close contact with each other, and their parallelism and flatness are corrected. At this time, the amount of compression of the large journal portion 11 between the ring-shaped protrusions 41a is regulated by contacting both ends of the large round bar jig 21 with the bottoms of the ring-shaped protrusions 41a. In addition, the compression amount of the small journal portion 12 between the ring-shaped protrusions 42a is also the same as that of the small round bar jig 2.
Both ends of 2 are regulated by abutting on the bottom of each ring-shaped protrusion 42a.

【0021】焼結終了後、室温に冷却したら、圧粉成形
体1の収縮により、大ジャーナル部11と小ジャーナル
部12との軸間距離が縮み、上スペーサ部42は下方に
スライドし、上スライド部42の下端面42dが下スラ
イド部41の上端面41d当接して保持されていた。す
なわち、コネクティングロッドの軸間距離の実部品寸法
と等しい距離を隔てて隣合うスペーサ4に平行に保持さ
れた大丸棒状治具21、小丸棒状治具22により、上記
大ジャーナル部11、小ジャーナル部12の軸間距離や
平行度を正しく矯正して焼結することができた。また、
チタン合金とジルコニアとの線膨張係数の差に応じて、
大ジャーナル部11と大丸棒状治具21との間、及び小
ジャーナル部12と小丸棒状治具22との間にはそれぞ
れ隙間が生じており、大丸棒状治具21、小丸棒状治具
22はともに容易に抜き取ることができた。そして、大
ジャーナル部11、小ジャーナル部12の真円度も極め
て良好だった。さらに、大ジャーナル部11、小ジャー
ナル部12の両端面も、平面度及び平行度ともに極めて
良好だった。
After the sintering, when cooled to room temperature, the axial distance between the large journal portion 11 and the small journal portion 12 is contracted due to the shrinkage of the powder compact 1, and the upper spacer portion 42 slides downwards. The lower end surface 42d of the slide portion 42 was held in contact with the upper end surface 41d of the lower slide portion 41. That is, the large journal portion 11 and the small journal portion are held by the large round rod-shaped jig 21 and the small round rod-shaped jig 22 which are held in parallel with the spacers 4 adjacent to each other with a distance equal to the actual part dimension of the axial distance of the connecting rod. It was possible to correct the inter-axis distance and parallelism of 12 correctly and sinter. Also,
Depending on the difference in linear expansion coefficient between titanium alloy and zirconia,
There are gaps between the large journal portion 11 and the large round rod jig 21, and between the small journal portion 12 and the small round rod jig 22, respectively. It could be pulled out easily. The roundnesses of the large journal section 11 and the small journal section 12 were also extremely good. Furthermore, the flatness and parallelism of both end surfaces of the large journal portion 11 and the small journal portion 12 were also extremely good.

【0022】なお、上記実施例1、2では、大丸棒状治
具21、小丸棒状治具22として、ジルコニア製のもの
を用いたが、線膨張係数がチタン合金より大きく、かつ
焼結温度でチタン合金と反応しにくい材料であるCaO
(線膨張係数:約13×10 -6/℃)、MgO(線膨張
係数:約13.5×10-6/℃)などからなるものを用
いてもよい。また、上記治具として、ステンレスなどの
チタン合金よりも線膨張係数の大きい材料よりなり、そ
の外表面部分のみがZrO2 などの焼結温度でチタン合
金と反応しにくい材料でコーティングされたものを用い
こともできる。
In the first and second embodiments, the large round bar-shaped
As the tool 21 and the small round bar jig 22, those made of zirconia
Was used, the coefficient of linear expansion was larger than that of titanium alloy, and
CaO, a material that does not easily react with titanium alloys at the sintering temperature
(Coefficient of linear expansion: about 13 × 10 -6/ ° C), MgO (linear expansion
Coefficient: About 13.5 × 10-6/ ° C) etc.
You may stay. In addition, as the above jig, stainless steel etc.
It is made of a material with a larger linear expansion coefficient than titanium alloy.
Only the outer surface of ZrO2At the sintering temperature such as
Use a material that is hard to react with gold
You can also

【0023】また上記実施例1、2では、コネクティン
グロッドのジャーナル部のように貫通孔により形成され
る中空部の例を示したが、中空部の形状はこれに限ら
ず、例えば半球状等に抉られた凹部により形成される中
空部とすることもできる。
In the first and second embodiments described above, an example of the hollow portion formed by the through hole like the journal portion of the connecting rod is shown, but the shape of the hollow portion is not limited to this, and is, for example, hemispherical. It may be a hollow portion formed by a recessed portion that is hollowed.

【0024】[0024]

【発明の効果】以上詳述したように本発明の中空部を有
する焼結チタン合金部材の製造方法は、チタン合金より
線膨張係数が大きい材料よりなり、かつ少なくともその
外表面が焼結温度でチタン合金と反応しにくい材料より
なる治具を中空部に挿通した状態で焼結を行うことによ
り、中空部の内面を治具の外面で矯正しつつ焼結を行
い、焼結後には中空部から治具を容易に抜き取ることが
可能となり、中空部の内周面の寸法精度を向上させるこ
とできる。したがって、寸法精度を向上させるために焼
結後に機械加工をする必要がなく、コスト低減を図れ
る。
As described in detail above, the method for producing a sintered titanium alloy member having a hollow portion according to the present invention is made of a material having a linear expansion coefficient larger than that of a titanium alloy, and at least the outer surface of the material has a sintering temperature at a sintering temperature. By performing the sintering with the jig made of a material that does not easily react with the titanium alloy inserted in the hollow part, the inner surface of the hollow part is corrected with the outer surface of the jig and then the sintering is performed. From this, the jig can be easily removed, and the dimensional accuracy of the inner peripheral surface of the hollow portion can be improved. Therefore, it is not necessary to perform machining after sintering to improve the dimensional accuracy, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る中空部を有する焼結チタン合金
の製造方法を説明する斜視図である。
FIG. 1 is a perspective view illustrating a method for manufacturing a sintered titanium alloy having a hollow portion according to a first embodiment.

【図2】実施例2に係る中空部を有する焼結チタン合金
の製造方法を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating a method of manufacturing a sintered titanium alloy having a hollow portion according to a second embodiment.

【図3】実施例2で用いたスペーサの正面図である。FIG. 3 is a front view of a spacer used in Example 2.

【図4】焼結前後における中空部の内径と治具の外形と
の関係を概略的に説明する図である。
FIG. 4 is a diagram schematically illustrating a relationship between an inner diameter of a hollow portion and an outer shape of a jig before and after sintering.

【符号の説明】[Explanation of symbols]

1は圧粉成形体、11は大ジャーナル部、12は小ジャ
ーナル部、21は大丸棒状治具、22は小丸棒状治具で
ある。
Reference numeral 1 is a powder compact, 11 is a large journal portion, 12 is a small journal portion, 21 is a large round bar jig, and 22 is a small round bar jig.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 卓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 古田 忠彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Taku Saito Nagakute-cho, Aichi-gun, Aichi Prefecture 1-41 Yokomichi, Yokochi Central Research Institute Co., Ltd. (72) Inventor Tadahiko Furuta, Nagakute-cho, Aichi-gun 41, Yokoyokomichi Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空部を有するチタン合金の圧粉成形体
の該中空部の内面形状より小さな外面形状を有し、チタ
ン合金より線膨張係数が大きい材料よりなり、かつ少な
くともその外表面が焼結温度でチタン合金と反応しにく
い材料よりなる治具を、該圧粉成形体の中空部に挿通す
る工程と、 前記中空部に治具が挿通された圧粉成形体を焼結温度に
加熱し、前記圧粉成形体の中空部の内面を前記治具の外
表面に密着させつつ、前記圧粉成形体を焼結して焼結体
とする工程と、 前記治具及び焼結体を冷却し、前記焼結体の中空部から
前記治具を抜き取る工程とからなることを特徴とする中
空部を有する焼結チタン合金部材の製造方法。
1. A titanium alloy powder compact having a hollow portion is made of a material having an outer surface shape smaller than the inner surface shape of the hollow portion and having a linear expansion coefficient larger than that of the titanium alloy, and at least the outer surface thereof is burnt. A step of inserting a jig made of a material that does not easily react with the titanium alloy at the binding temperature into the hollow part of the powder compact, and heating the powder compact with the jig inserted into the hollow part to the sintering temperature. Then, while the inner surface of the hollow portion of the powder compact is closely attached to the outer surface of the jig, the step of sintering the powder compact to obtain a sintered body, and the jig and the sintered body A method for producing a sintered titanium alloy member having a hollow portion, which comprises cooling and removing the jig from the hollow portion of the sintered body.
JP34136691A 1991-12-24 1991-12-24 Production of sintered titanium alloy member having hollow part Pending JPH05171218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34136691A JPH05171218A (en) 1991-12-24 1991-12-24 Production of sintered titanium alloy member having hollow part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34136691A JPH05171218A (en) 1991-12-24 1991-12-24 Production of sintered titanium alloy member having hollow part

Publications (1)

Publication Number Publication Date
JPH05171218A true JPH05171218A (en) 1993-07-09

Family

ID=18345508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34136691A Pending JPH05171218A (en) 1991-12-24 1991-12-24 Production of sintered titanium alloy member having hollow part

Country Status (1)

Country Link
JP (1) JPH05171218A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536967A (en) * 2001-05-14 2004-12-09 ハネウェル・インターナショナル・インコーポレーテッド Sintering methods and tools used for metal injection molding of large parts
US7635405B2 (en) 2001-05-14 2009-12-22 Honeywell International Inc. Sintering process and tools for use in metal injection molding of large parts
KR102392104B1 (en) * 2021-06-10 2022-04-29 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same
KR102405771B1 (en) * 2021-06-10 2022-06-07 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same
WO2022260356A1 (en) * 2021-06-10 2022-12-15 한국피아이엠(주) Metal powder injection molded product for manufacturing metal frame basic product, system comprising same metal powder injection molded product, and method for manufacturing metal frame basic product by using same
KR20230151195A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding product for metallic frame and the method for manufacturing the same
KR20230151198A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding system for metallic frame and the manufacturing method for manufacturing using the same
KR20230151199A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding system for metallic frame and the manufacturing method for metallic frame using the system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536967A (en) * 2001-05-14 2004-12-09 ハネウェル・インターナショナル・インコーポレーテッド Sintering methods and tools used for metal injection molding of large parts
US7635405B2 (en) 2001-05-14 2009-12-22 Honeywell International Inc. Sintering process and tools for use in metal injection molding of large parts
KR102392104B1 (en) * 2021-06-10 2022-04-29 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same
KR102405771B1 (en) * 2021-06-10 2022-06-07 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same
WO2022260356A1 (en) * 2021-06-10 2022-12-15 한국피아이엠(주) Metal powder injection molded product for manufacturing metal frame basic product, system comprising same metal powder injection molded product, and method for manufacturing metal frame basic product by using same
WO2022260354A1 (en) * 2021-06-10 2022-12-15 한국피아이엠(주) Metal injection molded product system for manufacturing metal frame base product, and method for manufacturing metal frame base product by using same
KR20230151195A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding product for metallic frame and the method for manufacturing the same
KR20230151198A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding system for metallic frame and the manufacturing method for manufacturing using the same
KR20230151199A (en) 2022-04-25 2023-11-01 한국피아이엠(주) Metal powder injection molding system for metallic frame and the manufacturing method for metallic frame using the system

Similar Documents

Publication Publication Date Title
ATE75979T1 (en) PROCESS FOR MANUFACTURING POWDER-FORGED COMPONENTS.
US4594219A (en) Powder metal consolidation of multiple preforms
Zhang et al. Al2O3 ceramics preparation by LOM (laminated object manufacturing)
JPH05171218A (en) Production of sintered titanium alloy member having hollow part
US6056915A (en) Rapid manufacture of metal and ceramic tooling
JP2002206101A (en) Method for manufacturing sintered article, method for manufacturing continuous body, method for forming article, and structure
US20070102572A1 (en) Method for making gas turbine elements and corresponding element
KR960013876B1 (en) Process for manufacturing a tubular semifinished copper alloy part
EP0523651B1 (en) Method for making high strength injection molded ferrous material
JP3863591B2 (en) Method for producing sintered metal powder
EP0240190B1 (en) Process for manufacturing ceramic sintered bodies and mold to be used therefor
KR100246596B1 (en) Method for forming a ceramic mold for metal casting
EP0599037A2 (en) Molding machine for making an optical element and method of making the same
CN101537624A (en) Manufacturing process of robot joints
RU99110388A (en) METHOD FOR MANUFACTURING MATCHED OTHERS WITH OTHER PARTS PARTS
Dias Theoretical and experimental analysis of plasticity equations for porous metals
JPH04154660A (en) Production of ceramic part
JP2002113595A (en) Method of manufacturing molding tool which has cooling duct and is subjected to thermal stress and associated molding tool
Whittaker P/M Component Production--Extending Shape Capability
JPS63114906A (en) Production of sinter-forged connecting rod
SU1740131A1 (en) Method of manufacturing a molding die
JPS63144174A (en) Manufacture of thermal pressure formed article
JP2681816B2 (en) Method for manufacturing mating article
KR19980079607A (en) Metal injection molding by core print
SU1206005A1 (en) Method of producing bimetallic articles