JPH05169072A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH05169072A
JPH05169072A JP34316391A JP34316391A JPH05169072A JP H05169072 A JPH05169072 A JP H05169072A JP 34316391 A JP34316391 A JP 34316391A JP 34316391 A JP34316391 A JP 34316391A JP H05169072 A JPH05169072 A JP H05169072A
Authority
JP
Japan
Prior art keywords
waste water
nitrogen
oxygen
wastewater
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34316391A
Other languages
Japanese (ja)
Other versions
JP3203027B2 (en
Inventor
Toru Ishii
徹 石井
Kiichiro Mitsui
紀一郎 三井
Kunio Sano
邦夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP34316391A priority Critical patent/JP3203027B2/en
Publication of JPH05169072A publication Critical patent/JPH05169072A/en
Application granted granted Critical
Publication of JP3203027B2 publication Critical patent/JP3203027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To improve treating efficiency by wet-oxidizing nitrogen containing waste water with a solid catalyst at the prescribed temp. while supplying gas containing oxygen the prescribed times the theoretical oxygen amount required to oxidize and decompose nitrogen compounds, organic substances, etc., included in the nitrogen compound containing waste water. CONSTITUTION:A reactor 1 packed with a pellet catalyst where 0.5% Pt is deposited on a titania-zirconia carrier is used. That is, air 9 from a compressor 5 and waste water 8 from a waste water supply pump 3 are mixed and preheated by a heat exchanger 2 to supply the mixture to the reactor 1 where it is given wet oxidation at a temp. of <=370 deg.C. In this case, pressure is controlled by a pressure control valve 7 operated by a pressure controller Pc so that waste water may be kept liquid phase. The supply amount of air is set so that oxygen 1.6-5.0 times the theoretical oxygen quantity required to decompose the contained nitrogen compounds and organic and inorganic substances into nitrogen, carbon dioxide and water may be supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素化合物に加えて化
学的酸素要求物質(以下COD成分とする)、懸濁物質
等を含む廃水を固体触媒の存在下に湿式酸化する方法に
関する。詳しくは、窒素化合物に加えてCOD成分であ
る有害な被酸化性の有機物質または無機物質を含有する
廃水を酸素含有ガスの共存下に湿式酸化することによ
り、これら物質を無害な炭酸ガス、水、窒素などに変換
する廃水を無害化するに有効な方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for wet-oxidizing wastewater containing a chemical oxygen demand substance (hereinafter referred to as COD component), a suspended substance and the like in addition to a nitrogen compound in the presence of a solid catalyst. More specifically, by wet-oxidizing wastewater containing a harmful oxidizable organic substance or inorganic substance which is a COD component in addition to a nitrogen compound in the presence of an oxygen-containing gas, these substances are harmless carbon dioxide gas and water. , An effective method for detoxifying wastewater that is converted into nitrogen, etc.

【0002】[0002]

【従来の技術】従来、廃水の処理方法として、チンマ−
マン法と呼ばれる湿式酸化法が知られている。この方法
は、廃水を高温・高圧下、廃水に酸素含有ガスを供給
し、廃水中の有機物を酸化分解する方法である。しかし
ながら、この方法は反応速度が遅く、有害物質の分解に
長時間を要する。そこで反応速度を速めることを目的と
して、各種の酸化触媒を使用する方法が提案されてい
る。
2. Description of the Related Art A conventional method for treating wastewater has been
A wet oxidation method called the Mann method is known. This method is a method of supplying oxygen-containing gas to wastewater under high temperature and high pressure to oxidize and decompose organic matter in the wastewater. However, this method has a slow reaction rate and requires a long time to decompose harmful substances. Therefore, a method using various oxidation catalysts has been proposed for the purpose of increasing the reaction rate.

【0003】この酸化触媒を用いた湿式酸化法において
は、酸素含有ガスの供給量は廃水の分解に必要な理論量
の1.0〜1.5倍量の酸素含有ガスを供給するのが一
般的であった。
In the wet oxidation method using this oxidation catalyst, the oxygen-containing gas is generally supplied in an amount of 1.0 to 1.5 times the theoretical amount required for the decomposition of waste water. It was target.

【0004】しかしながら、シアン、アンモニア等の窒
素化合物含有廃水を固体触媒の存在下に湿式酸化する場
合、上記の反応条件下では酸素不足になるため、触媒が
失活しやすく経時的に処理効率が低下する傾向が認めら
れ、さらに反応装置が腐食されやすいという問題があっ
た。
However, in the case of wet-oxidizing wastewater containing a nitrogen compound such as cyanogen or ammonia in the presence of a solid catalyst, oxygen becomes insufficient under the above reaction conditions, so that the catalyst is easily deactivated and the treatment efficiency is deteriorated over time. There was a problem that the tendency was to decrease, and the reactor was easily corroded.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は窒素化合物を含有する廃水、特にシアン、アンモニア
等の窒素化合物含有廃水を固体触媒の存在下、これらの
化合物を効率よく長期にわたって処理する方法を提供す
ることを課題とする。
Therefore, an object of the present invention is to efficiently treat wastewater containing nitrogen compounds, particularly wastewater containing nitrogen compounds such as cyanogen and ammonia, in the presence of a solid catalyst for a long period of time. The challenge is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究の結果、窒素化合物を含有する廃
水を固体触媒の存在下に湿式酸化処理する際に供給する
酸素含有ガスを理論酸素量の1.6〜5.0倍量とする
ことで以下に述べるような優れた効果が得られることを
見出したのである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that an oxygen-containing gas to be supplied when a wastewater containing a nitrogen compound is subjected to a wet oxidation treatment in the presence of a solid catalyst. It has been found that the following excellent effects can be obtained by adjusting the amount of oxygen to 1.6 to 5.0 times the theoretical oxygen amount.

【0007】すなわち、本発明は、窒素化合物を含有す
る廃水を処理するに際し、廃水を固体触媒の存在下に、
370℃以下の温度かつ該廃水が液相を保持する圧力下
で廃水中の窒素化合物、有機性及び無機性物質を、窒
素、炭酸ガス及び水に酸化分解するに必要な理論酸素量
(以下、「必要理論酸素量」という)の1.6〜5.0
倍量の酸素を含有するガスの供給下に湿式酸化すること
を特徴とする窒素化合物含有廃水の処理方法である。
That is, according to the present invention, when treating wastewater containing a nitrogen compound, the wastewater is treated in the presence of a solid catalyst.
The theoretical oxygen amount necessary for oxidatively decomposing nitrogen compounds, organic and inorganic substances in the wastewater into nitrogen, carbon dioxide gas and water at a temperature of 370 ° C. or lower and at a pressure at which the wastewater holds a liquid phase (hereinafter, "Required theoretical oxygen amount") 1.6-5.0
A method for treating nitrogen compound-containing wastewater, which comprises performing wet oxidation under the supply of a gas containing a double amount of oxygen.

【0008】本発明において、酸素含有ガスの供給量は
必要理論酸素量の1.6〜5.0倍量であり、供給ガス
のコストを考慮すると、好ましくは1.8〜3.0倍量
である。酸素含有ガスの供給量が必要理論酸素量の5倍
量より多い場合、反応器内でのガスホ−ルドアップの増
加によるデメリットが上記反応速度向上の効率を上回る
ため、処理効率はむしろ低下気味となり、必要理論酸素
量の1.6倍未満である場合、触媒の表面上が常に酸素
不足の状態、即ち、還元雰囲気となり、この状態下で
は、処理効率が低下する傾向になり易いためである。
In the present invention, the supply amount of the oxygen-containing gas is 1.6 to 5.0 times the required theoretical oxygen amount, and considering the cost of the supply gas, it is preferably 1.8 to 3.0 times. Is. When the supply amount of the oxygen-containing gas is more than five times the required theoretical oxygen amount, the demerit due to the increase of gas hold-up in the reactor exceeds the efficiency of the above reaction rate improvement, so the treatment efficiency tends to decrease, This is because when the amount is less than 1.6 times the required theoretical oxygen amount, the surface of the catalyst is always in an oxygen-deficient state, that is, in a reducing atmosphere, and under this state, the treatment efficiency tends to decrease.

【0009】本発明に係る固体触媒としては、マンガ
ン、鉄、コバルト、ニッケル、タングステン、銅、セリ
ウム、銀、金、白金、パラジウム、ロジウム、ルテニウ
ム又はイリジウム等の触媒活性成分元素(以下、触媒活
性成分ともいう)の金属又はこれらの水に不溶性若しく
は難溶性の化合物、例えば、酸化物、塩化物、硫化物等
が用いられる。
The solid catalyst according to the present invention includes manganese, iron, cobalt, nickel, tungsten, copper, cerium, silver, gold, platinum, palladium, rhodium, ruthenium, iridium and other catalytically active component elements (hereinafter referred to as catalytic activity). (Also referred to as a component) or a water-insoluble or sparingly soluble compound thereof, for example, an oxide, a chloride or a sulfide.

【0010】この固体触媒は、これらを単独に使用する
こともできるが、廃水処理用の触媒担体であるチタニ
ア、シリカ、ジルコニア、アルミナ、チタニア−シリ
カ、チタニア−ジルコニア、活性炭又はケイソウ土等に
担持し、固体触媒として用いることもできる。このよう
に担体を用いる場合、この担体の固体触媒に占める担体
の割合は、75〜99.95重量%、好ましくは85〜
99.9重量%であり、触媒活性成分は、0.05〜2
5重量%、好ましくは0.1〜15重量%である。ま
た、触媒活性成分の担持量としては、マンガン、コバル
ト、ニッケル、タングステン、銅、セリウム、銀又は金
の元素については、0〜15重量%(金属換算重量)で
あり、白金、パラジウム、ロジウム、ルテニウム、およ
びイリジウムの元素については、0〜5重量%(金属換
算重量)が好ましい。
This solid catalyst, which can be used alone, is supported on a catalyst carrier for treating wastewater such as titania, silica, zirconia, alumina, titania-silica, titania-zirconia, activated carbon or diatomaceous earth. However, it can also be used as a solid catalyst. When such a carrier is used, the ratio of the carrier to the solid catalyst in the carrier is 75 to 99.95% by weight, preferably 85 to 95%.
99.9% by weight, and the catalytically active component is 0.05 to 2
It is 5% by weight, preferably 0.1 to 15% by weight. Further, the supported amount of the catalytically active component is 0 to 15% by weight (metal equivalent weight) for elements such as manganese, cobalt, nickel, tungsten, copper, cerium, silver or gold, and platinum, palladium, rhodium, The ruthenium and iridium elements are preferably 0 to 5% by weight (metal equivalent weight).

【0011】この固体触媒の形状としては、ペレット
状、球状、ハニカム状、リング状等を用いることができ
る。特に、懸濁物を含む廃水を扱う場合には、固形物や
沈殿物等により触媒層での閉塞が起こる可能性があるた
め、ハニカム状が好ましい。
The solid catalyst may have a pellet shape, a spherical shape, a honeycomb shape, a ring shape or the like. In particular, when treating wastewater containing suspensions, a honeycomb shape is preferable because clogging of the catalyst layer may occur due to solid matter, precipitates, and the like.

【0012】本発明に係る湿式酸化反応器としては、単
管円筒式反応器、多管式反応器等が用いられるが、廃水
に含まれる有機物等の量が多い場合、反応開始時に予熱
が必要な場合には、多管式反応器を用いるのが好まし
い。
As the wet oxidation reactor according to the present invention, a single-tube cylindrical reactor, a multi-tube reactor or the like is used, but when the amount of organic substances contained in the wastewater is large, preheating is required at the start of the reaction. In such cases, it is preferable to use a multitubular reactor.

【0013】湿式酸化反応の状態は、廃水の液相状態を
保持させるために、反応温度は370℃未満の温度、か
つ該温度において廃水が液相を保持する圧力以上に設定
する必要がある。
In order to maintain the liquid phase state of the waste water, the reaction temperature of the wet oxidation reaction must be set to a temperature of less than 370 ° C., and higher than the pressure at which the waste water holds the liquid phase.

【0014】酸素含有ガスは、酸素単独又はその他ガス
により希釈してたものを用いることが出来るが、装置の
コンパクト化等の特殊な場合を除き、価格の安価な空気
を用いることが好ましい。
As the oxygen-containing gas, oxygen alone or a gas diluted with other gas can be used, but it is preferable to use inexpensive air except for special cases such as downsizing of the apparatus.

【0015】本発明に係る廃水は、化学プラント、産業
プラント、食品工場等から排出される廃水であり、この
廃水の主たる成分は、窒素化合物、有機性又は無機性物
質であり、例えば、窒素を含まない有機物としては、ア
ルデヒド類、アルコール類、酢酸、ぎ酸等の低級有機酸
類、窒素を含む有機化合物としては、アミン化合物、ア
ミド化合物、アミノ酸化合物である。特に効果的である
のは、シアン、アンモニア、アミン化合物、アミド化合
物、アミノ酸化合物等の窒素化合物を含有する廃水であ
る。
The wastewater according to the present invention is wastewater discharged from a chemical plant, an industrial plant, a food factory, etc., and the main components of this wastewater are nitrogen compounds, organic or inorganic substances, such as nitrogen. Organic substances that do not include aldehydes, alcohols, lower organic acids such as acetic acid and formic acid, and organic compounds that include nitrogen include amine compounds, amide compounds, and amino acid compounds. Particularly effective is wastewater containing nitrogen compounds such as cyanide, ammonia, amine compounds, amide compounds and amino acid compounds.

【0016】アミン化合物としては、分子内にアミノ基
を含有する化合物であれば、第1アミン、第2アミン、
第3アミン、第4級アンモニウム塩のいずれであっても
よい。具体適には、メチルアミン、ジメチルアミン、ト
リメチルアミン、プロピルアミン等のアルキルアミン
類;エチレンジアミン、トリメチレンジアミン等のアル
キルジアミン類;エタノールアミン、トリエタノールア
ミン等のアルカノールアミン類の脂肪族アミン、並びに
アニリン等の芳香族アミン、ピリジン、ピコリン等の含
窒素複素環化合物等が挙げられる。
As the amine compound, if it is a compound containing an amino group in the molecule, primary amine, secondary amine,
Either a tertiary amine or a quaternary ammonium salt may be used. Specifically, alkylamines such as methylamine, dimethylamine, trimethylamine and propylamine; alkyldiamines such as ethylenediamine and trimethylenediamine; aliphatic amines such as alkanolamines such as ethanolamine and triethanolamine; and aniline. And the like, and nitrogen-containing heterocyclic compounds such as pyridine and picoline.

【0017】アミド化合物とは、分子内にアミノ基と酸
基が結合した基(RCONH−)を有する化合物であ
り、具体的には、ホルアミド、メチルホルムアミド、ア
セトアミド、エチルホルムアミド、ジメチルアセトアミ
ド、N−メチルピロリン等である。
The amide compound is a compound having a group (RCONH-) in which an amino group and an acid group are bound to each other in the molecule, and specifically, formamide, methylformamide, acetamide, ethylformamide, dimethylacetamide, N- Methylpyrroline and the like.

【0018】アミノ化合物とは、分子内にカルボキシル
基を有する化合物で、α−アミノ酸、β−アミノ酸、γ
−アミノ酸等であり、具体的には、グリシン、アラニ
ン、バリン、ロイシン、セリン、システイン、アスパラ
ギン酸、グルタミン酸、リジン、アルギニンなどの脂肪
族アミノ酸;フェニルアラニン、チロシン等の芳香族核
を持つアミノ酸;ヒスチジン、トリプトファン、プロリ
ン等の複素環を持つアミノ酸等が挙げられる。
The amino compound is a compound having a carboxyl group in the molecule, and is α-amino acid, β-amino acid, γ
-Amino acids and the like, specifically, aliphatic amino acids such as glycine, alanine, valine, leucine, serine, cysteine, aspartic acid, glutamic acid, lysine, and arginine; amino acids having an aromatic nucleus such as phenylalanine and tyrosine; histidine , Amino acids having a heterocycle such as tryptophan and proline.

【0019】また、上記の窒素化合物は、水に溶解して
いるものに限定されることはなく、水に浮遊、懸濁状態
であってもよい。これらの化合物の濃度は、特に限定さ
れるものではないが、通常、10〜100000ppm
である。
The nitrogen compound is not limited to the one dissolved in water, and may be in a suspended or suspended state in water. The concentration of these compounds is not particularly limited, but usually 10 to 100000 ppm
Is.

【0020】本発明に係る酸素量は、廃水中の窒素化合
物、有機性及び無機性物質を、窒素、炭酸ガス及び水に
酸化分解するに必要理論酸素量の1.6〜5.0倍量で
あり、この量の酸素を含有するガスの供給することによ
り本発明は達成される。これは、廃水中にシアン、アン
モニア等の窒素化合物を含有する場合、通常、固体触媒
を用いて分解するとき、その分解反応速度が速いため、
廃水中の酸素のうち実質的に反応に関与しうる酸素を急
速に消費し、必要理論酸素量の1.0〜1.5倍の酸素
量では触媒の表面上が常に酸素不足の状態(還元的雰囲
気状態)となり、この状態では、酸化反応速度が低下
し、触媒は失活しやすく、これにより処理効率が低下す
る傾向にあるからである。このためシアン等を含有する
廃水を湿式酸化する場合、触媒上での酸素不足を解消す
るため必要理論酸素量の1.6倍量以上の酸素を含有す
るガスを供給することで、触媒の表面上は常に酸化的雰
囲気し、これにより酸化反応速度が向上させることで処
理効率が上がり、しかも長期間にわたり安定した触媒活
性を維持することができる。また、必要理論酸素量の
5.0倍を越える量の酸素を含有するガスを供給する
と、反応に係る廃水の温度が低下し、反応の効率上、好
ましくないものとなる。
The amount of oxygen according to the present invention is 1.6 to 5.0 times the theoretical amount of oxygen required for oxidative decomposition of nitrogen compounds, organic and inorganic substances in wastewater into nitrogen, carbon dioxide and water. The present invention is achieved by supplying a gas containing this amount of oxygen. This is because when the wastewater contains nitrogen compounds such as cyanogen and ammonia, the decomposition reaction rate is usually high when decomposing using a solid catalyst,
Of the oxygen in the wastewater, oxygen that can be substantially involved in the reaction is rapidly consumed, and when the amount of oxygen is 1.0 to 1.5 times the required theoretical oxygen amount, the surface of the catalyst is always in an oxygen-deficient state (reduction This is because in this state, the oxidation reaction rate decreases and the catalyst is easily deactivated in this state, which tends to reduce the treatment efficiency. For this reason, when wet-oxidizing wastewater containing cyanogen etc., the surface of the catalyst is supplied by supplying a gas containing 1.6 times or more of the theoretical oxygen amount required in order to eliminate oxygen deficiency on the catalyst. The upper part is always in an oxidative atmosphere, which improves the oxidation reaction rate, thereby improving the treatment efficiency and maintaining stable catalytic activity for a long period of time. Further, if a gas containing oxygen in an amount exceeding 5.0 times the required theoretical oxygen amount is supplied, the temperature of waste water relating to the reaction decreases, which is not preferable in terms of reaction efficiency.

【0021】廃水の処理温度は、廃水が液相を保持する
温度、即ち、臨海温度未満に設定する必要があり、この
温度未満であれば、反応時の圧力、廃水の濃度により、
適宜選択されるものである。以下に、本発明の具体的な
実施例および比較例を示すが、本発明はこれら実施例の
みに限定されるものではない。
The treatment temperature of the wastewater must be set to a temperature at which the wastewater retains a liquid phase, that is, below the seaside temperature.
It is selected appropriately. Specific examples and comparative examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0022】実施例1 第1図はシアン、アンモニア等を含有する化学プラント
廃水の処理を行うための装置の概略図である。用いられ
る反応器1の内径は50mmかつ管長は10mで管内に
は、平均粒径5mm、長さ6mmのペレット触媒(Pt
0.5%をチタニア−ジルコニア担体に担持したもの)
を触媒層長8mになるように充填した。
Example 1 FIG. 1 is a schematic view of an apparatus for treating a chemical plant wastewater containing cyan, ammonia and the like. The reactor 1 used had an inner diameter of 50 mm, a tube length of 10 m, and an average particle diameter of 5 mm and a length of 6 mm.
0.5% supported on titania-zirconia carrier)
Was filled so that the catalyst layer length was 8 m.

【0023】空気をコンプレッサ−8で昇圧後、廃水供
給ポンプ3から供給される廃水と混合し、熱交換器2で
予熱後、反応器1に供給した。
The air was pressurized by the compressor-8, mixed with the waste water supplied from the waste water supply pump 3, preheated by the heat exchanger 2, and then supplied to the reactor 1.

【0024】反応器1で処理された廃水は、熱交換器2
で冷却されたのち、気液分離器4へ供給され、ここで無
害なガスと水とに分離した。この気液分離器4において
は、液面コントロ−ラ−LCにより液面を検出して液面
制御弁5を作動させて一定の液面を保持するとともに、
圧力コントロ−ラ−PCにより圧力を検出して圧力制御
弁6を作動させて一定の圧力を保持するように操作され
ている。
The wastewater treated in the reactor 1 is used as a heat exchanger 2
After being cooled in, it was supplied to the gas-liquid separator 4, where it was separated into harmless gas and water. In the gas-liquid separator 4, the liquid level is detected by the liquid level controller LC and the liquid level control valve 5 is operated to maintain a constant liquid level.
The pressure controller PC is operated to detect the pressure and operate the pressure control valve 6 to maintain a constant pressure.

【0025】処理に供した廃水の濃度は、COD(C
r)30,000ppm、シアン濃度500ppm、全
窒素量5,000ppmであった。
The concentration of wastewater used for treatment is COD (C
r) It was 30,000 ppm, cyan concentration was 500 ppm, and total nitrogen amount was 5,000 ppm.

【0026】反応条件は、反応温度250℃、反応圧力
70kg/cm2G、廃水供給量30リットル(以下、
「L」ともいう)/Hr、空気量6Nm3/Hr(必要
理論酸素量の2倍量)であった。その結果、COD(C
r)処理効率99%、窒素処理効率99%で、シアン濃
度0.1ppm以下であった。
The reaction conditions are as follows: reaction temperature 250 ° C., reaction pressure 70 kg / cm 2 G, waste water supply 30 liters (hereinafter,
It was also referred to as “L”) / Hr, and the air amount was 6 Nm 3 / Hr (twice the required theoretical oxygen amount). As a result, COD (C
r) The treatment efficiency was 99%, the nitrogen treatment efficiency was 99%, and the cyan concentration was 0.1 ppm or less.

【0027】上記反応条件で7,000Hrの連続運転
においてもCOD(Cr)および全窒素量の処理効率の
低下及びシアン濃度の変化は認められなかった。
Under the above reaction conditions, even when continuously operated at 7,000 Hr, no decrease in treatment efficiency of COD (Cr) and total nitrogen amount and no change in cyan concentration were observed.

【0028】実施例2 供給空気量を必要理論酸素量の4倍量とした処理テスト
を実施した。処理に供した廃水は、実施例1で用いた廃
水と同じものを用い、以下に示す反応条件以外は、実施
例1と同様に反応した。反応条件としては、反応温度2
50℃、反応圧力70kg/cm2G、廃水供給量30
L/Hr、空気量12Nm3/Hrであった。その結
果、COD(Cr)処理効率99%、窒素処理効率99
%で、シアン濃度0.03ppm以下であった。上記反
応条件で7,000Hrの連続運転においてもCOD
(Cr)および全窒素量の処理効率の低下及びシアン濃
度の変化は認められなかった。
Example 2 A treatment test was conducted in which the supply air amount was four times the required theoretical oxygen amount. The waste water used for the treatment was the same as the waste water used in Example 1, and the reaction was performed in the same manner as in Example 1 except for the reaction conditions shown below. The reaction conditions include reaction temperature 2
50 ° C, reaction pressure 70 kg / cm 2 G, wastewater supply 30
It was L / Hr and the air amount was 12 Nm 3 / Hr. As a result, COD (Cr) treatment efficiency 99%, nitrogen treatment efficiency 99
%, The cyan concentration was 0.03 ppm or less. COD even under continuous operation of 7,000 hours under the above reaction conditions
No decrease in the processing efficiency of (Cr) and total nitrogen amount and no change in cyan concentration were observed.

【0029】比較例1 供給空気量を必要理論酸素量の1.1倍量とした処理テ
ストを実施した。処理に供した廃水は、実施例1で用い
た廃水と同じものを用い、以下に示す反応条件以外は、
実施例1と同様に反応した。反応条件としては、反応温
度250℃、反応圧力70kg/cm2G、廃水供給量
30L/Hr、空気量3,300NL/Hrであった。
その結果、COD(Cr)処理効率95%、窒素処理効
率90%で、シアン濃度0.1ppmであった。処理効
率の経時変化を表1に示す。
Comparative Example 1 A treatment test was carried out with the supplied air amount being 1.1 times the required theoretical oxygen amount. The waste water used for the treatment was the same as the waste water used in Example 1, except for the reaction conditions shown below.
The reaction was performed in the same manner as in Example 1. The reaction conditions were a reaction temperature of 250 ° C., a reaction pressure of 70 kg / cm 2 G, a waste water supply amount of 30 L / Hr, and an air amount of 3,300 NL / Hr.
As a result, the COD (Cr) treatment efficiency was 95%, the nitrogen treatment efficiency was 90%, and the cyan concentration was 0.1 ppm. Table 1 shows the change over time in treatment efficiency.

【0030】[0030]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する細の一態様を示すフロー
チャート図である。
FIG. 1 is a flow chart showing a detailed mode for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1.湿式反応塔 2.熱交換機 3.廃水供給ボンプ 4.気液分離器 5.コンプレツサー 6.液面制御弁 7.圧力制御弁 1. Wet reaction tower 2. Heat exchanger 3. Wastewater supply pump 4. Gas-liquid separator 5. Complexer 6. Liquid level control valve 7. Pressure control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含有する廃水を370℃以
下の温度かつ廃水が液相を保持する圧力下で湿式酸化す
るに際し、廃水中の窒素化合物、有機性及び無機性物質
を、窒素、炭酸ガス及び水に酸化分解するに必要な理論
酸素量の1.6〜5.0倍量の酸素を含有するガスの供
給下に、廃水を固体触媒を用いて湿式酸化することを特
徴とする廃水の処理方法。
1. When wet-oxidizing wastewater containing nitrogen oxides at a temperature of 370 ° C. or lower and at a pressure at which the wastewater maintains a liquid phase, nitrogen compounds, organic and inorganic substances in the wastewater are converted to nitrogen, It is characterized in that the waste water is wet-oxidized by using a solid catalyst under the supply of a gas containing 1.6 to 5.0 times the theoretical oxygen amount necessary for oxidative decomposition into carbon dioxide gas and water. Wastewater treatment method.
JP34316391A 1991-12-25 1991-12-25 Wastewater treatment method Expired - Lifetime JP3203027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34316391A JP3203027B2 (en) 1991-12-25 1991-12-25 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34316391A JP3203027B2 (en) 1991-12-25 1991-12-25 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH05169072A true JPH05169072A (en) 1993-07-09
JP3203027B2 JP3203027B2 (en) 2001-08-27

Family

ID=18359405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34316391A Expired - Lifetime JP3203027B2 (en) 1991-12-25 1991-12-25 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3203027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095389C (en) * 2000-08-04 2002-12-04 中山大学 Process for treating nitrogen oxide/co mixed gas
CN104923550A (en) * 2015-06-29 2015-09-23 北京水木清辉环保科技有限责任公司 Food waste treater
CN104959366A (en) * 2015-07-10 2015-10-07 北京水木清辉环保科技有限责任公司 Kitchen waste treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095389C (en) * 2000-08-04 2002-12-04 中山大学 Process for treating nitrogen oxide/co mixed gas
CN104923550A (en) * 2015-06-29 2015-09-23 北京水木清辉环保科技有限责任公司 Food waste treater
CN104959366A (en) * 2015-07-10 2015-10-07 北京水木清辉环保科技有限责任公司 Kitchen waste treatment system

Also Published As

Publication number Publication date
JP3203027B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP5889389B2 (en) Wastewater treatment method using wastewater treatment catalyst
CA1335668C (en) Process for removing the nitrite and/or nitrate content in water
EP0686427B1 (en) Method of processing waste water using a catalyst
JP4907289B2 (en) Wastewater treatment method
JP3203027B2 (en) Wastewater treatment method
JP6132561B2 (en) Wastewater treatment catalyst and wastewater treatment method using the same
JP3515627B2 (en) Wastewater treatment method
JP3229674B2 (en) Wastewater treatment method
JP3543025B2 (en) Wastewater treatment method
JP5099950B2 (en) Wastewater treatment method
JPH08299970A (en) Treatment of waste water including nitrogen-containing compound
JP3318131B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JPH04250888A (en) Treatment of waste water
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP2835071B2 (en) Wastewater purification method
JPH081172A (en) Treatment of ammonia nitrogen-containing water
AU4220593A (en) Process for the catalytic reduction of nitrogen oxides
JPH1177069A (en) Treatment of waste water containing nitrogen compound
JP2011224547A (en) Catalyst for treating nitrogen-containing compound, and method of treating waste water using the same
JP3234837B2 (en) How to process photographic wastewater
JP2003103274A (en) Wastewater treatment method
JPH091164A (en) Treatment of waste water
JPH047086A (en) Treatment of waste water containing sulfur compound
JPH09117780A (en) Treatment of power plant waste water containing amine compound
JPH02265695A (en) Treatment of waste water

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090622

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100622

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100622

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120622