JPH05168844A - Method for extracting perfluoroalkylsulfonic acid fluoride - Google Patents

Method for extracting perfluoroalkylsulfonic acid fluoride

Info

Publication number
JPH05168844A
JPH05168844A JP3065523A JP6552391A JPH05168844A JP H05168844 A JPH05168844 A JP H05168844A JP 3065523 A JP3065523 A JP 3065523A JP 6552391 A JP6552391 A JP 6552391A JP H05168844 A JPH05168844 A JP H05168844A
Authority
JP
Japan
Prior art keywords
fluorine
fluoride
perfluoroalkylsulfonic acid
inert solvent
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3065523A
Other languages
Japanese (ja)
Other versions
JP3030661B2 (en
Inventor
Yukio Sato
幸生 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHKEM PROD KK
Original Assignee
TOHKEM PROD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHKEM PROD KK filed Critical TOHKEM PROD KK
Priority to JP3065523A priority Critical patent/JP3030661B2/en
Publication of JPH05168844A publication Critical patent/JPH05168844A/en
Application granted granted Critical
Publication of JP3030661B2 publication Critical patent/JP3030661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To effectively extract a perfluoroalkylsulfonic acid fluoride by bringing a fluorine-base inert solvent contg. the fluoride into contact with an alkali metal hydroxide, etc. CONSTITUTION:A perfluoroalkylsulfonic acid fluoride is extracted from a fluorine-base inert solvent contg. the fluoride as the intermediate in the industrial production and obtained by the electrolytic fluorination of a alkylsulfonic acid or its fluoride or chloride. In this case, the solvent is brought into contact with a soln. of the hydroxide or carbonate of an alkali metal or alkaline-earth metal in water or alcohol in the extraction tower 1. Thus, while the solvent is separated and settled on the tower bottom, the aq. alkaline soln. after extraction is introduced into a hydrolysis tank through storage tanks 10 and 11 and mixed with concd. sulfuric acid to liberate the perfluoroalkylsulfonic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、フッ素系不活性溶媒に
捕集されたペルフルオロアルキルスルホン酸フッ化物の
抽出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting perfluoroalkylsulfonic acid fluoride collected in a fluorine-based inert solvent.

【0002】[0002]

【従来技術とその問題点】ペルフルオロアルキルスルホ
ン酸フッ化物は、ペルフルオロアルキルスルホン酸の工
業的製造における中間体であり、アルキルスルホン酸ま
たはそのフッ化物もしくは塩化物を電解フッ素化するこ
とによって得られる。ペルフルオロアルキルスルホン酸
製造の常法によれば電解フッ素化により得られたペルフ
ルオロアルキルスルホン酸フッ化物は、水酸化カリウム
水溶液等のアルカリ溶液との接触によりペルフルオロア
ルキルスルホン酸金属塩に転化され、ついで、該塩が硫
酸により加水分解されて酸を遊離する。
BACKGROUND OF THE INVENTION Perfluoroalkyl sulfonic acid fluoride is an intermediate in the industrial production of perfluoroalkyl sulfonic acid, and is obtained by electrolytic fluorination of alkyl sulfonic acid or its fluoride or chloride. According to a conventional method for producing perfluoroalkylsulfonic acid, perfluoroalkylsulfonic acid fluoride obtained by electrolytic fluorination is converted into perfluoroalkylsulfonic acid metal salt by contact with an alkaline solution such as an aqueous solution of potassium hydroxide, and then, The salt is hydrolyzed by sulfuric acid to release the acid.

【0003】しかし、電解フッ素化による場合、ペルフ
ルオロアルキルスルホン酸フッ化物(沸点:−23℃〜80
℃)は、陽極で得られる同化合物と陰極で得られる副生
ガス(主に水素)との混合物として得られ、大量の副生
ガスで希釈されているため、これをそのままアルカリ溶
液と接触させた場合、その大部分が塩に転化することな
く液外に散逸してしまう。本発明者らは、上記問題点に
鑑み、ペルフルオロアルキルスルホン酸フッ化物を効率
的に捕集する方法を検討し、同化合物と反応しないフッ
素系溶液と同化合物とを接触させることで、ペルフルオ
ロアルキルスルホン酸フッ化物の効率的で経済的にも有
利な捕集が達成されることを見出した。さらに、本発明
者らは、フッ素系不活性溶媒に捕集されたペルフルオロ
アルキルスルホン酸が、該溶媒とアルカリ金属またはア
ルカリ土類金属の水酸化物または炭酸塩水溶液またはア
ルコール溶液との接触により、迅速かつ事実上完全に該
水溶液またはアルコール溶液中に抽出されることを見出
した。これにより、電解フッ素化生成ガスよりペルフル
オロアルキルスルホン酸フッ化物を簡便かつ効率的に分
離することが可能になった。
However, in the case of electrolytic fluorination, perfluoroalkylsulfonic acid fluoride (boiling point: -23 ° C to 80 ° C) is used.
(° C) is obtained as a mixture of the same compound obtained at the anode and the by-product gas (mainly hydrogen) obtained at the cathode, and since it is diluted with a large amount of by-product gas, contact it with the alkaline solution as it is. In most cases, it will dissipate out of the liquid without being converted to salt. In view of the above problems, the present inventors investigated a method for efficiently collecting perfluoroalkyl sulfonic acid fluoride, and by contacting a fluorine-based solution that does not react with the compound and the compound, the perfluoroalkyl It has been found that an efficient and economically advantageous collection of sulphonic acid fluorides is achieved. Furthermore, the present inventors have found that the perfluoroalkyl sulfonic acid collected in a fluorine-based inert solvent is contacted with the solvent and an alkali metal or alkaline earth metal hydroxide or carbonate aqueous solution or alcohol solution, It has been found to be rapidly and virtually completely extracted into the aqueous or alcoholic solution. As a result, it has become possible to separate perfluoroalkylsulfonic acid fluoride from the electrofluorinated product gas simply and efficiently.

【0004】[0004]

【発明の構成】本発明は、ペルフルオロアルキルスルホ
ン酸フッ化物を含有するフッ素系不活性溶媒をアルカリ
金属またはアルカリ土類金属の水酸化物または炭酸塩水
溶液またはアルコール溶液と接触させることからなるペ
ルフルオロアルキルスルホン酸フッ化物の抽出方法を提
供する。
The present invention relates to a perfluoroalkyl which comprises contacting a fluorine-based inert solvent containing a perfluoroalkylsulfonic acid fluoride with an aqueous solution of an alkali metal or alkaline earth metal hydroxide or carbonate or an alcohol solution. A method for extracting a sulfonic acid fluoride is provided.

【0005】本発明はさらに、ペルフルオロアルキルス
ルホン酸フッ化物を含有するフッ素系不活性溶媒をアル
カリ金属またはアルカリ土類金属の水酸化物または炭酸
塩水溶液またはアルコール溶液と向流接触させることか
らなるペルフルオロアルキルスルホン酸フッ化物の連続
抽出方法を提供する。
The present invention further comprises countercurrently contacting a fluorine-containing inert solvent containing a perfluoroalkylsulfonic acid fluoride with an aqueous solution of an alkali metal or alkaline earth metal hydroxide or carbonate or an alcohol solution. Provided is a continuous extraction method for alkyl sulfonic acid fluoride.

【0006】本発明において、フッ素系不活性溶媒と
は、ペルフルオロアルキルスルホン酸と反応せずアルカ
リ水溶液またはアルカリ性アルコール溶液とは混和しな
いフッ素系不活性溶媒をいう。フッ素系溶媒は、フッ素
を含有し、本発明の方法を実施する温度・圧力条件下に
液体であるものならばいずれでもよい。代表的なフッ素
系不活性溶媒としては、炭素数6〜20のペルフルオロア
ルカン、炭素数3〜6の置換基を有するペルフルオロアル
キルアミンおよび図1に示すペルフルオロビシクロアル
カン、ペルフルオロアダマンタン、ペルフルオロシクロ
エーテル、ペルフルオロビシクロエーテル、ペルフルオ
ロシクロアミン、ペルフルオロビシクロアミン、ペルフ
ルオロモルホリン、ペルフルオロポリエーテルおよびこ
れらの混合物がある。
In the present invention, the fluorine-based inert solvent means a fluorine-based inert solvent which does not react with perfluoroalkylsulfonic acid and is immiscible with an alkaline aqueous solution or an alkaline alcohol solution. The fluorine-based solvent may be any as long as it contains fluorine and is a liquid under the temperature and pressure conditions for carrying out the method of the present invention. Typical fluorine-based inert solvents are perfluoroalkanes having 6 to 20 carbon atoms, perfluoroalkylamines having 3 to 6 carbon atoms in the substituent group, and perfluorobicycloalkanes, perfluoroadamantanes, perfluorocycloethers and perfluorocarbons shown in FIG. There are bicycloethers, perfluorocycloamines, perfluorobicycloamines, perfluoromorpholines, perfluoropolyethers and mixtures thereof.

【0007】アルカリ金属またはアルカリ土類金属の水
酸化物または炭酸塩の種類は特に限定されないが、好ま
しくは KOH、NaOH、LiOHおよびBa(OH)2、K2CO3、Li2CO3
より好ましくはKOHである。
The type of hydroxide or carbonate of alkali metal or alkaline earth metal is not particularly limited, but preferably KOH, NaOH, LiOH and Ba (OH) 2, K 2 CO 3 , Li 2 CO 3 ,
More preferably KOH.

【0008】アルカリ金属またはアルカリ土類金属の水
酸化物または炭酸塩の水溶液またはアルコール溶液とフ
ッ素系不活性溶媒との接触方法は、特に限定されない。
好ましくは該水溶液またはアルコール溶液を該溶媒と向
流接触させる。
The method of contacting the aqueous solution or alcohol solution of the hydroxide or carbonate of an alkali metal or alkaline earth metal with the fluorine-based inert solvent is not particularly limited.
Preferably the aqueous or alcoholic solution is brought into countercurrent contact with the solvent.

【0009】[0009]

【発明の具体的開示】以下、図面を参照して実施例によ
り本発明を具体的に説明するが、本発明はこれに限定さ
れるものではない。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the examples, but the present invention is not limited thereto.

【0010】図2は、本発明によるペルフルオロアルキ
ルスルホン酸フッ化物の連続抽出方法を説明する概念図
である。
FIG. 2 is a conceptual diagram for explaining the continuous extraction method of perfluoroalkylsulfonic acid fluoride according to the present invention.

【0011】捕集工程より移送されてきたペルフルオロ
アルキルスルホン酸フッ化物を含有するフッ素系不活性
溶媒は、抽出塔1の上部より塔内に装入される。一方、
42%KOH水溶液がポンプ手段2により管3を経て、抽出
塔1の下部より塔内に装入される。一般にフッ素系溶媒
は比重が1.6〜1.8程度であるため、上部より装入された
溶媒は、塔内でアルカリ水溶液と向流的に接触しながら
塔底に至る。塔内では攪拌手段5により攪拌してもよ
い。また、該溶媒はアルカリ水溶液に不溶であるからア
ルカリ水溶液導入口より下の塔底には溶媒のみが分離さ
れる。塔底の溶媒はポンプ手段等により塔内から取り出
し、捕集工程に移送する。抽出後のアルカリ水溶液は、
溶媒導入口より上の塔最上部からポンプ手段4によりく
み出すか、またはオーバーフローとして管4を経て貯槽
10〜11に装入する。第1図では2つの貯槽を示してある
が、貯槽の数は任意である。貯槽内の水溶液は順次加水
分解槽に導入され、濃硫酸と混合されてペルフルオロア
ルキルスルホン酸を遊離する。水溶液を流出した後の空
の貯槽には新たなアルカリ水溶液が装入され、これより
抽出塔に水溶液が移送される。
The fluorine-based inert solvent containing the perfluoroalkylsulfonic acid fluoride transferred from the collecting step is charged into the column from the upper part of the extraction column 1. on the other hand,
A 42% KOH aqueous solution is charged into the tower from the lower part of the extraction tower 1 through the pipe 3 by the pump means 2. In general, the specific gravity of the fluorine-based solvent is about 1.6 to 1.8, so the solvent charged from the upper portion reaches the bottom of the tower while being countercurrently contacted with the alkaline aqueous solution in the tower. You may stir by the stirring means 5 in a tower. Further, since the solvent is insoluble in the alkaline aqueous solution, only the solvent is separated at the bottom of the column below the inlet for the alkaline aqueous solution. The solvent at the bottom of the column is taken out of the column by a pump means or the like and transferred to the collecting step. The alkaline aqueous solution after extraction is
It is pumped out from the uppermost part of the tower above the solvent inlet by the pump means 4, or as an overflow, through the pipe 4 and a storage tank.
Charge to 10-11. Although two storage tanks are shown in FIG. 1, the number of storage tanks is arbitrary. The aqueous solution in the storage tank is sequentially introduced into the hydrolysis tank and mixed with concentrated sulfuric acid to release perfluoroalkylsulfonic acid. After the aqueous solution has flowed out, a new alkaline aqueous solution is charged into the empty storage tank, and then the aqueous solution is transferred to the extraction tower.

【0012】[0012]

【発明の具体的開示】以下、実施例により本発明を具体
的に説明する。 実施例1 電解フッ素化槽に、C4H9SO2Cl 1.8kgを仕込み、1A/d
m2、350A、5〜6V、8〜12℃で電解フッ素化を行なった。
通電2時間後から時間あたり C4H9SO2Clを192g、無水フ
ッ酸350gを連続投入した。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below with reference to examples. Example 1 1.8 kg of C 4 H 9 SO 2 Cl was charged in an electrolytic fluorination tank, and 1 A / d
m 2, 350A, 5~6V, was carried out electrochemical fluorination at 8 to 12 ° C..
From 2 hours after electricity was passed, 192 g of C 4 H 9 SO 2 Cl and 350 g of hydrofluoric acid anhydride were continuously added per hour.

【0013】生成物のC4H9SO2Cl(沸点65℃)は、フッ
酸への溶解度が小さくかつ比重が大きいため電解槽の底
に沈殿する。これを24時間毎に平均1.69kg抜き出した
(純度87%)。電解にともなう生成ガス(主に水素ガス
で175リットル/hr)は、-20℃のシェル-チューブ型コンデ
ンサーに通し、フッ酸および生成物を凝縮させ電解槽に
戻しているが、非凝縮性ガスが多量のため蒸気圧分の生
成物が系外に排出される。
The product, C 4 H 9 SO 2 Cl (boiling point: 65 ° C.), has a low solubility in hydrofluoric acid and a large specific gravity, and therefore precipitates at the bottom of the electrolytic cell. An average of 1.69 kg was extracted every 24 hours (purity 87%). The gas produced by electrolysis (mainly 175 liters / hr for hydrogen gas) is passed through a shell-tube condenser at -20 ° C to condense hydrofluoric acid and the product and return them to the electrolytic cell. Because of the large amount, the product of vapor pressure is discharged out of the system.

【0014】これを回収するため、生成ガス(C4H9SO2F
を1vol%含む:0.62kg/日)を内径15cm、15mmのテラ
レットを充填(層高2.0m)したPP製ガス吸収管に導入し
た。
In order to recover this, the product gas (C 4 H 9 SO 2 F
1% by volume: 0.62 kg / day) was introduced into a PP gas absorption tube filled with terraret having an inner diameter of 15 cm and 15 mm (layer height 2.0 m).

【0015】吸収塔上部からペルフルオロ環状エーテル
(EFTOPR EF-L102:環状エ-テルC5F9O(C3F7)とC4F7O (C4F
9)との混合物)を流量98kg/hrで流し、ガスと向流接触さ
せた。C4F9SO2Fを吸収したEF-L102溶液を底部から抜き
出し、連続抽出塔の上段に送った。
Perfluoro cyclic ether from the upper part of the absorption tower
(EFTOP R EF-L102: cyclic ether C 5 F 9 O (C 3 F 7 ) and C 4 F 7 O (C 4 F
The mixture with 9 )) was flowed at a flow rate of 98 kg / hr to make countercurrent contact with the gas. The EF-L102 solution having absorbed C 4 F 9 SO 2 F was extracted from the bottom and sent to the upper stage of the continuous extraction column.

【0016】連続抽出塔は内径15cm、高さ1.5mのPP製縦
型円筒管で、上、中、下部の5ヵ所に攪拌羽根を取付けたシ
ャフトを回転することによって接触効率を高めた。連続
抽出塔の下段から水酸化カリウム水溶液をポンプで送
り、C4F9SO2Fを吸収したEF-L102溶液と向流接触させ
た。重液の EF-L102を最低部から抜き出し、シェル-チ
ュ-ブ型コンデンサーで0℃に冷却した後、ポンプで吸
収塔上部に送り返し、吸収液として循環使用した。軽液
の水酸化カリウム水溶液は、抽出塔の最上部から抜き出
し、タンクを経由して連続抽出塔の下段に循環した。水
溶液のpHが11以上を保つように適宜水酸化カリウムを追
加した。
The continuous extraction column was a vertical PP cylindrical tube having an inner diameter of 15 cm and a height of 1.5 m, and the contact efficiency was increased by rotating a shaft equipped with stirring blades at the upper, middle and lower five places. A potassium hydroxide aqueous solution was pumped from the lower stage of the continuous extraction column, and brought into countercurrent contact with the EF-L102 solution having absorbed C 4 F 9 SO 2 F. The heavy liquid EF-L102 was extracted from the lowest part, cooled to 0 ° C. with a shell-tube condenser, then sent back to the upper part of the absorption tower by a pump, and circulated and used as an absorption liquid. The light liquid potassium hydroxide aqueous solution was extracted from the uppermost part of the extraction column and circulated to the lower stage of the continuous extraction column via the tank. Potassium hydroxide was appropriately added to keep the pH of the aqueous solution at 11 or more.

【0017】連続電解フッ素化を行ない、吸収・抽出操
作を継続した。水溶液を濃縮し、晶析して24時間あたり
0.46kgのC4F9SO3Kを得た。
Continuous electrolytic fluorination was carried out to continue the absorption / extraction operation. Concentrate the aqueous solution, crystallize it for 24 hours
0.46 kg of C 4 F 9 SO 3 K was obtained.

【0018】実施例2 1リットルの電解フッ素化槽に C2H5SO2Clを40g仕込み、1A/
dm2、17A、5〜6V、8〜13℃で電解フッ素化を行なった。
通電2時間後から時間あたり C2H5SO2Clを5.8gずつ連続
投入した。生成ガスを、まず、-20℃のシェル-チュ-ブ型
コンデンサーに通し、次に水洗塔に導入し、HFを除い
た。最後に内径5cm、8×8mmのラッシヒリングを充填(層
高30cm)したテフロン製ガス吸収塔に導入した。25%水
酸化カリウム水溶液1.44kgとペルフルオロトリブチルア
ミン(EFTOPR EF-L174:(C4F9)3N)3.2kgからなる液を3リッ
トルのガラス容器に仕込み、攪拌して両液体の境界部分を
懸濁させながら、操作温度11〜13℃で、下層のEF-L174
をポンプで吸収塔に流量27.6kg/hrで流し、ガスと向流
接触させた。吸収塔出入口のガス組成をガスクロマトグ
ラフィ(Porapak Q, 6m, 80℃〜150℃)にて分析したとこ
ろ、95%以上のC2F5SO2Fガスが吸収捕集された。24時間
通電を行なった後、電解フッ素化を終了した。系内の残
留ガスをパージするために、窒素ガスを流しながらさら
に8時間吸収捕集操作を継続した。全ての操作を終了
後、水溶液層と EF-L174層を分離した。EF-L174層中か
らはC2F5SO2Fは検出されなかった。水溶液層をイオンク
ロマトグラフィで分析したところ、水溶液層へC2F5SO2F
が98%効率で抽出されたことを確認した。
Example 2 40 g of C 2 H 5 SO 2 Cl was charged into a 1-liter electrolytic fluorination tank, and 1 A /
Electrofluorination was carried out at dm 2 , 17A, 5-6V, 8-13 ° C.
Two hours after the power was turned on, 5.8 g of C 2 H 5 SO 2 Cl was continuously added per hour. The produced gas was first passed through a shell-tube condenser at -20 ° C and then introduced into a water washing tower to remove HF. Finally, it was introduced into a Teflon gas absorption tower filled with a Raschig ring having an inner diameter of 5 cm and 8 × 8 mm (layer height 30 cm). 25% aqueous potassium hydroxide 1.44kg and perfluorotributylamine (EFTOP R EF-L174: ( C 4 F 9) 3 N) solution were charged to a 3 liter glass vessel of which consists of 3.2 kg, stirring to boundary portions of both liquid While suspending, at the operating temperature of 11 to 13 ° C, the lower layer EF-L174
Was pumped into the absorption tower at a flow rate of 27.6 kg / hr to make countercurrent contact with the gas. When the gas composition at the inlet and outlet of the absorption tower was analyzed by gas chromatography (Porapak Q, 6 m, 80 ° C to 150 ° C), 95% or more of C 2 F 5 SO 2 F gas was absorbed and collected. After energizing for 24 hours, electrolytic fluorination was completed. In order to purge the residual gas in the system, the absorption and collection operation was continued for 8 hours while flowing nitrogen gas. After completing all the operations, the aqueous solution layer and the EF-L174 layer were separated. C 2 F 5 SO 2 F was not detected in the EF-L174 layer. When the aqueous layer was analyzed by ion chromatography, it was found that C 2 F 5 SO 2 F
Was extracted with 98% efficiency.

【0019】実施例3 実施例2にしたがい不活性気体の種類を変えて抽出効率
を測定した。結果を表1に示す。参考のため捕集効率を
()内に示した。
Example 3 In accordance with Example 2, the type of inert gas was changed and the extraction efficiency was measured. The results are shown in Table 1. For reference, the collection efficiency is shown in parentheses.

【0020】 表 1 フッ素系不活性溶媒によるペルフルオロアルキルスルホン酸の抽出効率 (数字は%) 不活性液体 C2F5SO2F C3F7SO2F C4F9SO2F C5F11SO2F EFTOPR EF-L102 100(95) 100(90) 95(70) 80(20) EFTOPR EF-L174 98(96) 95(90) 95(69) 95(22) C8F18 95(96) 95(89) 92(71) 80(19)ヘ゜ルフルオロキノリン 100(94) 95(90) 93(72) 90(23) KRYTOXR 143A*1 100(93) 95(88) 90(69) 80(20) *1:ヘ゜ルフルオロホ゜リエーテル Table 1 Extraction efficiency of perfluoroalkyl sulfonic acid with a fluorine-based inert solvent (numbers are%) Inert liquid C 2 F 5 SO 2 FC 3 F 7 SO 2 FC 4 F 9 SO 2 FC 5 F 11 SO 2 F EFTOP R EF-L102 100 (95) 100 (90) 95 (70) 80 (20) EFTOP R EF-L174 98 (96) 95 (90) 95 (69) 95 (22) C 8 F 18 95 (96 ) 95 (89) 92 (71) 80 (19) Perfluoroquinoline 100 (94) 95 (90) 93 (72) 90 (23) KRYTOX R 143A * 1 100 (93) 95 (88) 90 (69) 80 ( 20) * 1: Perfluoropolyether

【0021】[0021]

【発明の効果】溶媒中のフッ化物は速やかにかつ事実上
完全に水溶液またはアルコール溶液中に抽出されるた
め、抽出の済んだ溶媒は、そのままあるいは簡便な処理
の後、ペルフルオロアルキルスルホン酸フッ化物捕集工
程で再使用することができる。このため、捕集と抽出の
それぞれを連続的に行なうことができフッ素系溶媒の損
失も少ない。
EFFECTS OF THE INVENTION Since the fluoride in the solvent is rapidly and practically completely extracted into the aqueous solution or the alcohol solution, the extracted solvent may be used as it is or after a simple treatment to give a perfluoroalkylsulfonic acid fluoride. It can be reused in the collection process. Therefore, each of the collection and the extraction can be continuously performed, and the loss of the fluorine-based solvent is small.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

図1は本発明での使用に適するフッ素系化合物の構造を
示す図。 図2は本発明によるペルフルオロアルキルスルホン酸フ
ッ化物の連続抽出方法の一実施態様を示す説明図。 1…抽出塔 10〜11…貯槽。
FIG. 1 is a diagram showing the structure of a fluorine-based compound suitable for use in the present invention. FIG. 2 is an explanatory view showing one embodiment of a continuous extraction method of perfluoroalkylsulfonic acid fluoride according to the present invention. 1 ... Extraction tower 10-11 ... Storage tank.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CnF2n+1SO2F(nは2〜5)で示されるペル
フルオロアルキルスルホン酸フッ化物を含有するフッ素
系不活性溶媒をアルカリ金属またはアルカリ土類金属の
水酸化物または炭酸塩の水溶液またはアルコール溶液と
接触させることからなる、ペルフルオロアルキルスルホ
ン酸フッ化物の抽出方法。
1. A fluorine-based inert solvent containing a perfluoroalkylsulfonic acid fluoride represented by C n F 2n + 1 SO 2 F (n is 2 to 5) is a hydroxide of an alkali metal or an alkaline earth metal. Alternatively, a method for extracting perfluoroalkylsulfonic acid fluoride, which comprises contacting with an aqueous solution of carbonate or an alcohol solution.
【請求項2】 請求項1に記載の抽出方法であって、該
フッ素系不活性溶媒を連続的に該水酸化物または炭酸塩
溶液と向流接触させる連続抽出方法。
2. The extraction method according to claim 1, wherein the fluorine-based inert solvent is continuously brought into countercurrent contact with the hydroxide or carbonate solution.
【請求項3】 先行するいずれかの請求項に記載の方法
であって、該フッ素系不活性溶媒が、6〜20個の炭素原
子を含むペルフルオロアルカン;9〜20個の炭素原子を
含むペルフルオロアルキルアミン;1以上の複素原子を
含むもしくは含まないペルフルオロ単環もしくは縮合環
化合物であって、1〜5個の炭素原子からなる置換基を有
しもしくは有さず該複素原子が窒素原子もしくは酸素原
子であるもの;およびペルフルオロポリエーテルからな
る群より選ばれるもの、またはその混合物である方法。
3. The method according to any of the preceding claims, wherein the fluorine-based inert solvent is a perfluoroalkane containing 6 to 20 carbon atoms; a perfluoroalkane containing 9 to 20 carbon atoms. Alkylamine; a perfluoromonocyclic or condensed ring compound containing or not containing one or more heteroatoms, wherein the heteroatom is a nitrogen atom or an oxygen atom with or without a substituent consisting of 1 to 5 carbon atoms. Atoms; and those selected from the group consisting of perfluoropolyethers, or mixtures thereof.
【請求項4】 先行するいずれかの請求項に記載の方法
であって、該水酸化物がKOH、NaOH、LiOHおよびBa(OH)2
らなる群より選択されるもの、該炭酸塩が K2CO3および
Li2CO3から選択されるものである方法。 【0001】
4. The method according to any of the preceding claims, wherein the hydroxide is selected from the group consisting of KOH, NaOH, LiOH and Ba (OH) 2 , the carbonate being K 2 CO 3 and
The method that is selected from Li 2 CO 3 . [0001]
JP3065523A 1991-03-06 1991-03-06 Method for extracting perfluoroalkylsulfonic acid fluoride Expired - Lifetime JP3030661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065523A JP3030661B2 (en) 1991-03-06 1991-03-06 Method for extracting perfluoroalkylsulfonic acid fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065523A JP3030661B2 (en) 1991-03-06 1991-03-06 Method for extracting perfluoroalkylsulfonic acid fluoride

Publications (2)

Publication Number Publication Date
JPH05168844A true JPH05168844A (en) 1993-07-02
JP3030661B2 JP3030661B2 (en) 2000-04-10

Family

ID=13289468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065523A Expired - Lifetime JP3030661B2 (en) 1991-03-06 1991-03-06 Method for extracting perfluoroalkylsulfonic acid fluoride

Country Status (1)

Country Link
JP (1) JP3030661B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949632A3 (en) * 1998-04-08 2003-08-13 NIHON MEDI-PHYSICS Co., Ltd. Method for preparing (F-18)-fluoride ion.
JP2009179836A (en) * 2008-01-30 2009-08-13 Mitsubishi Materials Corp Method of absorbing perfluoroalkane sulfonyl fluoride
JP2012176944A (en) * 2011-02-04 2012-09-13 Mitsubishi Materials Corp Perfluorobutane sulfonyl fluoride, potassium perfluorobutane sulfonate salt, and method for producing perfluorobutane sulfonyl fluoride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949632A3 (en) * 1998-04-08 2003-08-13 NIHON MEDI-PHYSICS Co., Ltd. Method for preparing (F-18)-fluoride ion.
JP2009179836A (en) * 2008-01-30 2009-08-13 Mitsubishi Materials Corp Method of absorbing perfluoroalkane sulfonyl fluoride
JP2012176944A (en) * 2011-02-04 2012-09-13 Mitsubishi Materials Corp Perfluorobutane sulfonyl fluoride, potassium perfluorobutane sulfonate salt, and method for producing perfluorobutane sulfonyl fluoride

Also Published As

Publication number Publication date
JP3030661B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
CN111099566A (en) Preparation method of co-produced bis (chlorosulfonyl) imide acid and bis (fluorosulfonyl) imide lithium
JP2006510720A (en) Production of perfluorinated vinyl ethers with sulfonyl fluoride end groups
CN113549929A (en) Method and system for realizing hydrogen production, organic matter oxidation, carbon dioxide absorption-desorption and hydroxide regeneration
EP0062430B1 (en) Process for the preparation of (omega-fluorosulfonyl) haloaliphatic carboxylic acid fluorides
KR101004976B1 (en) Potassium perfluoroalkanesulfonates and process for production thereof
CN110921640A (en) Preparation method of lithium bis (fluorosulfonyl) imide
CN211871386U (en) Device for pre-purifying nitrogen trifluoride crude product prepared by electrolysis
JP3030661B2 (en) Method for extracting perfluoroalkylsulfonic acid fluoride
US9394247B2 (en) Method for preparing a sulfonimide compound and salts thereof
JP5051568B2 (en) Method for producing potassium perfluoroalkanesulfonate
CN114230549A (en) Synthetic method of fluoroethylene carbonate
JP2832855B2 (en) Extraction method of trifluoromethanesulfonic acid fluoride
Haszeldine et al. 529. Perfluoroalkyl derivatives of sulphur. Part V. αα-Difluoro-α-(trifluorothio) acetic acid
CN110845448B (en) Comprehensive utilization method of solvent and byproducts in HFPO preparation by oxygen oxidation method
CN109264682A (en) A kind of preparation method of high-purity difluoro sulfimide
JP2003040835A (en) Method for producing bromodifluoroacetic acid compound
JP3030660B2 (en) Method for collecting perfluoroalkylsulfonic acid fluoride
JP4993462B2 (en) Method for producing fluorine compound
JPH03296412A (en) Collection of trifluoromethanesulfonyl fluoride
JP2003206272A (en) Method of production for fluorine containing alkanesulfonylfluoride
JP2006335699A (en) Method for producing monomer intermediate
CN109468658B (en) Preparation method of carbonyl fluoride
JPS6121610B2 (en)
JP3648746B2 (en) Method for producing perfluoroalkane and iodine pentafluoride
CN115521232B (en) Preparation method of high-purity perfluoroalkyl sulfonyl bromide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12