JPH05169120A - Method for controlling camber of rolled stock - Google Patents

Method for controlling camber of rolled stock

Info

Publication number
JPH05169120A
JPH05169120A JP3354992A JP35499291A JPH05169120A JP H05169120 A JPH05169120 A JP H05169120A JP 3354992 A JP3354992 A JP 3354992A JP 35499291 A JP35499291 A JP 35499291A JP H05169120 A JPH05169120 A JP H05169120A
Authority
JP
Japan
Prior art keywords
rigidity
rolling
roll
difference
roll gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3354992A
Other languages
Japanese (ja)
Inventor
Ichiro Ueda
一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3354992A priority Critical patent/JPH05169120A/en
Publication of JPH05169120A publication Critical patent/JPH05169120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To adjust the difference of a roll gap and to prevent the camber of a rolled stock by finding the rigidity of the housing post of a work side and a driving side at the roll shifting time and predicting the difference of the thickness of an outlet side plate during rolling with the predictive value of the rolling load and the rigidity before each pass rolling. CONSTITUTION:The rigidity of respective housing posts of the working side WS and the driving side DS is exactly found at the roll shifting time. Then, the difference of the thickness between the outlet side plate of the working side WS and the driving side DS during rolling is exactly predicted with the predictive value of the rolling load and the rigidity of the housing post before each pass rolling. Then, the difference between the roll gap of the working side WS and the driving side DS is preliminarily adjusted before each pass rolling so as to become zero.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板状圧延材の圧延時に発
生する曲がりであるキャンバーの発生を抑制するキャン
バー制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camber control method for suppressing the occurrence of camber, which is a bend that occurs when rolling a plate-shaped rolled material.

【0002】[0002]

【従来の技術】一般に鋼板等の板状圧延材には圧延後の
形状が図1に示す如くその長手方向において左,右に湾
曲する、所謂キャンバーが生じやすい。圧延材1にこの
ようなキャンバーが生じると、圧延材1から矩形の製品
寸法に仕上げる際の歩留が低下し、製造コスト面で大き
な問題となる。圧延材1に生じるキャンバー量は、圧延
材1の全長にわたる幅方向中央部を結ぶ線と、圧延材1
の両端部における幅方向中央部を結ぶ線との最大離隔寸
法Cで表わされ、例えば厚板圧延において板厚20mm、板
幅3m、長さ30mのサイズの圧延材で寸法Cは約30〜50
mm程度の値であるが、時には100mm を超える場合もあ
る。
2. Description of the Related Art Generally, a rolled sheet material such as a steel sheet is apt to have a so-called camber in which the shape after rolling is curved left and right in the longitudinal direction as shown in FIG. When such a camber occurs in the rolled material 1, the yield when the rolled material 1 is finished into a rectangular product size is reduced, which is a serious problem in terms of manufacturing cost. The amount of camber generated on the rolled material 1 is calculated by comparing the line connecting the widthwise central portions of the rolled material 1 with the width of the rolled material 1.
It is represented by the maximum separation dimension C from the line connecting the widthwise central portions at both ends of, for example, a rolled material having a thickness of 20 mm, a width of 3 m, and a length of 30 m in the rolling of a thick plate, and the dimension C is about Fifty
The value is about mm, but sometimes exceeds 100 mm.

【0003】このようなキャンバー発生要因としては一
般的に次のようなことが考えられている。 圧延機におけるハウジングポストのワーク側WSと、
ドライブ側DSとに剛性差が存在すること。 圧延中のロールの胴長中心線と圧延材1の幅方向中
心線との位置ずれ(オフセンター)が生じること。 圧延材を加熱する際に片焼け等のため圧延材幅方向
における変形抵抗が不均一であること。 圧延材の幅方向における素材板厚が不均一であるこ
と。 上記〜の要因のうち、〜の要因については既に
各種の対策がなされており、一応の効果をあげている
が、の要因については未だ十分な対策がなされていな
いのが現状である。
The following factors are generally considered as the causes of such camber. WS on the work side of the housing post in the rolling mill,
There must be a rigidity difference with the drive side DS. A position shift (off-center) between the center line of the roll during rolling and the center line of the rolled material 1 in the width direction occurs. The resistance to deformation in the width direction of the rolled material is uneven due to burning on one side when the rolled material is heated. The material thickness of the rolled material in the width direction is not uniform. Among the above-mentioned factors (1) to (4), various measures have already been taken and the effects have been tentatively achieved, but the current situation is that sufficient measures have not been taken to the factor (1).

【0004】圧延機におけるハウジングポストのワーク
側WSとドライブ側DSとの剛性差に対する従来の対策とし
ては、例えば特開昭54-68761号公報、特開昭55-141306
号公報及び特開昭55-141307 号公報等に、予め測定した
ワーク側WS,ドライブ側DSの各ミル剛性と実際の圧延荷
重とに基づきワーク側WSとドライブ側DSとのロールギャ
ップを算出し、圧延中に両ロールギャップ差を調整する
方法が提案されている。
As a conventional countermeasure against the difference in rigidity between the work side WS and the drive side DS of the housing post in a rolling mill, for example, Japanese Patent Laid-Open Nos. 54-68761 and 55-141306 are known.
JP-A-55-141307 and other publications calculate the roll gap between the work-side WS and the drive-side DS based on the previously measured mill rigidity of the work-side WS and drive-side DS and the actual rolling load. , A method of adjusting the difference between both roll gaps during rolling has been proposed.

【0005】[0005]

【発明が解決しようとする課題】ところがこれらの従来
技術では以下に述べるような問題点があり、必ずしも十
分なキャンバー防止効果は期待できない。先ず第1の問
題点は、前述の方法を実施するにはワーク側WSとドライ
ブ側DSとの各ミル剛性を正確に求めておく必要があるた
め、ロール組替え時に上,下ワークロール間に圧延材が
存在しない状態下でのロール締め込み法によりワーク側
WSとドライブ側DSとの夫々のミル剛性を求めているが、
圧延中には上,下ワークロール間に圧延材が存在し、し
かも圧延材の板幅が異なるとそれに応じてミル剛性も変
化するため、圧延中はロール締め込み法のみでは正確な
ミル剛性を求めることが出来ないことである。
However, these conventional techniques have the following problems, and a sufficient effect of preventing camber cannot be expected. The first problem is that in order to carry out the above-mentioned method, it is necessary to accurately obtain the mill rigidity of the work side WS and the drive side DS, so when rolling the rolls, rolling between the upper and lower work rolls is performed. Work side by roll tightening method in the absence of material
We are looking for the mill rigidity of each of WS and DS on the drive side,
During rolling, the rolled material exists between the upper and lower work rolls, and if the strip width of the rolled material changes, the mill rigidity changes accordingly. It is something you cannot ask for.

【0006】第2の問題点は、前述の従来方法では実際
の圧延荷重をロールギャップの算出に用いるが、圧延荷
重は検出方法によってはスラスト力, バックアップロー
ルとハウジング間の摩擦抵抗によるヒステリシス等の外
乱の影響を受けるため、算出したロールギャップ値の誤
差が大きいことである。
The second problem is that in the above-mentioned conventional method, the actual rolling load is used to calculate the roll gap, but the rolling load depends on the detection method, such as thrust force, hysteresis due to frictional resistance between the backup roll and the housing, etc. The error of the calculated roll gap value is large because it is affected by disturbance.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、その目的とするところはロール組替え時にロ
ール締め込み法によりワーク側WS, ドライブ側DS夫々の
ハウジングポストの剛性を正確に予測しておき、各パス
圧延前に板厚のワーク側とドライブ側の差を予測してそ
れが零となるようにロールギャップを予め調整すること
でキャンバー発生を確実に防止し得るようにした圧延材
のキャンバー制御方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to accurately predict the rigidity of the housing posts of the work side WS and the drive side DS by the roll tightening method during roll replacement. In advance, before each pass rolling, the difference between the work side and the drive side of the plate thickness is predicted, and the roll gap is adjusted in advance so that it becomes zero. To provide a method for controlling the camber.

【0008】[0008]

【課題を解決するための手段】本発明に係る圧延材のキ
ャンバー制御方法は、圧延機のワーク側とドライブ側夫
々のロールギャップ目標値を求め、該ロールギャップ目
標値に基づき圧延機のロールギャップを調整して圧延材
のキャンバーを制御する方法において、ロール組替え時
にロール締め込み法によりワーク側, ドライブ側夫々の
ミル剛性を測定し、ロール締め込み状態における圧延機
の力学的変形量から導かれる前記ミル剛性測定値とハウ
ジングポストの剛性との関係式を用いて、ワーク側, ド
ライブ側夫々の各ハウジングポストの剛性を求め、また
圧延時における圧延機の力学的変形量に基づき求めた前
記ハウジングポストの剛性とロールギャップ差との関係
式を用いて、各パス圧延前に圧延中のワーク側, ドライ
ブ側夫々の出側板厚の差を零とするのに必要なワーク側
とドライブ側とのロールギャップ差目標値を求め、該ロ
ールギャップ差目標値に基づいて圧延機のワーク側, ド
ライブ側夫々のロールギャップを設定調整することを特
徴とする。
A method for controlling the camber of a rolled material according to the present invention finds a roll gap target value on each of a work side and a drive side of a rolling mill, and based on the roll gap target value, a roll gap of the rolling mill. In the method of controlling the camber of the rolled material by adjusting the roll, the mill rigidity of the work side and the drive side is measured by the roll tightening method when changing the rolls, and it is derived from the mechanical deformation amount of the rolling machine in the roll tightened state. Using the relational expression between the measured value of the mill rigidity and the rigidity of the housing post, the rigidity of each housing post on the work side and the drive side is calculated, and the housing is calculated based on the mechanical deformation amount of the rolling mill during rolling. By using the relational expression between the rigidity of the post and the roll gap difference, the exit side plate thickness of each of the work side and the drive side during rolling before each pass rolling To obtain the target value of the roll gap difference between the work side and the drive side required to make the difference zero, and set and adjust the roll gaps of the work side and the drive side of the rolling mill based on the roll gap difference target value. Is characterized by.

【0009】[0009]

【作用】本発明にあっては、ロール組替え時にワーク側
とドライブ側との夫々のハウジングポストの剛性を求
め、これに基づいて各パス圧延前に圧延荷重の予測値と
前記ハウジングポストの剛性とから圧延中のワーク側,
ドライブ側の出側板厚差を正確に予測し得、出側板厚の
差が零となるように各パス圧延前にワーク側,ドライブ
側のロールギャップ差を予め調整することで圧延材に生
じるキャンバーを防止し得ることとなる。
According to the present invention, the rigidity of each of the housing posts on the work side and the drive side is obtained when the rolls are recombined, and based on this, the predicted value of the rolling load and the rigidity of the housing post are calculated before each pass rolling. From the work side during rolling,
The camber that occurs on the rolled material can be accurately predicted and the roll gap difference between the work side and the drive side can be adjusted in advance before each pass rolling so that the difference in the output side plate thickness can be predicted to be zero. Can be prevented.

【0010】[0010]

【原理】前述の如くハウジングポストのワーク側WSとド
ライブ側DSとに剛性差が存在すると、仮に圧延前にワー
ク側WSとドライブ側DSとのロールギャップSW .SD
差Sdf(=SW −SD )が0となるように設定しても、
圧延中にロールギャップ差、即ち出側における幅方向両
側の板厚hW , hD に差、所謂ウエッジ量hdf(=hW
−hD )が生じ、結果としてキャンバーが発生してしま
う。
[Principle] As described above, if there is a rigidity difference between the work side WS and the drive side DS of the housing post, if the roll gap S W. It is the difference S df of S D (= S W -S D ) is set to be 0,
During rolling, the difference in roll gap, that is, the difference between the plate thicknesses h W and h D on the widthwise side at the exit side, the so-called wedge amount h df (= h W
-H D ) occurs, and as a result, camber occurs.

【0011】ワーク側WS, ドライブ側DS夫々の圧下装置
によるロールギャップ制御精度を高めるにはワーク側W
S, ドライブ側DS夫々におけるハウジングポストの剛性
の予測精度及び各パス圧延前における圧延荷重の正確な
予測が技術的なポイントとなる。このうち圧延荷重の予
測精度については従来技術でも実用上十分な予測が可能
である。
To improve the roll gap control accuracy by the work side WS and the drive side DS respectively, the work side W
The technical points are the accuracy of predicting the rigidity of the housing post in S and the drive side DS, and the accurate prediction of the rolling load before each pass rolling. Among them, the rolling load prediction accuracy can be predicted practically enough even with the conventional technology.

【0012】そこで他のポイントであるハウジングポス
トの剛性について、その測定精度を高めるべく本発明者
が実験, 研究を行った結果、4Hiミルロールたわみモデ
ルを用いた理論解析に基づき、ロール締め込み法による
ミル剛性測定値からワーク側WS, ドライブ側DS夫々にお
けるハウジングポストの剛性を正確に求め得ることを知
見した。
[0012] Therefore, as to the rigidity of the housing post, which is another point, as a result of experiments and researches conducted by the inventor of the present invention in order to improve the measurement accuracy, the roll tightening method is used based on the theoretical analysis using the 4Hi mill roll deflection model. It was found that the rigidity of the housing post in each of the work side WS and the drive side DS can be accurately obtained from the measured values of the mill rigidity.

【0013】4Hiミルロールたわみモデルでは、圧延材
のロール胴長を20〜40の小幅の領域に分割して、圧延荷
重とロール間接触荷重とはロール胴長方向において各分
割区間内では一様に分布すると見做し、バックアップロ
ール, ワークロール, 圧延材間とでは前記各分割区間の
中央部における変位が一致, 即ち相互に接触状態にある
という条件を用いて以下に示す圧延機における各力学的
変形を理論的に計算する。 i) 圧延材との接触によるワークロールの偏平変形 ii) ワークロールの軸心のたわみ iii) ワークロールとバックアップロールの接触部の偏
平変形 iv) バックアップロール軸心のたわみ v) ハウジングポストの伸び なお、上, 下ワークロール間に圧延材の存在しないロー
ル締め込み状態の計算は、このモデルにおいて圧延材の
板厚が零、板幅がロール胴長と同じ、塑性係数が無限大
という条件を設定することにより行うことができる。
In the 4Hi mill roll deflection model, the roll cylinder length of the rolled material is divided into small width regions of 20 to 40, and the rolling load and the contact load between rolls are uniform in each divided section in the roll cylinder length direction. Considering that they are distributed, the backup rolls, work rolls, and rolling materials have the same displacement at the center of each divided section, that is, they are in contact with each other. Calculate the deformation theoretically. i) Flat deformation of work roll due to contact with rolled material ii) Deflection of shaft center of work roll iii) Flat deformation of contact part between work roll and backup roll iv) Deflection of axial center of backup roll v) Extension of housing post For the calculation of the roll tightening state in which there is no rolled material between the upper and lower work rolls, the condition that the thickness of rolled material is zero, the width is the same as the roll cylinder length, and the plasticity coefficient is infinite is set in this model. This can be done by

【0014】実際の厚板圧延機を想定してバックアップ
ロールチョック間距離5900mm、ロール胴長4830mm、バッ
クアップロール直径2000mm、ワークロール直径1000mmと
して、4Hiミルロールたわみモデルを用いてロール締め
込み状態下での上述したi)〜v)の計算を行った結果
に基づき求めたワーク側WSとドライブ側DSとのハウジン
グポストの剛性とミル剛性との関係、及びワーク側WSと
ドライブ側DSとのハウジングポストの剛性差とミル剛性
差との関係をグラフに示すと、図2, 図3に示す如くに
なる。
Assuming an actual thick plate rolling machine, the distance between backup roll chocks is 5900 mm, the roll body length is 4830 mm, the backup roll diameter is 2000 mm, and the work roll diameter is 1000 mm. The relation between the rigidity of the housing post between the work side WS and the drive side DS and the rigidity of the mill, and the rigidity of the housing post between the work side WS and the drive side DS, which were calculated based on the results of i) to v). The relationship between the difference and the mill rigidity difference is shown in graphs as shown in FIGS.

【0015】図2はワーク側WSとドライブ側DSとの両ハ
ウジングポストの剛性KW とKD とが同じ剛性Kと仮定
した場合におけるロール締め込み法によるミル剛性Mと
の関係を示すグラフであり、横軸にミル剛性M(ton/m
m)を、また縦軸にハウジングポストの剛性K(ton/m
m)をとって示してある。また図3はワーク側WSとドラ
イブ側DSとのハウジングポストの剛性KW ,KD が異な
ると仮定した場合におけるハウジングポストの剛性差K
df(=KW −KD )とロール締め込み法により求めたミ
ル剛性差Mdf(=MW −MD )の関係を示すグラフであ
り、横軸にワーク側WSとドライブ側DSとのミル剛性差M
df(ton/mm)を、また縦軸にワーク側WSとドライブ側DS
とのハウジングポストの剛性差Kdfをとって示してあ
る。
FIG. 2 is a graph showing the relationship with the mill rigidity M by the roll tightening method when the rigidity K W and K D of both housing posts on the work side WS and the drive side DS are assumed to be the same. Yes, the horizontal axis indicates mill rigidity M (ton / m
m), and the vertical axis indicates the rigidity of the housing post K (ton / m
m) is shown. Further, FIG. 3 shows the difference in rigidity K of the housing post when it is assumed that the rigidity K W and K D of the housing post of the work side WS and the drive side DS are different.
6 is a graph showing the relationship between df (= K W −K D ) and the mill rigidity difference M df (= M W −M D ) obtained by the roll tightening method, with the horizontal axis representing the work side WS and the drive side DS. Mill rigidity difference M
df (ton / mm) and work axis WS and drive DS on the vertical axis
The difference in rigidity K df between the housing posts is shown.

【0016】図3に示すグラフ中●印でプロットしてあ
るのはハウジングポストの剛性K=1000の場合の、また
○印でプロットしてあるのはK=1700の場合の、更に△
印でプロットしてあるのはK=2000ton/mmの場合の各関
係を示している。これら図2, 図3に表われている関係
から、(1) 〜(4) 式に示す如き関係式が成立する。 K=F1 (M) …(1) Kdf=F2 (K,Mdf) …(2) KW =K+Kdf/2 …(3) KD =K−Kdf/2 …(4)
In the graph shown in FIG. 3, the ● marks are plotted when the rigidity of the housing post is K = 1000, and the ○ marks are plotted when K = 1700.
The plots with the marks show the respective relationships when K = 2000 ton / mm. From the relationships shown in FIGS. 2 and 3, the relational expressions shown in the expressions (1) to (4) are established. K = F 1 (M) (1) K df = F 2 (K, M df ) (2) K W = K + K df / 2 (3) K D = K−K df / 2 (4)

【0017】従って、ロール締め込み法でミル剛性Mと
ミル剛性差Mdfを測定することにより、(1),(2) 式から
ハウジングポストの剛性K,ハウジングポストの剛性差
dfが求められ、また(3),(4) 式からワーク側WS, ドラ
イブ側DS夫々のハウジングポストの剛性KW 及びKD
正確に求めることができる。ところで本発明が対象とす
るのはキャンバーが発生する要因のうちのハウジングポ
ストのワーク側WSとドライブ側DS間の剛性差であるか
ら、オフセンター,圧延材幅方向における変形抵抗,素
材板厚の不均一はないと仮定して良い。ところがハウジ
ングポストの剛性差のため、圧延前にワーク側WSとドラ
イブ側DSとのロールギャップ差Sdf(=SW −SD )が
零となるように設定しても、圧延中にロールギャップ
差、即ち出側板厚のウェッジ量hdf(=hW −hD )が
生じ、結果としてキャンバーが発生してしまう。
Therefore, by measuring the mill rigidity M and the mill rigidity difference M df by the roll tightening method, the rigidity K of the housing post and the rigidity difference K df of the housing post can be obtained from the equations (1) and (2). Moreover, the rigidity K W and K D of the housing posts of the work side WS and the drive side DS can be accurately obtained from the expressions (3) and (4). By the way, the object of the present invention is the difference in rigidity between the work side WS and the drive side DS of the housing post among the factors that cause camber. You can assume that there is no unevenness. However, due to the difference in rigidity of the housing posts, even if the roll gap difference S df (= S W −S D ) between the work side WS and the drive side DS before rolling is set to zero, the roll gap during rolling is reduced. A difference, that is, a wedge amount h df (= h W −h D ) of the outgoing side plate thickness occurs, and as a result, a camber occurs.

【0018】そこで、圧延前のロールギャップ差Sdf
出側板厚のウェッジ量hdfとの関係を把握しておくこと
が次に重要な技術的ポイントとなる。前述した厚板圧延
機の条件を想定し、4Hiミルロールたわみモデルを用い
て上下ワークロール間に圧延材の存在する条件で前述の
i)〜v)を計算した結果を用いてロールギャップ差S
dfと出側板厚のウェッジ量hdfとの関係をグラフに表わ
すと、図4に示す如くになる。
Therefore, it is the next important technical point to understand the relationship between the roll gap difference S df before rolling and the wedge amount h df of the outgoing side plate thickness. Assuming the conditions of the thick plate rolling machine described above, the roll gap difference S is calculated by using the result of calculating the above i) to v) under the condition that the rolled material exists between the upper and lower work rolls using the 4Hi mill roll deflection model.
expressed in a graph the relationship between the wedge amount h df of thickness at delivery side of the df, becomes as shown in FIG.

【0019】図4は圧延前のワーク側WS,ドライブ側DS
とのロールギャップ差と、出側板厚のウェッジ量との関
係を示すグラフであり、圧延材の入側板厚20mm,板幅30
00mm,塑性係数700ton/mm ,予測圧延荷重3000ton ,ワ
ーク側WSとドライブ側DSとのハウジングポストの剛性の
平均値Kを1700ton/mmとして、ワーク側WSとドライブ側
DSとの剛性差Kdfを0,100 ,200ton/mm の3通りに変
化させた場合の結果である。
FIG. 4 shows the work side WS and the drive side DS before rolling.
It is a graph showing the relationship between the roll gap difference between and the wedge amount of the outgoing side plate thickness, the incoming side plate thickness of the rolled material is 20 mm, the plate width is 30 mm.
00mm, plasticity coefficient 700ton / mm, predicted rolling load 3000ton, average value K of rigidity of housing post of work side WS and drive side DS is 1700ton / mm, work side WS and drive side
The results are obtained when the rigidity difference K df with DS is changed in three ways of 0, 100, and 200 ton / mm.

【0020】図4より、圧延前のロールギャップ差と出
側板厚のウエッジ量との間には下記(5) 式の関係が成立
することが分る hdf=F3 (B,Q,P,KW ,KD ,Sdf) …(5) 但し、B:板幅、Q:塑性係数、P:予測圧延荷重 従ってキャンバーを発生させないための条件は出側板厚
のウエッジ量hdfを零とすることであるから、(5) 式よ
りそれに必要なワーク側WSとドライブ側DSとのロールギ
ャップ差Sdfを求め、各パス圧延に先立ってロールギャ
ップ差をSdfだけ付けておくこととすればキャンバーの
発生を未然に防止できることとなる。
It can be seen from FIG. 4 that the relationship of the following formula (5) is established between the roll gap difference before rolling and the wedge amount of the outlet side plate thickness h df = F 3 (B, Q, P , K W , K D , S df ) (5) where B: strip width, Q: plasticity coefficient, P: predicted rolling load. Therefore, the condition for not causing camber is that the wedge amount h df of the outlet side thickness is zero. since it is possible to, and that you put only S df the roll gap difference prior (5) determine the roll gap difference S df between the work side WS and drive side DS required thereto from the equation, to each path rolling If so, the occurrence of camber can be prevented in advance.

【0021】[0021]

【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。図5は本発明に係る圧延材のキャン
バー制御方法を実施するための装置の模式図であり、図
中1は圧延材、2,3はワークロール、4,5はバック
アップロールを示している。上側のバックアップロール
4の両側(ワーク側WS, ドライブ側DS) の各ロールチョ
ックには、夫々圧下装置6,7が設けられている。バッ
クアップロール4のロールチョックと各圧下装置6,7
との間にはロードセル等で構成された荷重検出器8,9
が、また各圧下装置6,7には圧下位置検出器10,11が
設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 5 is a schematic view of an apparatus for carrying out the method for controlling the camber of a rolled material according to the present invention. In the figure, 1 is a rolled material, 2 and 3 are work rolls, and 4 and 5 are backup rolls. Rolling down devices 6 and 7 are provided on each roll chock on both sides (work side WS and drive side DS) of the upper backup roll 4. Roll chock of backup roll 4 and each rolling down device 6,7
Between the load detectors 8 and 9 composed of load cells and the like.
However, the respective rolling-down devices 6, 7 are provided with rolling-down position detectors 10, 11.

【0022】21は自動板厚制御装置(AGCを実施するため
の装置) であり、前記各荷重検出器8,9、圧下位置検
出器10,11 から夫々圧延荷重, 圧下位置を取り込み、こ
れらと予め設定してある圧延材1の板厚,ミル剛性等と
に基づきロールギャップ制御量ΔSAGC を演算し、これ
を各圧下位置指令演算装置22,23 へ出力する。各圧下位
置指令演算装置22,23 は入力されたロールギャップ制御
量ΔSAGC に基づき圧下装置6,7を動作させるように
なっている。
Reference numeral 21 is an automatic plate thickness control device (device for performing AGC), which takes in the rolling load and the reduction position from the load detectors 8 and 9 and the reduction position detectors 10 and 11, respectively. The roll gap control amount ΔS AGC is calculated on the basis of the preset plate thickness of the rolled material 1, the rigidity of the mill, etc., and this is output to the respective rolling position command computing devices 22 and 23. Each of the rolling position command computing devices 22 and 23 operates the rolling down devices 6 and 7 based on the input roll gap control amount ΔS AGC .

【0023】26はロールギャップ目標値設定装置、27は
ロールギャップ差目標値設定装置であり、ロールギャッ
プ目標値設定装置26は圧延材1の幅方向中心位置のロー
ルギャップ目標値S0 を前記圧下位置指令演算装置22,2
3 へ出力し、またロールギャップ差目標値設定装置27は
予め設定入力されている圧延材1の板幅B、塑性係数Q
及びミル剛性測定器28で測定したロール締め込み法によ
るミル剛性M0 、ワーク側ミル剛性M0 W,ドライブ側ミ
ル剛性M0 D 、並びに圧延荷重予測演算装置29から入力
される予測圧延荷重P0 に基づいてロールギャップ差目
標値S0 dfを算出し、これを前記各圧下位置指令演算装
置22,23 へ出力する。
26 is a roll gap target value setting device, 27 is a roll gap difference target value setting device, and the roll gap target value setting device 26 reduces the roll gap target value S 0 at the center position in the width direction of the rolled material 1 by the reduction. Position command calculation device 22,2
3, and the roll gap difference target value setting device 27 outputs the plate width B and the plasticity coefficient Q of the rolled material 1 which are preset and input.
And the mill rigidity M 0 by the roll tightening method measured by the mill rigidity measuring device 28, the work side mill rigidity M 0 W, the drive side mill rigidity M 0 D , and the predicted rolling load P input from the rolling load prediction calculation device 29. The roll gap difference target value S 0 df is calculated based on 0 , and is output to each of the rolling position command computing devices 22 and 23.

【0024】ロールギャップ差目標値設定装置27による
演算は大別してロール組替え時に行う演算と、各パス圧
延に先立って行う演算とがあり、以下に夫々における演
算内容を説明する。
The calculation by the roll gap difference target value setting device 27 is roughly classified into a calculation performed at the time of roll rearrangement and a calculation performed prior to each pass rolling, and the calculation contents in each will be described below.

【0025】(1) ロール組替え時の演算 ミル剛性測定装置28から、ロール締め込み法で測定して
記憶させてあるミル剛性M0 、ワーク側WSとドライブ側
DSとの各々のミル剛性M0 W 及びM0 D を読み込む。次
にワーク側WSとドライブ側DSとのミル剛性差M0 df(=
0 W −M0 D )を求め、ワーク側WSとドライブ側DSと
の各々のハウジングポストの剛性K0 W 及びK0 D
(1) 〜(4) 式と対応する下記(1) ′〜(4) ′式に従って
求める。 K0 =F1 (M0 ) …(1) ′ K0 df=F2 (K0 ,M0 df) …(2) ′ K0 W =K0 +K0 df/2 …(3) ′ K0 D =K0 −K0 df/2 …(4) ′
(1) Calculation during roll combination Mill rigidity measurement device 28 measures the mill rigidity M 0 by the roll tightening method and stores it, work side WS and drive side
Read each mill stiffness M 0 W and M 0 D with DS. Next, the difference in mill rigidity between the work side WS and the drive side DS M 0 df (=
M 0 W −M 0 D ) and calculate the rigidity K 0 W and K 0 D of each housing post on the work side WS and drive side DS.
It is calculated according to the following equations (1) ′ to (4) ′ corresponding to equations (1) to (4). K 0 = F 1 (M 0 ) ... (1) 'K 0 df = F 2 (K 0, M 0 df) ... (2)' K 0 W = K 0 + K 0 df / 2 ... (3) 'K 0 D = K 0 −K 0 df / 2 (4) ′

【0026】(2) 各パス圧延前に行う演算 予め入力されている圧延材の板幅B,塑性係数Q及びロ
ール組替え時に求めて記憶してあるハウジングポストの
剛性K0 W ,K0 D と、圧延荷重予測演算装置29から読
み込んだ予測圧延荷重P0 に基づき、前記(5) 式と対応
する下記(5) ′式に従って圧延前のワーク側WSとドライ
ブ側DSのロールギャップ差目標値S0 dfを求める。 F3 (B,Q,P0 ,K0 W ,K0 D ,S0 df)=0 …(5) ′
(2) Calculations to be carried out before each pass rolling: The plate width B of the rolled material, the plasticity coefficient Q, and the rigidity K 0 W and K 0 D of the housing post which are obtained and stored when the rolls are recombined. Based on the predicted rolling load P 0 read from the rolling load prediction calculation device 29, the roll gap difference target value S between the work side WS and the drive side DS before rolling is calculated according to the following formula (5) ′ corresponding to the above formula (5). Calculate 0 df . F 3 (B, Q, P 0 , K 0 W , K 0 D , S 0 df ) = 0 (5) ′

【0027】次に、本発明方法を具体的数値を掲げて説
明する。図5に示す本発明例と、ワーク側WSとドライブ
側DSとのミル剛性及び実際の圧延荷重からロールギャッ
プ差を調整する比較例とで同じ板厚20mm,板幅3000mm,
板長さ30mの厚鋼板夫々10枚を圧延し、圧延後のキャン
バー量を実測して比較を行った。その結果、比較例では
キャンバー量の平均値が40mmであったのに対し、本発明
例ではキャンバー量の平均値が15mmと大幅に低減し得る
ことが確認できた。
Next, the method of the present invention will be described with reference to specific numerical values. In the example of the present invention shown in FIG. 5 and the comparative example in which the roll gap difference is adjusted from the mill rigidity of the work side WS and the drive side DS and the actual rolling load, the same plate thickness 20 mm, plate width 3000 mm,
Ten thick steel plates each having a plate length of 30 m were rolled, and the amount of camber after rolling was measured and compared. As a result, it was confirmed that the average camber amount was 40 mm in the comparative example, whereas the average camber amount was 15 mm in the present invention.

【0028】[0028]

【発明の効果】以上の如く本発明方法にあってはロール
組替え時にワーク側とドライブ側との各々のハウジング
ポストの剛性を正確に求めておき、各パス圧延前に圧延
荷重の予測値と前記ハウジングポストの剛性から圧延中
のワーク側とドライブ側との出側板厚の差を正確に予測
し、それが零となるように各パス圧延前にワーク側とド
ライブ側とのロールギャップ差を予め調整することによ
り、従来方法に比べ、キャンバー防止効果を大幅に向上
することができる等本発明は優れた効果を奏するもので
ある。
As described above, according to the method of the present invention, the rigidity of each of the housing posts on the work side and the drive side is accurately obtained when the rolls are reassembled, and the predicted value of the rolling load and the above-mentioned values are calculated before each pass rolling. The rigidity of the housing post is used to accurately predict the difference between the output side plate thickness of the work side and the drive side during rolling, and the roll gap difference between the work side and drive side is pre-determined before each pass rolling so that it becomes zero. The present invention has excellent effects such that the effect of preventing camber can be greatly improved by adjusting the camber as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】キャンバーの説明図である。FIG. 1 is an explanatory diagram of a camber.

【図2】ワーク側WSとドライブ側DSとの両ハウジングポ
ストの剛性KW とKD とが同じ剛性Kと仮定した場合に
おけるロール締め込み法によるミル剛性Mとの関係を示
すグラフである。
2 is a graph showing the relationship between the mill stiffness M by roll tightening method in the case where the stiffness K W and K D of the housings posts between the work side WS and drive side DS is assumed to equal stiffness K.

【図3】ワーク側WSとドライブ側DSとのハウジングポス
トの剛性KW ,KD が異なると仮定した場合におけるハ
ウジングポストの剛性差Kdfとロール締め込み法により
求めたミル剛性差Mdfの関係を示すグラフである。
[Fig. 3] Fig. 3 shows a difference in rigidity K df of the housing post and a difference in mill rigidity M df obtained by the roll tightening method, assuming that the rigidity K W and K D of the housing post on the work side WS and the drive side DS are different. It is a graph which shows a relationship.

【図4】圧延前のワーク側WS,ドライブ側DSとのロール
ギャップ差と、出側板厚のウェッジ量との関係を示すグ
ラフである。
FIG. 4 is a graph showing a relationship between a roll gap difference between a work side WS and a drive side DS before rolling and a wedge amount of a delivery side plate thickness.

【図5】本発明方法を実施するための装置の模式図であ
る。
FIG. 5 is a schematic view of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 圧延材 2,3 ワークロール 4,5 バックアップロール 6,7 圧下装置 8,9 荷重検出器 10,11 圧下位置検出器 21 自動板厚制御装置 22,23 圧下位置指令演算装置 24,25 圧下位置制御装置 26 ロールギャップ目標値設定装置 27 ロールギャップ差目標値設定装置 28 ミル剛性測定装置 29 圧延荷重予測演算装置 1 Rolled material 2, 3 Work rolls 4, 5 Backup rolls 6, 7 Rolling down device 8, 9 Load detector 10, 11 Rolling down position detector 21 Automatic plate thickness control device 22,23 Rolling down position command calculation device 24,25 Rolling down position Control device 26 Roll gap target value setting device 27 Roll gap difference target value setting device 28 Mill rigidity measuring device 29 Rolling load prediction calculation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧延機のワーク側とドライブ側夫々のロ
ールギャップ目標値を求め、該ロールギャップ目標値に
基づき圧延機のロールギャップを調整して圧延材のキャ
ンバーを制御する方法において、ロール組替え時にロー
ル締め込み法によりワーク側, ドライブ側夫々のミル剛
性を測定し、ロール締め込み状態における圧延機の力学
的変形量から導かれる前記ミル剛性測定値とハウジング
ポストの剛性との関係式を用いて、ワーク側, ドライブ
側夫々の各ハウジングポストの剛性を求め、また圧延時
における圧延機の力学的変形量に基づき求めた前記ハウ
ジングポストの剛性とロールギャップ差との関係式を用
いて、各パス圧延前に圧延中のワーク側, ドライブ側夫
々の出側板厚の差を零とするのに必要なワーク側とドラ
イブ側とのロールギャップ差目標値を求め、該ロールギ
ャップ差目標値に基づいて圧延機のワーク側, ドライブ
側夫々のロールギャップを設定調整することを特徴とす
る圧延材のキャンバー制御方法。
1. A method for controlling a camber of a rolled material by obtaining a roll gap target value for each of a work side and a drive side of a rolling mill, and adjusting a roll gap of the rolling mill based on the roll gap target value to control a camber of a rolled material. Sometimes, the roll rigidity method is used to measure the mill rigidity of each of the work side and drive side, and the relational expression between the measured rigidity value of the mill and the rigidity of the housing post, which is derived from the mechanical deformation amount of the rolling mill in the roll tightened state, is used. Then, the rigidity of each of the housing posts on the work side and the drive side is obtained, and by using the relational expression between the rigidity of the housing post and the roll gap difference obtained based on the mechanical deformation amount of the rolling mill during rolling, Before the pass rolling, the roll gap between the work side and the drive side, which is necessary to reduce the difference between the output side plate thicknesses of the work side and the drive side during rolling, to zero. A method for controlling the camber of a rolled material, which comprises obtaining a target value for the roll-up difference and setting and adjusting the roll gaps on the work side and the drive side of the rolling mill based on the target value for the roll gap difference.
JP3354992A 1991-12-19 1991-12-19 Method for controlling camber of rolled stock Pending JPH05169120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3354992A JPH05169120A (en) 1991-12-19 1991-12-19 Method for controlling camber of rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3354992A JPH05169120A (en) 1991-12-19 1991-12-19 Method for controlling camber of rolled stock

Publications (1)

Publication Number Publication Date
JPH05169120A true JPH05169120A (en) 1993-07-09

Family

ID=18441250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3354992A Pending JPH05169120A (en) 1991-12-19 1991-12-19 Method for controlling camber of rolled stock

Country Status (1)

Country Link
JP (1) JPH05169120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721811A1 (en) * 1995-01-07 1996-07-17 Sms Schloemann-Siemag Aktiengesellschaft Method of regulating the roll gap section
US6142000A (en) * 1997-05-02 2000-11-07 Sms Schloemann-Siemag Aktiengesellschaft Method of operating a rolling mill for hot-rolling and cold-rolling of flat products
CN113680829A (en) * 2021-08-20 2021-11-23 鞍钢集团自动化有限公司 Novel sickle elbow part pre-control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721811A1 (en) * 1995-01-07 1996-07-17 Sms Schloemann-Siemag Aktiengesellschaft Method of regulating the roll gap section
US5775154A (en) * 1995-01-07 1998-07-07 Sms Schloemann-Siemag Aktiengesellschaft Method for adjusting a roll gap
US6142000A (en) * 1997-05-02 2000-11-07 Sms Schloemann-Siemag Aktiengesellschaft Method of operating a rolling mill for hot-rolling and cold-rolling of flat products
CN113680829A (en) * 2021-08-20 2021-11-23 鞍钢集团自动化有限公司 Novel sickle elbow part pre-control method

Similar Documents

Publication Publication Date Title
US5231858A (en) Method of controlling edge drop in cold rolling of steel
JPH04167910A (en) Method and apparatus for controlling rolling mill
JPH05169120A (en) Method for controlling camber of rolled stock
KR0148612B1 (en) Reverse rolling control system of pair cross rolling mill
JP3302930B2 (en) How to change the setting of the running distance of the rolling mill
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JPS6028566B2 (en) Plate crown control method
JPS60247407A (en) Method for preventing squeezing in rolling of steel strip
JP2921779B2 (en) Asymmetric rolling compensating rolling mill
KR20030054637A (en) Device and method for flatness control for reversing mill
JP2550267B2 (en) Camber control method in plate rolling
JPH04305304A (en) Method for controlling camber in hot rolling mill
JPH0839123A (en) Method for preventing draw-in in hot rolling
JP2001286917A (en) Plate mill and plate rolling method
JPH0736923B2 (en) Non-interference control method of strip thickness and shape in multi-high rolling mill
JPH0261848B2 (en)
JPS6323851B2 (en)
JPS62137114A (en) Plate width control method for thick plate
JP2500133B2 (en) Rolling mill edge drop control method
JPH0328962B2 (en)
JPH0679315A (en) Method for leveling roll of cross roll mill
JPH0671611B2 (en) Edge drop control method in strip rolling
JPS5947609B2 (en) Rolling method to prevent bending of rolled material
JPS62244513A (en) Control method for plate thickness in continuous rolling mill
JPH06328111A (en) Method for controlling leveling in hot rolling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees