JPH0517073B2 - - Google Patents

Info

Publication number
JPH0517073B2
JPH0517073B2 JP61086033A JP8603386A JPH0517073B2 JP H0517073 B2 JPH0517073 B2 JP H0517073B2 JP 61086033 A JP61086033 A JP 61086033A JP 8603386 A JP8603386 A JP 8603386A JP H0517073 B2 JPH0517073 B2 JP H0517073B2
Authority
JP
Japan
Prior art keywords
rotating shaft
power
counter
pitch
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61086033A
Other languages
Japanese (ja)
Other versions
JPS62244791A (en
Inventor
Seiji Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61086033A priority Critical patent/JPS62244791A/en
Publication of JPS62244791A publication Critical patent/JPS62244791A/en
Publication of JPH0517073B2 publication Critical patent/JPH0517073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/106Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type with drive shafts of second or further propellers co-axially passing through hub of first propeller, e.g. counter-rotating tandem propellers with co-axial drive shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/323Bearings for coaxial propeller shafts, e.g. for driving propellers of the counter-rotative type

Landscapes

  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は推進装置に係り、特に互いに逆ピツチ
で構成された一対の推進器を有し、これら推進器
に二重反転軸を介して機関から動力を伝達して駆
動するようにした推進装置の運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a propulsion device, and particularly has a pair of thrusters configured with opposite pitches to each other, and an engine is connected to these thrusters via a counter-rotating shaft. The present invention relates to a method of operating a propulsion device that is driven by transmitting power from the drive device.

[従来の技術] 従来ヘリコプタ等の航空機や送風機、ポンプ等
にあつては、二重反転翼や二重反転インペラ等を
備えたものが知られており、大型船舶等にあつて
も推進効率の向上、省エネルギ化の観点から二重
反転プロペラを装備することが懸案されている。
[Prior Art] Conventionally, aircraft such as helicopters, blowers, pumps, etc. are equipped with counter-rotating blades, counter-rotating impellers, etc. There are concerns about installing counter-rotating propellers in order to improve performance and save energy.

二重反転プロペラで構成される推進装置は第8
図に示すように、船尾aに同軸で且つ軸方向に沿
つて重ねて直列に設けられ互いに逆ピツチで構成
された一対の固定ピツチのスクリユ推進器b,c
を、互いに反対方向に回転駆動させることにより
推力を発生するようになつている。この場合に、
これら推進器b,cを同軸で反対方向に駆動させ
るために二重反転軸dが採用される。この二重反
転軸dは、一方の推進器cを駆動する中空の外側
回転軸e内に、他方の推進器bを駆動する内側回
転軸fが挿通されて構成され、主機gの動力を、
歯車列h等を介して夫々の回転軸e,fに反対方
向に伝達することにより、一対の推進器b,cを
略等しい回転数で互いに反転できるようになつて
いる。そして、これら外側回転軸eと内側回転軸
fとの間には、これらの反転を円滑なものとする
ために、軸受iが介設されている。
The propulsion device, which consists of counter-rotating propellers, is the eighth
As shown in the figure, a pair of fixed-pitch screw propulsors b and c are installed coaxially on the stern a, stacked in series along the axial direction, and configured with opposite pitches to each other.
Thrust is generated by rotating the two in opposite directions. In this case,
A counter-rotating axis d is employed to drive these propulsors b and c coaxially and in opposite directions. This counter-rotating shaft d is constructed by inserting an inner rotating shaft f, which drives the other propeller b, into a hollow outer rotating shaft e, which drives one propeller c, and transmits the power of the main engine g.
By transmitting the power in opposite directions to the respective rotational axes e and f via the gear train h, etc., the pair of propellers b and c can be reversed with respect to each other at approximately the same number of rotations. A bearing i is interposed between the outer rotating shaft e and the inner rotating shaft f in order to ensure smooth reversal.

[発明が解決しようとする課題] ところで、このような二重反転軸dを利用し
て、互いに逆ピツチで構成された一対の固定ピツ
チの推進器b,cを同軸で反対方向に回転駆動さ
せて推力を発生させるようにした推進装置にあつ
ては、二重反転軸dの外側回転軸eと内側回転軸
fとの間に介設した軸受iが焼付き等を生じて、
これら二軸e,f間に固着するおそれがあつた。
このような軸受iの固着が生ずると、互いに反転
する回転軸e,f相互が他方の回転を規制し合つ
て回転不能となり、以後二重反転軸dによる推進
器b,cへの動力伝達が不能となつて継続して航
行することができなくなつてしまうという問題が
あつた。ここに、このような軸受iの固着のため
に二重反転軸dの各回転軸e,fの反転が不能と
なり、二重反転軸dによる動力伝達が困難となつ
た危急時には、例えば各回転軸e,fに動力を振
り分ける歯車列h等を動力伝達機構から離脱させ
ることによつて、少なくともいずれか一方の回転
軸fへの動力伝達を確保して航行を継続できるよ
うにすることが考えられる。
[Problems to be Solved by the Invention] By the way, by using such a counter-rotating axis d, it is possible to drive a pair of fixed-pitch propulsors b and c, which are configured with opposite pitches to each other, to rotate coaxially in opposite directions. In the case of a propulsion device that generates thrust by rotating the shaft, the bearing i interposed between the outer rotating shaft e and the inner rotating shaft f of the counter-rotating shaft d may seize or the like.
There was a risk that these two axes e and f would become stuck together.
When bearing i becomes stuck in this way, the rotational axes e and f, which are mutually inverted, restrict the rotation of the other, making it impossible to rotate, and henceforth, the power transmission to the propellers b and c via the counter-rotating axis d becomes impossible. There was a problem that the ship became disabled and could no longer sail continuously. Here, in an emergency when the rotational axes e and f of the counter-rotating shaft d are unable to be reversed due to the fixation of the bearing i, and it becomes difficult to transmit power by the counter-rotating shaft d, for example, each rotation The idea is to ensure power transmission to at least one of the rotating shafts f and continue navigation by removing gear train h, etc. that distributes power to axes e and f from the power transmission mechanism. It will be done.

しかしながら、この場合にあつても回転軸e,
f間に固着した軸受iにより、回転駆動される一
方の回転軸fに対して他方の回転軸eが同一方向
へつれ回りすることとなり、次のような問題を生
じさせる。即ち、一対の推進器b,cは互いに逆
ピツチで且つピツチが固定されたものであつて、
これらは互いに反対方向に回転駆動されることに
より同一方向へ推力を発生するようになつてい
る。従つて動力伝達を確保し得ても、これら推進
器b,cが同一方向に回転してしまうと互いに相
殺し合つて推力を発生させることができないとい
う問題があつた。そのため機関gからの動力伝達
は確保し得ても推進することができず、結局危急
状態から脱することはできなかつた。以上のよう
な問題点を考慮して、全体として信頼性高く、危
急時にあつても継続して航行できる推進システム
の案出が望まれている。
However, even in this case, the rotation axis e,
Due to the bearing i fixed between the bearings f, the other rotating shaft e rotates in the same direction with respect to the rotating shaft f, which causes the following problem. That is, the pair of propellers b and c are oppositely pitched and fixed in pitch,
These are designed to generate thrust in the same direction by being driven to rotate in opposite directions. Therefore, even if power transmission could be ensured, there was a problem in that if these propellers b and c rotate in the same direction, they cancel each other out and cannot generate thrust. As a result, even though power transmission from engine g could be secured, propulsion was not possible, and in the end it was not possible to escape from the critical situation. In consideration of the above-mentioned problems, it is desired to devise a propulsion system that is highly reliable as a whole and that allows continuous navigation even in emergency situations.

本発明は上述したような問題点を有効に解決す
べく創案されたものである。
The present invention has been devised to effectively solve the above-mentioned problems.

[課題を解決するための手段] 本発明は、中空の外側回転軸内に軸受を介して
内側回転軸が挿通され、互いに反転されつつ同軸
で動力を伝達する二重反転軸と、該二重反転軸の
外側回転軸及び内側回転軸夫々にその分配出力端
が連結されると共に入力端に機関が連結され、機
関動力をこれら回転軸に分配して伝達する動力分
配手段と、該動力分配手段の入力端と分配出力端
との間に設けられ上記回転軸のいずれか一方への
動力伝達を断つための動力切断手段と、上記二重
反転軸の外側回転軸及び内側回転軸夫々に、同軸
で且つ軸方向に沿つて重ねて設けられ、互いに逆
ピツチで構成されると共に少なくとも一方が可変
ピツチ機構を有する一対の推進器とを備えた推進
装置の運転方法において、軸受の固着が生じて回
転軸相互の反転が不能となつた時、上記動力切断
手段で一方の回転軸への動力伝達を断ち、かつ上
記可変ピツチ機構を作動して逆ピツチから同じ向
きのピツチに変更するようにしたものである。
[Means for Solving the Problems] The present invention provides a counter-rotating shaft in which an inner rotating shaft is inserted through a bearing into a hollow outer rotating shaft and transmits power coaxially while being reversed to each other; A power distribution means whose distribution output end is connected to each of the outer rotation shaft and the inner rotation shaft of the reversing shaft, and an engine is connected to the input end, and the power distribution means distributes and transmits the engine power to these rotation shafts, and the power distribution means a power cutting means provided between the input end and the distribution output end for cutting off power transmission to either one of the rotating shafts, and a coaxial In a method of operating a propulsion device including a pair of propulsion devices that are arranged one on top of the other along the axial direction, are configured with opposite pitches, and at least one of which has a variable pitch mechanism, the bearings become stuck and rotate. When the mutual rotation of the shafts becomes impossible, the power cutoff means cuts off the power transmission to one of the rotating shafts, and the variable pitch mechanism is operated to change the pitch from the opposite pitch to the pitch in the same direction. It is.

[作 用] 本発明の作用について述べると、入力される動
力を二重反転軸の外側回転軸及び内側回転軸夫々
に分配して伝達する動力分配手段の入力端と分配
出力端との間において、動力切断手段によりいず
れか一方の回転軸への動力伝達を断つことによ
り、軸受の固着が生じて回転軸相互の反転が不能
となつても、他方の回転軸を回転駆動させて動力
伝達を継続して行なえるようにすると共に、互い
に逆ピツチで構成され、二重反転軸の正常時、互
いに逆転されて同一方向へ推力を発生する一対の
推進器のうち、少なくとも一方の推進器を可変ピ
ツチとすることにより、危急時等二重反転軸の外
側回転軸と内側回転軸とが同一方向へ回転される
場合にはピツチを変更して、一対の推進器を共に
同じ向きのピツチとして同一方向回転で同一方向
に推力を発生できるようになつている。
[Function] To describe the function of the present invention, between the input end and the distribution output end of the power distribution means that distributes and transmits the input power to the outer rotation shaft and the inner rotation shaft of the counter-rotating shaft, respectively. By cutting off the power transmission to one of the rotating shafts using the power cutting means, even if the bearings become stuck and the rotating shafts cannot be reversed, the power transmission can be continued by driving the other rotating shaft to rotate. In addition to making it possible to carry out continuous operations, at least one of the pair of thrusters is configured with opposite pitches and is reversed to generate thrust in the same direction when the counter-rotating shaft is normal. By setting the pitch, when the outer rotation axis and the inner rotation axis of the counter-rotating shaft are rotated in the same direction in an emergency, the pitch can be changed and the pair of propellers can be set in the same pitch with the same direction. It is designed to generate thrust in the same direction by rotating the direction.

[実施例] 以下に、本発明の好適一実施例を添付図面に従
つて詳述する。
[Embodiment] A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に示すように船尾には、互いに逆ピツチ
で構成された一対のスクリユ推進器1,2が同軸
で且つ軸方向に沿つて重ねて直列に設けられ、こ
れら推進器1,2を互いに逆転させることにより
高い推進効率で推進できるようになつている。そ
してこれら推進器1,2には、これらを同軸で
夫々反対方向に回転駆動するために二重反転軸3
が連結される。二重反転軸3は、中空の外側回転
軸4内に軸受5を介して内側回転軸6が挿通され
て構成され、互いに反転されつつ同軸で動力を伝
達してこれら推進器1,2を駆動するようになつ
ている。ここに外側回転軸4は、船体に固定され
るハウジング7にスラスト軸受8及びラジアル軸
受9を介して回転自在に支持される。また内側回
転軸6は船尾側推進器1に連結され、他方外側回
転軸4は船首側推進器2に連結される。
As shown in Fig. 1, a pair of screw propulsors 1 and 2, which are configured with opposite pitches to each other, are installed coaxially and stacked in series along the axial direction, and these propulsors 1 and 2 are connected to each other. By reversing the direction, it is possible to achieve high propulsion efficiency. These propulsors 1 and 2 are provided with counter-rotating shafts 3 to coaxially drive them to rotate in opposite directions.
are concatenated. The counter-rotating shaft 3 is constructed by inserting an inner rotating shaft 6 through a bearing 5 into a hollow outer rotating shaft 4, and drives these propulsors 1 and 2 by coaxially transmitting power while being reversed with respect to each other. I'm starting to do that. Here, the outer rotating shaft 4 is rotatably supported by a housing 7 fixed to the hull via a thrust bearing 8 and a radial bearing 9. Further, the inner rotating shaft 6 is connected to the stern propeller 1, and the outer rotating shaft 4 is coupled to the bow propeller 2.

このようにして動力を伝達する二重反転軸3
と、動力を発生する機関(図示せず)との間に
は、外側回転軸4及び内側回転軸6夫々にその分
配出力端10a,10bが連結され、入力端10
cから入力される動力をこれら回転軸4,6に逆
回転で分配して伝達するための動力分配手段10
が設けられる。この動力分配手段10は具体的に
は第2図に示すように、機関から機関動力を伝達
するための中間軸11に接合されるフランジカツ
プリング12と、ハウジング7内に支持された遊
星歯車装置13と、これら遊星歯車装置13とフ
ランジカツプリング12とを連結するギヤカツプ
リング14とから構成される。フランジカツプリ
ング12は、二重反転軸3の内側回転軸6に嵌脱
自在に嵌入されて取り付けられる。他方遊星歯車
装置13は一般的構成で成り、内側回転軸6を囲
繞するスリーブ体15に嵌合されて取り付けられ
た環状の太陽歯車16と、ハウジング7にその公
転が規制されつつ自転自在に支持され太陽歯車1
6に噛合される遊星歯車17と、この遊星歯車1
7に噛合される環状の内歯車18とから構成され
る。そしてこの内歯車18には、外側回転軸4に
形成されたギヤ部4aが噛合される。更にギヤカ
ツプリング14は環状に形成され、フランジカツ
プリング12及びスリーブ体15夫々に形成され
たギヤ部12a,15aに噛合されてこれらを連
結している。そして機関動力は中間軸11を介し
てフランジカツプリング12に入力され、その動
力は一部がフランジカツプリング12から直接内
側回転軸6に伝達されると共に、残部はギヤカツ
プリング14を介して遊星歯車装置13に伝達さ
れこの遊星歯車装置13で回転方向が逆転されて
内歯車18より外側回転軸4へ伝達されるように
なつており、フランジカツプリング12が動力分
配手段10の入力端10cを成すと共に、またこ
のフランジカツプリング12と内歯車18とがそ
れぞれ内側回転軸6及び外側回転軸4への分配出
力端10b,10aと成つている。
Counter-rotating shaft 3 that transmits power in this way
The distribution output ends 10a and 10b are connected to the outer rotary shaft 4 and the inner rotary shaft 6, respectively, and the input end 10 is connected to the engine (not shown) that generates power.
power distribution means 10 for distributing and transmitting power input from c to these rotating shafts 4 and 6 in reverse rotation;
will be provided. Specifically, as shown in FIG. 2, this power distribution means 10 includes a flange coupling 12 connected to an intermediate shaft 11 for transmitting engine power from an engine, and a planetary gear set supported within a housing 7. 13, and a gear coupling 14 that connects the planetary gear device 13 and the flange coupling 12. The flange coupling 12 is detachably fitted into and attached to the inner rotating shaft 6 of the counter-rotating shaft 3. On the other hand, the planetary gear device 13 has a general configuration, and includes an annular sun gear 16 that is fitted and attached to a sleeve body 15 surrounding the inner rotating shaft 6, and a housing 7 that supports it so that it can rotate freely on its axis while its revolution is restricted. sun gear 1
6 and the planetary gear 17 meshed with the planetary gear 1.
7 and an annular internal gear 18 meshed with the gear 7. A gear portion 4a formed on the outer rotating shaft 4 is meshed with this internal gear 18. Further, the gear coupling ring 14 is formed in an annular shape and meshes with gear portions 12a and 15a formed on the flange coupling ring 12 and the sleeve body 15, respectively, to connect them. The engine power is input to the flange coupling 12 via the intermediate shaft 11, and part of the power is transmitted directly from the flange coupling 12 to the inner rotating shaft 6, and the rest is transmitted via the gear coupling 14 to the planetary The power is transmitted to the gear device 13, the direction of rotation is reversed by the planetary gear device 13, and the power is transmitted from the internal gear 18 to the outer rotating shaft 4, and the flange coupling 12 connects the input end 10c of the power distribution means 10. In addition, the flange coupling 12 and the internal gear 18 constitute the distribution output ends 10b, 10a to the inner rotating shaft 6 and the outer rotating shaft 4, respectively.

このように構成された動力分配手段10の一方
の分配出力端10aたる内歯車18と入力端10
cたるフランジカツプリング12との間には、外
側回転軸4への動力伝達を断つための動力切断手
段19が設けられる。本実施例にあつては、動力
切断手段19は、ハウジング7に、その内方から
外方に亘つて延出されると共に揺動自在に支持さ
れ、一端がギヤカツプリング14に形成された係
合凹部14aに係合された揺動レバ20で構成さ
れる。そしてこの揺動レバ20を揺動させること
により、ギヤカツプリング14を移動させてフラ
ンジカツプリング12とスリーブ体15との間か
ら嵌脱自在に離脱させ、これらフランジカツプリ
ング12とスリーブ体15とを切り離して外側回
転軸4への動力伝達を断つようになつている。
The internal gear 18 serving as one distribution output end 10a of the power distribution means 10 configured in this manner and the input end 10
A power cutting means 19 for cutting off power transmission to the outer rotating shaft 4 is provided between the flange coupling ring 12 and the outer rotary shaft 4 . In this embodiment, the power cutting means 19 extends from the inside to the outside of the housing 7 and is swingably supported, and has one end connected to an engagement formed in the gear coupling 14. It is composed of a swing lever 20 that is engaged with a recess 14a. By swinging this swinging lever 20, the gear coupling 14 is moved and detached from between the flange coupling 12 and the sleeve body 15, so that the flange coupling 12 and the sleeve body 15 are separated from each other. The power transmission to the outer rotating shaft 4 is cut off by separating the outer rotary shaft 4.

このように構成すれば、軸受5が固着して回転
軸4,6相互が反転不能となり動力伝達を行なう
ことができなくなつた場合であつても、動力切断
手段19で外側回転軸4への動力伝達を断つこと
により、外側回転軸4を回転フリーとして、機関
動力はフランジカツプリング12から内側回転軸
6に継続して伝達させることができる。従つて、
推進器1を継続して駆動させることができる。
With this configuration, even if the bearing 5 is stuck and the rotating shafts 4 and 6 cannot be rotated and power transmission cannot be performed, the power cutting means 19 can still disconnect the outer rotating shaft 4. By cutting off the power transmission, the outer rotary shaft 4 is free to rotate, and engine power can be continuously transmitted from the flange coupling 12 to the inner rotary shaft 6. Therefore,
The propulsion device 1 can be continuously driven.

尚、揺動レバ20の操作は機関を停止させて行
なわれる。
Note that the swing lever 20 is operated with the engine stopped.

ところで、一対の推進器1,2は逆ピツチで構
成されており、これら推進器1,2は互いに逆転
されることで同一方向の推力を発生するようにな
つている。これに対し上述した動力伝達機構で
は、動力切断手段19を作動して外側回転軸4へ
の動力伝達を断つて内側回転軸6のみに動力を伝
達する際、軸受5の固着によつて外側回転軸4が
内側回転軸6と同一方向につれ回りしてしまい、
推進器1,2は同方向の回転のために互いに相殺
し合つて推力を発生できないこととなる。
Incidentally, the pair of thrusters 1 and 2 are constructed with opposite pitches, and these thrusters 1 and 2 are designed to generate thrust in the same direction by being reversed to each other. On the other hand, in the above-mentioned power transmission mechanism, when the power cutting means 19 is actuated to cut off the power transmission to the outer rotating shaft 4 and transmit power only to the inner rotating shaft 6, the fixing of the bearing 5 causes the outer rotation. The shaft 4 rotates in the same direction as the inner rotating shaft 6,
Since the thrusters 1 and 2 rotate in the same direction, they cancel each other out and cannot generate thrust.

そこで、推進器1,2が同一方向へ回転駆動さ
れても推力を発生し得るように、一対の推進器
1,2のうち少なくとも一方の推進器に可変ピツ
チ機構を備えて、動力切断手段19で動力を切断
した際には、この可変ピツチ機構を作動して推進
器1,2が同方向に回転されても前進推力を発生
できるようにピツチ変更が可能に構成される。
Therefore, in order to generate thrust even when the thrusters 1 and 2 are driven to rotate in the same direction, at least one of the pair of thrusters 1 and 2 is equipped with a variable pitch mechanism, and the power cutting means 19 is equipped with a variable pitch mechanism. When the power is cut off at , the variable pitch mechanism is activated so that the pitch can be changed so that forward thrust can be generated even if the thrusters 1 and 2 are rotated in the same direction.

本実施例にあつては第1図に示すように、可変
ピツチ機構23は構造上構成が簡単であることか
ら、内側回転軸6に連結された船尾側推進器1に
備えられる。また必要であるならば、船首側推進
器2、若しくは双方の推進器1,2に設備しても
良い。
In this embodiment, as shown in FIG. 1, the variable pitch mechanism 23 is provided in the stern propeller 1 connected to the inner rotating shaft 6 because of its simple structure. Further, if necessary, it may be installed in the bow side propulsion unit 2 or both propulsion units 1 and 2.

図示するように可変ピツチ機構23は一般的構
成で成り、主にブレード25の基端部に取り付け
られたクロスヘツド40と、推進器ボス24内に
設けられクロスヘツド40に係合しつつ往復動さ
れてクロスヘツド40を回動させるヨーク26
と、内側回転軸6内にその軸方向に沿つて貫通形
成されヨーク26を往復動させるための作動油を
給排させる油路27と、フランジカツプリング1
2に形成され油路27を軸外へ連通させる給排口
28とから構成される。
As shown in the figure, the variable pitch mechanism 23 has a general configuration, and mainly includes a crosshead 40 attached to the proximal end of the blade 25, and a crosshead 40 provided inside the propeller boss 24, which is reciprocated while engaging with the crosshead 40. Yoke 26 for rotating the crosshead 40
, an oil passage 27 that is formed through the inner rotating shaft 6 along its axial direction and supplies and discharges hydraulic oil for reciprocating the yoke 26 , and a flange coupling 1 .
2 and a supply/discharge port 28 that communicates the oil passage 27 to the outside of the shaft.

そして機関停止時、フランジカツプリング12
の給排口28から油路27を介してヨーク26に
作動油を給排することにより、このヨーク26を
往復動させクロスヘツド40を回動させてブレー
ド25のピツチを変更できるようになつている。
And when the engine stops, the flange coupling spring 12
By supplying and discharging hydraulic oil to and from the yoke 26 through the oil passage 27 from the supply and discharge port 28 of the blade, the pitch of the blade 25 can be changed by reciprocating the yoke 26 and rotating the crosshead 40. .

このように構成すれば、軸受5の固着により内
側回転軸6に対して外側回転軸4が同一方向へつ
れ回りしても、ピツチを変更させることにより一
対の推進器1,2を共に同じ向きのピツチとして
同一方向回転で同一方向への推力を発生させるこ
とができる。
With this configuration, even if the outer rotating shaft 4 rotates in the same direction with respect to the inner rotating shaft 6 due to fixation of the bearing 5, the pair of propellers 1 and 2 can be rotated in the same direction by changing the pitch. It is possible to generate thrust in the same direction by rotating in the same direction.

またこのように一対の推進器1,2の少なくと
も一方に可変ピツチ機構23を設備することは次
のような利点もある。即ち、ブレードの設計にあ
たつては船体後方から推進器へ流れ込む水流につ
いて船体に引き摺られて前方へ流れる水流成分を
考慮することが好ましいが、この水流は不均一で
分布が一様でなく、また未知な要素が多いため、
必ずしもブレードを最適設計することはできな
い。ここに一対の推進器1,2のうち少なくとも
いずれか一方に可変ピツチ機構23を備えればブ
レードのピツチを変更することによりできる限り
運航状態を良好なものとすることができ、上述し
たような軸受の固着による危急時のみならず、通
常航行時においてもその機能を発揮させて推進性
能を向上させることができる。このことは、特に
ブレードの設計が困難な場合に、ピツチ調整によ
る推進状態の最適化を達成できる点で有効であ
る。
Further, installing the variable pitch mechanism 23 in at least one of the pair of propulsors 1 and 2 in this manner has the following advantages. That is, when designing the blades, it is preferable to consider the water flow component that flows forward while being dragged by the hull of the water flowing from the rear of the ship to the propulsion unit, but this water flow is uneven and the distribution is not uniform. Also, since there are many unknown factors,
It is not always possible to optimally design a blade. If at least one of the pair of propulsors 1 and 2 is provided with a variable pitch mechanism 23, the operating conditions can be made as good as possible by changing the pitch of the blades. This function can be used not only in an emergency due to a stuck bearing, but also during normal navigation, improving propulsion performance. This is effective in that the propulsion state can be optimized by pitch adjustment, especially when the blade design is difficult.

また殊に本実施例にあつては、可変ピツチ機構
23を油圧で作動させるように構成したので、ギ
ヤ構成とする場合に比してバツクラツシユ等がな
く、スムーズにピツチ変更を行なうことができ
る。更に推進器ボス24に作動油を直接給排させ
るようにしたので、可変ピツチ機構23の主要構
成をボス24内のみに装置することができ、構造
が簡単で安価に採用できる。
In particular, in this embodiment, since the variable pitch mechanism 23 is configured to be hydraulically operated, there is no backlash or the like compared to a gear configuration, and the pitch can be changed smoothly. Furthermore, since the hydraulic oil is directly supplied to and discharged from the propeller boss 24, the main components of the variable pitch mechanism 23 can be installed only within the boss 24, and the structure is simple and can be adopted at low cost.

第3図及び第4図には、可変ピツチ機構23に
関し、他の構成例が示されている。
FIGS. 3 and 4 show other configuration examples of the variable pitch mechanism 23.

第3図に示すものは、ヨーク26の作動を中間
軸11側からロツド32を介して行なうようにし
たものである。この可変ピツチ機構23は、中間
軸11とフランジカツプリング12との間にスリ
ーブ29を介設して形成したシリンダ室30と、
このシリンダ室30内に軸方向に沿つて往復移動
自在に設けられたピストン31と、内側回転軸6
内にその軸方向に沿つて往復移動自在に挿通さ
れ、一端がピストン31に連結されると共に他端
がヨーク26に連結されたロツド32と、スリー
ブ29に貫通形成されシリンダ室30に作動油を
給排させる一対の給排口28とから構成される。
そしてシリンダ室30内に作動油を給排すること
によりロツド32を往復動させてピツチを変更で
きるようになつている。
In the one shown in FIG. 3, the yoke 26 is operated from the intermediate shaft 11 side via a rod 32. The variable pitch mechanism 23 includes a cylinder chamber 30 formed by interposing a sleeve 29 between the intermediate shaft 11 and the flange coupling 12;
A piston 31 is provided in the cylinder chamber 30 so as to be able to reciprocate along the axial direction, and an inner rotating shaft 6
A rod 32 is inserted through the sleeve 29 so as to be able to reciprocate along the axial direction, and has one end connected to the piston 31 and the other end connected to the yoke 26. It is composed of a pair of supply and discharge ports 28 for supplying and discharging water.
By supplying and discharging hydraulic oil into the cylinder chamber 30, the rod 32 can be reciprocated to change the pitch.

第4図に示すものは、ギヤで構成したものであ
る。これは、ブレード25の基端部に設けられた
第1のベベルギヤ33と、この第1のベベルギヤ
33に噛合される第2のベベルギヤ34と、中間
軸11とフランジカツプリング12との間に介設
されたスリーブ状のギヤ箱35内に設けられたギ
ヤ36と、内側回転軸6内にその軸方向に沿つて
回転自在に挿通され、一端がギヤ36に接続され
ると共に他端が第2のベベルギヤ34に接続され
た回転ロツド37と、ギヤ箱35の外方に延出さ
れた操作回転軸38を有し、ギヤ36に噛合され
るピニオン39とから構成される。そしてピニオ
ン39を回転させることにより回転ロツド37を
介してベベルギヤ33,34を回動させてピツチ
を変更できるようになつている。
The one shown in FIG. 4 is composed of gears. This is interposed between a first bevel gear 33 provided at the base end of the blade 25, a second bevel gear 34 meshed with the first bevel gear 33, and the intermediate shaft 11 and flange coupling 12. A gear 36 provided in a sleeve-shaped gear box 35 is inserted into the inner rotary shaft 6 so as to be rotatable along the axial direction thereof, and one end is connected to the gear 36 and the other end is connected to a second end. A rotating rod 37 is connected to a bevel gear 34, and a pinion 39 has an operation rotating shaft 38 extending outside the gear box 35 and is meshed with a gear 36. By rotating the pinion 39, the bevel gears 33 and 34 can be rotated via the rotating rod 37 to change the pitch.

これらにあつても、上記実施例と同様な効果を
奏する。
Even in these cases, the same effects as in the above embodiment can be achieved.

また、第5図〜第7図には動力伝達機構に関
し、他の構成例が示されている。
Further, FIGS. 5 to 7 show other configuration examples regarding the power transmission mechanism.

第5図に示すものは、ギヤカツプリング14を
廃止して、太陽歯車16とフランジカツプリング
12との間に摺動自在にスリーブ体15をスプラ
イン嵌合させて設け、このスリーブ体15を揺動
レバ20で摺動移動させて太陽歯車16から離脱
させることにより動力伝達を断つように構成した
ものである。
In the case shown in FIG. 5, the gear coupling 14 is omitted, and a sleeve body 15 is slidably spline-fitted between the sun gear 16 and the flange coupling 12, and this sleeve body 15 is pivoted. It is constructed so that power transmission is cut off by slidingly moving it with a dynamic lever 20 and separating it from the sun gear 16.

第6図に示すものは、遊星歯車13と外側回転
軸4のギヤ部4aとの間に連結する内歯車18
を、この内歯車18に形成された係合凹部18a
に係合する動力切断手段19たるシフタ21で移
動させることにより、内歯車18を外側回転軸4
のギヤ部4aから離脱させて動力伝達を断つよう
に構成したものである。尚、本実施例ではフラン
ジカツプリング12とスリーブ体15とは一体的
に接合されている。
What is shown in FIG. 6 is an internal gear 18 connected between the planetary gear 13 and the gear portion 4a of the outer rotating shaft 4.
The engagement recess 18a formed in this internal gear 18
By moving the internal gear 18 with the shifter 21, which is the power cutting means 19 that engages with the outer rotating shaft 4,
It is configured to separate from the gear portion 4a and cut off power transmission. In this embodiment, the flange coupling 12 and the sleeve body 15 are integrally joined.

第7図に示すものは、ギヤカツプリング14を
廃止してフランジカツプリング12とスリーブ体
15との間に、径方向に2分割可能なリング体2
2を動力切断手段19として介設して、これらを
ボルト等で共締めするように構成したものであ
る。動力伝達を断つ際には、ボルト等を外してフ
ランジカツプリング12とスリーブ体15との間
からリング体22を取り外せば、フランジカツプ
リング12とスリーブ体15との間にクリアラン
スを生じさせてこれらを切り離すことができ、動
力伝達を断つことができるものである。
The one shown in FIG. 7 eliminates the gear coupling 14 and places a ring body 2 that can be divided into two in the radial direction between the flange coupling 12 and the sleeve body 15.
2 is interposed as a power cutting means 19, and these are fastened together with bolts or the like. To cut off power transmission, remove the bolts and the like and remove the ring body 22 from between the flange coupling 12 and the sleeve body 15, creating a clearance between the flange coupling 12 and the sleeve body 15, and removing them. It is possible to disconnect the power transmission and cut off the power transmission.

これらにあつても、上記実施例と同様な効果を
奏する。
Even in these cases, the same effects as in the above embodiment can be achieved.

[発明の効果] 以上要するに本発明によれば、次のような優れ
た効果を発揮する。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved.

二重反転軸に動力を分配して伝達する動力分配
手段の入力端と分配出力端との間に、外側回転軸
若しくは内側回転軸のいずれか一方への動力伝達
を断つための動力切断手段を設けたことにより、
軸受の固着等、回転軸相互の反転が不能となつた
場合においても、いずれか一方の回転軸を介して
継続して動力伝達させることができ、これと併せ
て互いに逆ピツチで構成され、二重反転軸の正常
時互いに逆転されて同一方向へ推力を発生する一
対の推進器のうち、少なくとも一方の推進器を可
変ピツチとすることにより、危急時等二重反転軸
の外側回転軸と内側回転軸とが同一方向へ回転さ
れる場合には、ピツチを変更して、一対の推進器
を共に同じ向きのピツチとして同一方向回転で同
一方向に推力を発生させることができ、危急時に
あつても継続航行を可能として推進システムとし
ての信頼性を向上できる。
Between the input end and the distribution output end of the power distribution means for distributing and transmitting power to the counter-rotating shaft, there is provided a power cutting means for cutting off power transmission to either the outer rotating shaft or the inner rotating shaft. By establishing
Even if the rotating shafts cannot be reversed due to stuck bearings, etc., power can be continuously transmitted through either one of the rotating shafts. Of a pair of thrusters that are reversed to generate thrust in the same direction when the counter-rotating shaft is normal, at least one of the thrusters has a variable pitch. When the rotating shafts are rotated in the same direction, the pitch can be changed and the pair of thrusters can be rotated in the same direction to generate thrust in the same direction by setting the pitches in the same direction. It also enables continuous navigation and improves the reliability of the propulsion system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適一実施例を示す側断面
図、第2図は動力伝達機構を示す要部拡大側断面
図、第3図及び第4図は可変ピツチ機構の他の構
成例を示す側断面図、第5図〜第7図は動力伝達
機構の他の構成例を示す側断面図、第8図は従来
例を示す概略側断面図である。 図中、1,2は推進器として例示したスクリユ
推進器、3は二重反転軸、4は外側回転軸、5は
軸受、6は内側回転軸、10は動力分配手段、1
0a,10bはその分配出力端、10cはその入
力端、19は動力切断手段、23は可変ピツチ機
構である。
FIG. 1 is a side sectional view showing a preferred embodiment of the present invention, FIG. 2 is an enlarged side sectional view showing the main part of the power transmission mechanism, and FIGS. 3 and 4 show other configuration examples of the variable pitch mechanism. 5 to 7 are side sectional views showing other configuration examples of the power transmission mechanism, and FIG. 8 is a schematic side sectional view showing a conventional example. In the figure, 1 and 2 are screw propulsors illustrated as propulsors, 3 is a counter-rotating shaft, 4 is an outer rotating shaft, 5 is a bearing, 6 is an inner rotating shaft, 10 is a power distribution means, 1
0a and 10b are its distribution output ends, 10c is its input end, 19 is a power cutting means, and 23 is a variable pitch mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 中空の外側回転軸内に軸受を介して内側回転
軸が挿通され、互いに反転されつつ同軸で動力を
伝達する二重反転軸と、該二重反転軸の外側回転
軸及び内側回転軸夫々にその分配出力端が連結さ
れると共に入力端に機関が連結され、機関動力を
これら回転軸に分配して伝達する動力分配手段
と、該動力分配手段の入力端と分配出力端との間
に設けられ上記回転軸のいずれか一方への動力伝
達を断つための動力切断手段と、上記二重反転軸
の外側回転軸及び内側回転軸夫々に、同軸で且つ
軸方向に沿つて重ねて設けられ、互いに逆ピツチ
で構成されると共に少なくとも一方が可変ピツチ
機構を有する一対の推進器とを備えた推進装置の
運転方法において、軸受の固着が生じて回転軸相
互の反転が不能となつた時、上記動力切断手段で
一方の回転軸への動力伝達を断ち、かつ上記可変
ピツチ機構を作動して逆ピツチから同じ向きのピ
ツチに変更することを特徴とする推進装置の運転
方法。
1. An inner rotating shaft is inserted into the hollow outer rotating shaft via a bearing, and a counter-rotating shaft that transmits power coaxially while being reversed with respect to each other, and an outer rotating shaft and an inner rotating shaft of the counter-rotating shaft, respectively. A power distribution means is provided between the input end and the distribution output end of the power distribution means, the distribution output end of which is connected, and an engine is connected to the input end of the power distribution means for distributing and transmitting the engine power to these rotating shafts. power cutting means for cutting off power transmission to either one of the rotating shafts, and provided coaxially and overlappingly along the axial direction on each of the outer rotating shaft and the inner rotating shaft of the counter-rotating shaft, In an operating method of a propulsion device equipped with a pair of propulsion devices configured with opposite pitches and at least one of which has a variable pitch mechanism, when the bearings become stuck and mutual reversal of the rotating shafts becomes impossible, the above-mentioned method is applied. 1. A method of operating a propulsion device, comprising cutting off power transmission to one rotating shaft using a power cutting means, and operating the variable pitch mechanism to change the pitch from a reverse pitch to a pitch in the same direction.
JP61086033A 1986-04-16 1986-04-16 Propulsive device Granted JPS62244791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086033A JPS62244791A (en) 1986-04-16 1986-04-16 Propulsive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086033A JPS62244791A (en) 1986-04-16 1986-04-16 Propulsive device

Publications (2)

Publication Number Publication Date
JPS62244791A JPS62244791A (en) 1987-10-26
JPH0517073B2 true JPH0517073B2 (en) 1993-03-08

Family

ID=13875352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086033A Granted JPS62244791A (en) 1986-04-16 1986-04-16 Propulsive device

Country Status (1)

Country Link
JP (1) JPS62244791A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727277Y2 (en) * 1989-08-28 1995-06-21 石川島播磨重工業株式会社 Double inversion shaft power transmission device
GB8923784D0 (en) * 1989-10-23 1989-12-06 Northern Eng Ind Improvements in drive transmissions
US9862460B2 (en) 2012-12-03 2018-01-09 Samsung Heavy Ind. Co., Ltd. Propeller for ship, and assembling method and disassembling method therefor
KR101444332B1 (en) * 2012-12-04 2014-10-01 삼성중공업 주식회사 Propulsion apparatus for ship, and ship having the same
KR101444647B1 (en) * 2012-12-03 2014-09-26 삼성중공업 주식회사 Propulsion apparatus for ship, install method of the propulsion apparatus, and ship having the same
KR101444329B1 (en) * 2012-12-04 2014-10-01 삼성중공업 주식회사 Propulsion apparatus for ship, and ship having the same
US8991326B2 (en) * 2013-01-15 2015-03-31 Robert Carl Jansen Displacement hull form not subject to the limitation of hull speed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596194A (en) * 1982-07-02 1984-01-13 Mitsubishi Heavy Ind Ltd Contrarotating propeller device
JPS60259595A (en) * 1984-06-04 1985-12-21 Kawasaki Heavy Ind Ltd Lubricating-oil feeding structure for counter propeller apparatus for vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596194A (en) * 1982-07-02 1984-01-13 Mitsubishi Heavy Ind Ltd Contrarotating propeller device
JPS60259595A (en) * 1984-06-04 1985-12-21 Kawasaki Heavy Ind Ltd Lubricating-oil feeding structure for counter propeller apparatus for vessel

Also Published As

Publication number Publication date
JPS62244791A (en) 1987-10-26

Similar Documents

Publication Publication Date Title
RU2359875C1 (en) Reduction gear with separation of torque for rotary-wing aircraft with system of forward traction
US4790782A (en) Balanced marine surfacing drive
US4793773A (en) Marine propelling apparatus
US5494466A (en) Transmission for dual propellers driven by an inboard marine engine
KR101068346B1 (en) Propulsion unit of marine vessel
EP1175337B1 (en) Rotary wing aircraft supplementary power drive system
GB2231546A (en) "z" type drive for boats has steerable balanced power transmission
JPH0255275B2 (en)
JPH06156377A (en) Duplex propeller type boat propulsion device
JP5623155B2 (en) Counter-rotating propeller propulsion device
NO973775L (en) jet propulsion system
EP2722270A1 (en) Propulsion device for ship and ship having same
US5807151A (en) Propeller for marine propulsion drive
JPH0517073B2 (en)
US4242979A (en) Screw propeller with no shaft boss and ship thruster using such screw propeller
US6066012A (en) Propulsion system for a marine vessel
JPH06278690A (en) Ship propulsion device with counter-rotating screw
JPS5996092A (en) Double reversal propeller apparatus
JPH0353083Y2 (en)
US9731804B1 (en) Directly mounted shaft actuator
JPS6393698A (en) Double reverse rotating propelling device
JPH0733084A (en) Counter-rotating propeller type propulsion device for ship
JPS62279189A (en) Power transmitting system for double contrarotating propeller device
WO2005021374A1 (en) Contra-rotating variable pitch propellers fitted on the strut
JP5723295B2 (en) Ship propulsion device having a sub-drive unit