JPH05168263A - Supersonic vibrator - Google Patents

Supersonic vibrator

Info

Publication number
JPH05168263A
JPH05168263A JP3351872A JP35187291A JPH05168263A JP H05168263 A JPH05168263 A JP H05168263A JP 3351872 A JP3351872 A JP 3351872A JP 35187291 A JP35187291 A JP 35187291A JP H05168263 A JPH05168263 A JP H05168263A
Authority
JP
Japan
Prior art keywords
elastic body
vibration
resonance
laminated piezoelectric
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3351872A
Other languages
Japanese (ja)
Inventor
Takenao Fujimura
毅直 藤村
Yuugo Imai
裕五 今井
Tomoki Funakubo
朋樹 舟窪
Yoshihisa Taniguchi
芳久 谷口
Toshiharu Tsubata
敏晴 津幡
Hiroyuki Imabayashi
浩之 今林
Katsuhiro Wakabayashi
勝裕 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3351872A priority Critical patent/JPH05168263A/en
Publication of JPH05168263A publication Critical patent/JPH05168263A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain an ultrasonic vibrator which is compact and has a large output without any damage during drive by providing a rod-shaped elastic body and a plurality of vibration-application means for applying vibration to a plurality of nodes at the resonance flex vibration at an ultrasonic vibrator and then shifting a plurality of vibration-application means in the vibration-application direction for other adjacent vibration-application means. CONSTITUTION:A bottom surface 11a and a side surface 11b of a base member 11 whose section is in L shape are formed at 90 degrees each other, lamination-type piezoelectric elements 12a and 12b are fixed in mutually vertical directions, and then retention members 14a and 14b for retaining a node at resonance flex vibration of an elastic body 13 are provided at each tip part, where a drive frequency voltage with a same frequency as a resonance frequency of the elastic body 13 is applied to the lamination-type piezoelectric element 12a and a resonance flex vibration with an amplitude in z-axis direction is generated at the elastic body 13. Furthermore, when a drive frequency voltage with a same frequency and with its phase being shifted by 90 degrees is applied to the lamination-type piezoelectric element 12b, the other node is vibrated in y-axis direction and a film of resonance flex vibration in the elastic body 13 performs rotary motion on y-z plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波振動子、詳しくは
圧電素子や電歪素子等の電気−機械エネルギー変換素子
を用いた振動子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibrator, and more particularly to a vibrator using an electro-mechanical energy conversion element such as a piezoelectric element or an electrostrictive element.

【0002】[0002]

【従来の技術】近年圧電素子や電歪素子等の電気−機械
エネルギー変換素子を用いて弾性体に振動を励起し、こ
の振動をアクチュエーターの駆動源として用いたものが
注目されている。これは、従来の電磁型モータ等の駆動
源に比べて、高トルクで位置決め精度が高く、電磁的な
影響の授受がないという利点を有している。
2. Description of the Related Art In recent years, attention has been paid to a device in which an electro-mechanical energy conversion element such as a piezoelectric element or an electrostrictive element is used to excite vibration in an elastic body and the vibration is used as a drive source for an actuator. This has an advantage over a conventional drive source such as an electromagnetic motor in that the torque is high, the positioning accuracy is high, and no electromagnetic influence is given or received.

【0003】このような駆動方式は、例えば特開昭64
−16272号公報や特開昭63−110968号公報
にて公知の技術である。特開昭64−16272号公報
には、被駆動体に圧接される部材にそれぞれ90゜の角
度を有する積層型の圧電ユニットを固定し、これら2つ
の圧電ユニットを交互に伸縮させることにより被駆動体
を駆動するように構成された圧電モータが記載されてい
る。又、特開昭63−110968号公報には、角柱型
の弾性体の側面に圧電素子を貼り付けて駆動体を構成
し、圧電体に電圧を印加することにより駆動体に複数の
曲げ振動を励起し、この駆動体に被駆動部材を圧接した
超音波リニアモータが記載されている。
Such a driving system is disclosed in, for example, Japanese Patent Laid-Open No. 64
This is a technique known in JP-A-16272 and JP-A-63-110968. In Japanese Unexamined Patent Publication No. 64-16272, a laminated piezoelectric unit having an angle of 90 ° is fixed to a member pressed against a driven body, and these two piezoelectric units are alternately expanded and contracted to be driven. A piezoelectric motor configured to drive a body is described. Further, in Japanese Patent Application Laid-Open No. 63-110968, a piezoelectric element is attached to the side surface of a prismatic elastic body to form a drive body, and a plurality of bending vibrations are applied to the drive body by applying a voltage to the piezoelectric body. An ultrasonic linear motor that is excited and presses a driven member against this driving body is described.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
従来技術においては、種々の不具合が生じる。即ち、特
開昭64−16272号公報に記載された圧電モータ
は、対向する圧電ユニットが同一平面内に設けられてい
る為、一方の圧電ユニットの振動により生じる力が、両
者の結合部分を介して他方の圧電ユニット側に曲げ力と
して伝達され、圧電ユニットが破壊されてしまう可能性
が高くなる。そして更に、圧電ユニットが最適な駆動状
態となる用に両圧電ユニットに共振周波数の駆動周波電
圧を印加する場合においては、上記曲げ力が益々増大さ
れる恐れがある。
However, various problems occur in the above-mentioned conventional techniques. That is, in the piezoelectric motor disclosed in Japanese Patent Laid-Open No. 64-16272, the opposing piezoelectric units are provided in the same plane, so that the force generated by the vibration of one piezoelectric unit is mediated by the connecting portion of the two. As a result, the bending force is transmitted to the other piezoelectric unit side, and the piezoelectric unit is more likely to be broken. Furthermore, when a drive frequency voltage having a resonance frequency is applied to both piezoelectric units so that the piezoelectric units are in the optimum drive state, the bending force may be further increased.

【0005】又、特開昭63−110968号公報に記
載された超音波リニアモータでは、2つの屈曲振動を励
起させてこれらの屈曲振動を合成し、端面を回転振動さ
せているが、この場合2つの屈曲振動の周波数を弾性体
の共振周波数に確実に一致させる必要がある。又、弾性
体の形状を小さくしようとした場合、圧電体の貼り付け
面積が少なくなる為、大きな出力を得ることが困難とな
ってしまう。
Further, in the ultrasonic linear motor described in Japanese Patent Laid-Open No. 63-110968, two bending vibrations are excited to combine these bending vibrations, and the end face is rotationally vibrated. It is necessary to surely match the frequencies of the two bending vibrations with the resonance frequency of the elastic body. Further, when the shape of the elastic body is made small, it is difficult to obtain a large output because the area where the piezoelectric body is attached is reduced.

【0006】[0006]

【本発明の目的】本発明の目的は、上記の点に鑑み、駆
動中の破損がなく、小型で高出力の超音波振動子を得る
ことにある。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to obtain a small-sized and high-power ultrasonic transducer which is not damaged during driving.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
為に本発明は、棒状の弾性体と、この弾性体の、共振屈
曲振動における複数の節に振動を加える複数の加振手段
とを超音波振動子に設け、上記複数の加振手段を、それ
ぞれ隣接する他の加振手段に対して、加振方向をずらし
たものである。
In order to solve the above-mentioned problems, the present invention comprises a rod-shaped elastic body and a plurality of vibrating means for applying vibration to a plurality of nodes in resonance bending vibration of this elastic body. It is provided in an ultrasonic vibrator, and the vibrating directions of the plurality of vibrating means are shifted with respect to other vibrating means adjacent to each other.

【0008】[0008]

【作用】本発明における超音波振動子1を、図1に示す
概念図を用いて説明する。図1(a)に示す如き棒状の
弾性体2に共振屈曲振動を発生させる。該共振屈曲振動
は模式的にみると、図1(b)に示す如く複数の節2
a,2bを有する。これら節2a,2bの弾性体1上の
位置は、弾性体2の機械的な要素により予め特定できる
ものである。
The ultrasonic transducer 1 according to the present invention will be described with reference to the conceptual diagram shown in FIG. Resonant bending vibration is generated in the rod-shaped elastic body 2 as shown in FIG. When the resonance bending vibration is schematically viewed, as shown in FIG.
a and 2b. The positions of these nodes 2a and 2b on the elastic body 1 can be specified in advance by the mechanical elements of the elastic body 2.

【0009】そして節2a,2bに、例えばz軸方向よ
り弾性体2の共振周波数と同じ周波数にて振動を加える
と、図1(b)に示す如くz軸方向に振幅を有する共振
屈曲振動が発生し、又、y軸方向より弾性体2の共振周
波数と同じ周波数にて振動を加えると、図1(c)に示
す如くy軸方向に振幅を有する共振屈曲振動が発生す
る。
When vibration is applied to the nodes 2a and 2b at the same frequency as the resonance frequency of the elastic body 2 in the z-axis direction, resonance bending vibration having an amplitude in the z-axis direction is generated as shown in FIG. 1 (b). When the vibration is generated in the y-axis direction at the same frequency as the resonance frequency of the elastic body 2, resonance bending vibration having an amplitude in the y-axis direction is generated as shown in FIG.

【0010】ここで、節2aにはz軸方向の、節2bに
はy軸方向の共振周波数振動をそれぞれ加えると、弾性
体2は図1(d)に示す如く共振屈曲振動の腹2c,2
d,2eがそれぞれy−z平面内で回転運動を起こす。
Here, when a resonance frequency vibration in the z-axis direction is applied to the joint 2a and a resonance frequency vibration in the y-axis direction is applied to the joint 2b, the elastic body 2 causes the antinode 2c of the resonance bending vibration, as shown in FIG. 1 (d). Two
Each of d and 2e causes a rotational movement in the yz plane.

【0011】ここで例えば、弾性体2に対して移動自在
にされた可動部材を腹2cに圧接することにより、腹2
cの回転振動力が可動部材に加わり、該可動部材は弾性
体2に対して図1(d)中y方向若しくはz方向に移動
される。
Here, for example, by pressing a movable member that is movable with respect to the elastic body 2 against the belly 2c, the belly 2
The rotational vibration force of c is applied to the movable member, and the movable member is moved with respect to the elastic body 2 in the y direction or the z direction in FIG.

【実施例】【Example】

【0012】以下、図示の実施例に基づき本発明を詳細
に説明する。
The present invention will be described in detail below with reference to the illustrated embodiments.

【0013】図2を用いて本発明の第1実施例を説明す
る。
A first embodiment of the present invention will be described with reference to FIG.

【0014】図2は本実施例における超音波振動子10
の斜視図である。断面がL字状のベース部材11の底面
11a及び側面11bは、互いに90゜の角度を持って
形成されている。そしてこの底面11a及び側面11b
には、それぞれ底面11a及び側面11bに対して垂直
な方向に積層された積層型圧電素子12a,12bが固
定されている。更にこれら積層型圧電素子12a,12
bの先端部には、それぞれ弾性体13の共振屈曲振動に
おける節を保持する保持部材14a,14bが設けられ
ている。この保持部材14a,14bは、弾性体13
を、ベース部材11及び積層型圧電素子12a,12b
に対して回転不能となるように固定している。
FIG. 2 shows an ultrasonic transducer 10 according to this embodiment.
FIG. The bottom surface 11a and the side surface 11b of the base member 11 having an L-shaped cross section are formed at an angle of 90 ° with each other. And this bottom surface 11a and side surface 11b
The laminated piezoelectric elements 12a and 12b, which are laminated in a direction perpendicular to the bottom surface 11a and the side surface 11b, respectively, are fixed to the. Furthermore, these laminated piezoelectric elements 12a, 12
Holding members 14a and 14b for holding the nodes in the resonant bending vibration of the elastic body 13 are provided at the tip of b. The holding members 14a and 14b are made of the elastic body 13
To the base member 11 and the laminated piezoelectric elements 12a and 12b.
It is fixed so that it cannot rotate.

【0015】上記弾性体13は、ステンレス鋼,ベアリ
ング鋼,リン青銅等の金属製の丸棒にて形成されてお
り、該弾性体13の共振屈曲振動における節の発生位置
は、予め計算により求められる。本実施例の如く、両端
が自由端で節が2つ発生する、いわゆる1次モードの共
振屈曲振動の場合、弾性体13の全長をLとすると、2
つの節はそれぞれ弾性体13の端面より、0.224L
及び0.776Lの位置に発生する。よって積層型圧電
素子12a,12bの、弾性体13の長さ方向の間隔も
予め決定される。
The elastic body 13 is formed of a round bar made of metal such as stainless steel, bearing steel, phosphor bronze, etc. The position of occurrence of a node in the resonance bending vibration of the elastic body 13 is previously calculated. Be done. In the case of so-called first-order mode resonant bending vibration in which two ends are free ends and two nodes are generated as in the present embodiment, when the total length of the elastic body 13 is L, 2
Each of the two nodes is 0.224L from the end face of the elastic body 13.
And at a position of 0.776L. Therefore, the distance between the laminated piezoelectric elements 12a and 12b in the length direction of the elastic body 13 is also determined in advance.

【0016】上記弾性体13を、節が3つ発生する2次
モードの共振屈曲振動にて振動させた場合、節は0.1
32L,0.5Lそして0.868Lの位置にそれぞれ
発生し、又、節が3つ発生する3次モードの共振屈曲振
動にて振動させた場合、節は0.094L,0.35
L,0.644Lそして0.906Lの位置にそれぞれ
発生する。よって、それぞれの位置に加振手段としての
積層型圧電素子を設ければ良い。
When the elastic body 13 is vibrated by the resonant bending vibration of the secondary mode in which three nodes are generated, the node is 0.1
When the vibration is generated at the positions of 32L, 0.5L, and 0.868L, respectively, and when vibrating by the resonant bending vibration of the third mode in which three nodes are generated, the nodes are 0.094L, 0.35.
It occurs at the positions of L, 0.644L and 0.906L, respectively. Therefore, a laminated piezoelectric element as a vibrating means may be provided at each position.

【0017】次に本実施例の作用を説明する。積層型圧
電素子12aに、弾性体13の共振周波数と同じ周波数
を持つ駆動周波電圧を印加する。これにより積層型圧電
素子12aが弾性体13の屈曲共振周波数にて伸縮し、
一方の節の部分を図2中のz軸方向に振動させる。よっ
て、弾性体13には図2中のz軸方向に振幅を有する共
振屈曲振動が発生する。
Next, the operation of this embodiment will be described. A drive frequency voltage having the same frequency as the resonance frequency of the elastic body 13 is applied to the laminated piezoelectric element 12a. As a result, the laminated piezoelectric element 12a expands and contracts at the bending resonance frequency of the elastic body 13,
One node is vibrated in the z-axis direction in FIG. Therefore, resonant bending vibration having an amplitude in the z-axis direction in FIG. 2 is generated in the elastic body 13.

【0018】更に、積層型圧電素子12bに、積層型圧
電素子12aの駆動周波電圧と同じ周波数を持ち、位相
が90゜ずれた駆動周波電圧を印加する。これにより積
層型圧電素子12bは図2中のy軸方向に伸縮し、他方
の節を図2中のy軸方向に振動させる。積層型圧電素子
12bの伸縮のみが弾性体13に加わる場合は、該弾性
体13には図2中のy軸方向に振幅を有する共振屈曲振
動が発生する。しかし、本実施例においては積層型圧電
素子12a,12bの、それぞれの伸縮により発生する
共振屈曲振動が合成され、弾性体13における共振屈曲
振動の腹は、y−z平面内にて回転運動を行なう。上記
積層型圧電素子12aへの印加電圧に対し、積層型圧電
素子12bへの印加電圧の位相差を正負切換えることに
より、y−z平面内の回転方向が逆転する。
Further, a drive frequency voltage having the same frequency as the drive frequency voltage of the stack type piezoelectric element 12a and a phase difference of 90 ° is applied to the stack type piezoelectric element 12b. As a result, the laminated piezoelectric element 12b expands and contracts in the y-axis direction in FIG. 2 and vibrates the other node in the y-axis direction in FIG. When only the expansion and contraction of the laminated piezoelectric element 12b is applied to the elastic body 13, resonance bending vibration having an amplitude in the y-axis direction in FIG. 2 is generated in the elastic body 13. However, in this embodiment, the resonance bending vibrations generated by the expansion and contraction of the laminated piezoelectric elements 12a and 12b are combined, and the antinodes of the resonance bending vibrations in the elastic body 13 make a rotational movement in the yz plane. To do. By switching the positive / negative phase difference of the voltage applied to the laminated piezoelectric element 12b with respect to the applied voltage to the laminated piezoelectric element 12a, the rotation direction in the yz plane is reversed.

【0019】以上の如く構成することにより本実施例に
おいては、簡単な構成にて高出力の超音波振動子を得る
ことができる。又、積層型圧電素子12a,12bの駆
動周波数は、該積層型圧電素子12a,12bの共振周
波数よりも低い周波数である、屈曲共振周波数にて駆動
するので、駆動時に積層型圧電素子12a,12bに加
わる負荷を極力少なくすることができる。
With the above-mentioned structure, in this embodiment, a high-power ultrasonic transducer can be obtained with a simple structure. Further, since the driving frequency of the laminated piezoelectric elements 12a and 12b is a bending resonance frequency which is lower than the resonant frequency of the laminated piezoelectric elements 12a and 12b, the laminated piezoelectric elements 12a and 12b are driven. It is possible to minimize the load applied to.

【0020】図3に示す斜視図を用いて、本実施例にお
ける変形例を説明する。
A modification of this embodiment will be described with reference to the perspective view shown in FIG.

【0021】上記弾性体13に発生する1次モードの共
振屈曲振動の、3つの腹に対応する部分に、それぞれ円
板状の負荷質量体15a,15b,15cが固設されて
いる。これら負荷質量体15a,15b,15cを設け
ることにより、弾性体13の屈曲共振周波数が低下す
る。これにより、機械的Qが増大することになり、共振
屈曲状態にて使用した場合の効率が向上する。
Disc-shaped load masses 15a, 15b, 15c are fixedly provided at the portions corresponding to the three antinodes of the first-order mode resonant bending vibration generated in the elastic body 13, respectively. By providing these load mass bodies 15a, 15b, 15c, the bending resonance frequency of the elastic body 13 is lowered. As a result, the mechanical Q is increased, and the efficiency when used in the resonance bending state is improved.

【0022】次に、図4を用いて、本発明の第2実施例
を説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0023】図4は本実施例における超音波振動子20
を説明する斜視図である。断面がL字状のベース部材2
1の底面21a及び側面21bは、互いに90゜の角度
を持って形成されている。そしてこの底面21a及び側
面21bには、それぞれ底面21a及び側面21bに対
して垂直な方向に積層された積層型圧電素子22a,2
2b,22c,22dが固定されている。更にこれら積
層型圧電素子22a,22b,22c,22dの先端部
には、それぞれ弾性体23に発生する3次モードの共振
屈曲振動における4つの節をそれぞれ保持する保持部材
24a,24b,24c,24dが設けられている。こ
れら保持部材24a,24b,24c,24dは、弾性
体23を、ベース部材21及び積層型圧電素子22a,
22b,22c,22dに対して回転不能となるように
固定している。そして3次モードの共振屈曲振動におけ
る5つの腹の部分には、負荷質量体25a,25b,2
5c,25d,25eがそれぞれ固定されている。
FIG. 4 shows an ultrasonic transducer 20 according to this embodiment.
It is a perspective view explaining. Base member 2 with L-shaped cross section
The bottom surface 21a and the side surface 21b of 1 are formed at an angle of 90 ° to each other. The bottom surface 21a and the side surface 21b are stacked on the bottom surface 21a and the side surface 21b in a direction perpendicular to the bottom surface 21a and the side surface 21b, respectively.
2b, 22c and 22d are fixed. Further, at the tips of the laminated piezoelectric elements 22a, 22b, 22c and 22d, holding members 24a, 24b, 24c and 24d respectively holding four nodes in the resonance bending vibration of the third mode generated in the elastic body 23 are respectively provided. Is provided. These holding members 24a, 24b, 24c, and 24d include the elastic body 23, the base member 21, and the laminated piezoelectric element 22a,
It is fixed so as not to rotate with respect to 22b, 22c and 22d. The load masses 25a, 25b, 2 are formed on the five antinodes in the resonance bending vibration of the third mode.
5c, 25d and 25e are fixed respectively.

【0024】本実施例の作用を説明する。積層型圧電素
子22a,22c及び積層型圧電素子22b,22dを
それぞれ一組の加振手段とし、積層型圧電素子22a,
22cにそれぞれ弾性体23の共振周波数と同じ周波数
を持つ駆動周波電圧を印加する。これにより積層型圧電
素子22b,22dはそれぞれ同位相で図4中のz軸方
向に伸縮し、節23a,23cを図4中のz軸方向に振
動させる。よって、弾性体23には図4中のz軸方向に
振幅を有する共振屈曲振動が発生する。
The operation of this embodiment will be described. The laminated piezoelectric elements 22a and 22c and the laminated piezoelectric elements 22b and 22d are respectively used as one set of vibrating means, and the laminated piezoelectric elements 22a and 22a are
A drive frequency voltage having the same frequency as the resonance frequency of the elastic body 23 is applied to each of 22c. As a result, the laminated piezoelectric elements 22b and 22d expand and contract in the z-axis direction in FIG. 4 in the same phase, causing the nodes 23a and 23c to vibrate in the z-axis direction in FIG. Therefore, resonant bending vibration having an amplitude in the z-axis direction in FIG. 4 is generated in the elastic body 23.

【0025】更に、積層型圧電素子22b,22dに、
積層型圧電素子22a,22cの駆動周波電圧と同じ周
波数を持ち、位相が90゜ずれた駆動周波電圧を印加す
る。これにより積層型圧電素子22a,22cは図4中
のy軸方向に伸縮し、節23b,23dを図4中のy軸
方向に振動させる。積層型圧電素子23b,23dのそ
れぞれの伸縮のみが弾性体23に加わる場合は、該弾性
体23には図4中のy軸方向に振幅を有する共振屈曲振
動が発生する。しかし、本実施例においては積層型圧電
素子22a,22c及び22b,22dの、それぞれの
伸縮により発生する共振屈曲振動が合成され、弾性体2
3における共振屈曲振動の5つの腹はy−z平面内にて
回転運動を行なう。これにより、負荷質量体25a,2
5b,25c,25d,25eはそれぞれy−z平面内
にて回転運動を行なう。
Further, in the laminated piezoelectric elements 22b and 22d,
A drive frequency voltage having the same frequency as the drive frequency voltages of the laminated piezoelectric elements 22a and 22c and having a phase difference of 90 ° is applied. As a result, the laminated piezoelectric elements 22a and 22c expand and contract in the y-axis direction in FIG. 4, causing the nodes 23b and 23d to vibrate in the y-axis direction in FIG. When only the expansion and contraction of each of the laminated piezoelectric elements 23b and 23d is applied to the elastic body 23, resonance bending vibration having an amplitude in the y-axis direction in FIG. 4 is generated in the elastic body 23. However, in this embodiment, the resonance bending vibrations generated by the expansion and contraction of the laminated piezoelectric elements 22a, 22c and 22b, 22d are combined, and the elastic body 2
The five antinodes of the resonant bending vibration in 3 make rotational motion in the yz plane. As a result, the load mass bodies 25a, 2
5b, 25c, 25d and 25e each perform a rotational movement in the yz plane.

【0026】以上の如く構成することにより本実施例に
おける超音波振動子20は、前述した第1実施例におけ
る超音波振動子10に比べ、加振手段としての積層型圧
電素子が2倍設けられているので、駆動出力が増大す
る。
With the above-described structure, the ultrasonic vibrator 20 of this embodiment is provided with twice as many laminated piezoelectric elements as the vibrating means as compared with the ultrasonic vibrator 10 of the first embodiment described above. Therefore, the drive output increases.

【0027】次に、図5を用いて本発明の第3実施例を
説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

【0028】図5(a)は本実施例における超音波振動
子30を示す斜視図である。アルミニウム,ステンレス
鋼,真鍮等により形成された、断面L字状のベース部材
31の底面31a及び側面31bは、互いに90゜の角
度を持って形成されている。そしてこの底面31a及び
側面31bには、それぞれ底面31a及び側面31bに
対して垂直な方向に積層された積層型圧電素子32a,
32bが固定されている。
FIG. 5A is a perspective view showing the ultrasonic transducer 30 in this embodiment. A bottom surface 31a and a side surface 31b of a base member 31 having an L-shaped cross section, which is formed of aluminum, stainless steel, brass or the like, are formed at an angle of 90 ° to each other. The bottom surface 31a and the side surface 31b are stacked on the bottom surface 31a and the side surface 31b, respectively.
32b is fixed.

【0029】更にこれら積層型圧電素子32a,32b
の先端部には、それぞれベース部材31の側面31b及
び底面31aより延長された板状の弾性腕31c,31
dにそれぞれ一体的に形成され、弾性体33の、1次モ
ードの共振屈曲振動により発生する2つの節をそれぞれ
保持する保持部材31e,31fが設けられている。こ
れら保持部材31e,31fは、弾性体33を、ベース
部材31及び積層型圧電素子32a,32bに対して回
転不能となるように固定している。又、弾性体33に
は、共振屈曲振動の腹の部分に負荷質量体33a,33
b,33cが固定されている。
Further, these laminated piezoelectric elements 32a, 32b
At the tip of each of the plate-like elastic arms 31c, 31 extending from the side surface 31b and the bottom surface 31a of the base member 31, respectively.
Holding members 31e and 31f, which are formed integrally with each other in d, respectively hold two nodes of the elastic body 33, which are generated by the resonant bending vibration of the primary mode. The holding members 31e and 31f fix the elastic body 33 to the base member 31 and the laminated piezoelectric elements 32a and 32b so as not to rotate. Further, the elastic body 33 has load mass bodies 33a, 33 at the antinode portion of the resonance bending vibration.
b and 33c are fixed.

【0030】保持部材31e,31fには、それぞれ図
5(b)に部分断面図にて示す如く、弾性体33が挿入
される貫通孔31g,31hが穿設されている。これら
貫通孔31g,31hは、内周面が図5(b)の如く面
取りされており、面取り部分の中央には、貫通孔31
g,31hに対して垂直な方向にネジ孔31i,31j
が穿設されている。これらネジ孔31i,31jには、
貫通孔31g,31hに弾性体33が挿入された後にネ
ジ34a,34bが螺入され、弾性体33を支持する構
造となっている。
Through holes 31g and 31h, into which the elastic body 33 is inserted, are formed in the holding members 31e and 31f, respectively, as shown in the partial sectional view of FIG. 5B. The inner peripheral surfaces of the through holes 31g and 31h are chamfered as shown in FIG. 5B, and the through hole 31 is formed at the center of the chamfered portion.
screw holes 31i and 31j in a direction perpendicular to g and 31h
Has been drilled. In these screw holes 31i and 31j,
After the elastic body 33 is inserted into the through holes 31g and 31h, the screws 34a and 34b are screwed into the through holes 31g and 31h to support the elastic body 33.

【0031】次に本実施例の作用を説明する。積層型圧
電素子32aに、弾性体33の共振周波数と同じ周波数
を持つ駆動周波電圧を印加する。これにより積層型圧電
素子32aが弾性体33の共振周波数にて伸縮し、節3
3aの部分を図5(a)中のz軸方向に振動させる。よ
って、弾性体33には図5(a)中のz軸方向に振幅を
有する共振屈曲振動が発生する。この際、弾性腕31c
はz方向に振動が可能であるがx,y方向には振動せ
ず、保持部材31eがx,y方向に動くことを規制す
る。
Next, the operation of this embodiment will be described. A drive frequency voltage having the same frequency as the resonance frequency of the elastic body 33 is applied to the laminated piezoelectric element 32a. As a result, the laminated piezoelectric element 32a expands and contracts at the resonance frequency of the elastic body 33, and
The portion 3a is vibrated in the z-axis direction in FIG. Therefore, resonant bending vibration having an amplitude in the z-axis direction in FIG. 5A is generated in the elastic body 33. At this time, the elastic arm 31c
Can vibrate in the z direction, but does not vibrate in the x and y directions, and restricts movement of the holding member 31e in the x and y directions.

【0032】更に、積層型圧電素子32bに、積層型圧
電素子32aの駆動周波電圧と同じ周波数を持ち、位相
が90゜ずれた駆動周波電圧を印加する。これにより積
層型圧電素子32bは図5(a)中のy軸方向に伸縮
し、節33bを図5(a)中のy軸方向に振動させる。
この際、弾性腕31dはy方向に振動が可能であるが
x,z方向には振動せず、保持部材31fがx,z方向
に動くことを規制する。積層型圧電素子32bの伸縮の
みが弾性体33の節33bに加わる場合は、該弾性体3
3には図5(a)中のy軸方向に振幅を有する共振屈曲
振動が発生する。しかし、本実施例においては積層型圧
電素子32a,32bの、それぞれの伸縮により発生す
る共振屈曲振動が合成され、弾性体33における共振屈
曲振動の腹は、y−z平面内にて回転運動を行なう。
Further, a driving frequency voltage having the same frequency as the driving frequency voltage of the laminated piezoelectric element 32a and a phase difference of 90 ° is applied to the laminated piezoelectric element 32b. As a result, the laminated piezoelectric element 32b expands and contracts in the y-axis direction in FIG. 5 (a), causing the node 33b to vibrate in the y-axis direction in FIG. 5 (a).
At this time, the elastic arm 31d can vibrate in the y direction but does not vibrate in the x and z directions, and restricts the holding member 31f from moving in the x and z directions. When only the expansion and contraction of the laminated piezoelectric element 32b is applied to the node 33b of the elastic body 33, the elastic body 3
Resonant bending vibration having an amplitude in the y-axis direction in FIG. However, in the present embodiment, the resonance bending vibrations generated by the expansion and contraction of the laminated piezoelectric elements 32a and 32b are combined, and the antinodes of the resonance bending vibrations in the elastic body 33 cause rotational movement in the yz plane. To do.

【0033】以上の如く構成することにより本実施例に
おいては、弾性腕31c,31dを設けることにより保
持部材31e,31fの剛性が向上し、積層型圧電素子
32a,32bに伸縮方向以外の力が加わることがなく
なり、これら積層型圧電素子32a,32bが駆動時に
破壊されることがなくなる。又、保持部材31e,31
fと弾性体33とが接触する面積を小さくした為、弾性
体33の共振屈曲振動を阻害することなく、効率の高い
超音波振動子を得ることが可能となった。
With the above-described structure, in this embodiment, by providing the elastic arms 31c and 31d, the rigidity of the holding members 31e and 31f is improved, and the laminated piezoelectric elements 32a and 32b receive a force other than the expansion / contraction direction. It will not be added, and the laminated piezoelectric elements 32a and 32b will not be destroyed during driving. Also, the holding members 31e, 31
Since the contact area between f and the elastic body 33 is reduced, it is possible to obtain a highly efficient ultrasonic transducer without inhibiting resonance bending vibration of the elastic body 33.

【0034】次に、図6を用いて、本発明の第4実施例
を説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIG.

【0035】図6は本実施例における超音波振動子40
を示す斜視図である。互いにx軸方向及びz軸方向に積
層された積層型圧電素子41,42が、y軸方向に所定
の間隔を有して配設されている。積層型圧電素子41の
積層方向の両端には、それぞれ不図示のベース部材に固
定された第1固定部43より積層型圧電素子41の積層
方向に垂直な方向、即ちz軸方向に延びる弾性腕43
a,43bと一体に形成された保持部材43c,43d
が固定されている。又、積層型圧電素子42の積層方向
の両端には、それぞれ不図示のベース部材に固定された
第2固定部44より積層型圧電素子42の積層方向に垂
直な方向、即ちx軸方向に延びる弾性腕44a,44b
と一体に形成された保持部材44c,44dが固定され
ている。
FIG. 6 shows an ultrasonic transducer 40 according to this embodiment.
It is a perspective view showing. Multilayer piezoelectric elements 41 and 42, which are laminated in the x-axis direction and the z-axis direction, are arranged at a predetermined interval in the y-axis direction. At both ends of the laminated piezoelectric element 41 in the laminating direction, elastic arms extending in a direction perpendicular to the laminating direction of the laminated piezoelectric element 41, that is, a z-axis direction, from first fixing portions 43 fixed to a base member (not shown). 43
holding members 43c and 43d formed integrally with a and 43b
Is fixed. Further, both ends of the laminated piezoelectric element 42 in the laminating direction extend in a direction perpendicular to the laminating direction of the laminated piezoelectric element 42, that is, in the x-axis direction from second fixing portions 44 fixed to a base member (not shown). Elastic arms 44a, 44b
The holding members 44c and 44d formed integrally with the are fixed.

【0036】保持部材43c,43dには、弾性体4
5,46の、1次モードの共振屈曲振動によりそれぞれ
発生する2つの節の内、一方の節をそれぞれ保持する貫
通孔が設けられている。これらの貫通孔は、前述した第
3実施例における保持部材31e,31fと同様に、内
周面が面取りされており(不図示)、面取り部分の中央
には、貫通孔に対して垂直な方向に不図示のネジ孔が穿
設されている。このネジ孔に不図示のネジを螺入するこ
とにより、弾性体45,46の一方の節はそれぞれ保持
部材43c,43dに保持される。
The elastic members 4 are attached to the holding members 43c and 43d.
Through holes for holding one of the two nodes, which are generated by the resonant bending vibration of the first-order mode of Nos. 5 and 46, respectively, are provided. Similar to the holding members 31e and 31f in the third embodiment described above, these through holes have chamfered inner peripheral surfaces (not shown), and the center of the chamfered portion has a direction perpendicular to the through holes. A screw hole (not shown) is formed in the. By screwing a screw (not shown) into this screw hole, one of the nodes of the elastic bodies 45 and 46 is held by the holding members 43c and 43d, respectively.

【0037】保持部材44c,44dもこれら保持部材
43c,43dと同様の構成となっており、弾性体4
5,46の、1次モードの共振屈曲振動によりそれぞれ
発生する2つの節の内、他方の節をそれぞれ保持してい
る。又、弾性体45,46の、1次モードの共振屈曲振
動により発生する腹の部分に、負荷質量体45a,45
b,45c及び46a,46b,46cが固定されてい
る。尚、弾性体45,46は、それぞれの延長方向が、
捩れの関係となるように配設される。
The holding members 44c and 44d have the same structure as the holding members 43c and 43d, and the elastic member 4
Of the two nodes generated by the resonant bending vibrations of the first-order modes 5 and 46, the other node is retained. Further, the load mass bodies 45a, 45 are formed on the antinodes of the elastic bodies 45, 46 generated by the first-order mode resonant bending vibration.
b, 45c and 46a, 46b, 46c are fixed. The elastic bodies 45 and 46 are
They are arranged in a twisted relationship.

【0038】本実施例の作用を説明する。積層型圧電素
子41,42にそれぞれ弾性体45,46の屈曲共振周
波数と同じ周波数の駆動周波電圧を印加する。積層型圧
電素子42に印加される駆動周波電圧の位相は、積層型
圧電素子41に印加される駆動周波電圧の位相に対して
90゜ずらされている。前述した実施例と同様に弾性体
45,46にはそれぞれ腹を回転させる共振屈曲振動が
発生する。
The operation of this embodiment will be described. A driving frequency voltage having the same frequency as the bending resonance frequency of the elastic bodies 45 and 46 is applied to the laminated piezoelectric elements 41 and 42, respectively. The phase of the drive frequency voltage applied to the laminated piezoelectric element 42 is shifted by 90 ° with respect to the phase of the drive frequency voltage applied to the laminated piezoelectric element 41. Resonant bending vibrations that rotate the antinodes are generated in the elastic bodies 45 and 46 as in the above-described embodiment.

【0039】その際、負荷質量体45b,46bに、超
音波振動子40に対して移動自在にされた被駆動部材を
圧接することにより、該被駆動部材は弾性体45,46
の回転屈曲振動が合成される方向に駆動される。
At this time, the driven members, which are movable with respect to the ultrasonic transducer 40, are pressed against the load mass bodies 45b and 46b, so that the driven members are elastic bodies 45 and 46.
Is driven in the direction in which the rotational bending vibrations of are combined.

【0040】以上の如く構成することにより本実施例の
超音波振動子40においては、2つの積層型圧電素子4
1,42にて2つの弾性体45,46を共振屈曲振動さ
せるので、前述した実施例よりも少ない印加電圧により
高い駆動力を得ることができる。
With the configuration as described above, in the ultrasonic transducer 40 of this embodiment, the two laminated piezoelectric elements 4 are
Since the two elastic bodies 45 and 46 are resonantly flexurally vibrated by the motors 1 and 42, a high driving force can be obtained with a smaller applied voltage than the above-described embodiment.

【0041】図7を用いて、本発明における超音波振動
子を、リニア型超音波モータの駆動源として用いた例を
第5実施例として説明する。
An example in which the ultrasonic transducer according to the present invention is used as a drive source for a linear ultrasonic motor will be described as a fifth embodiment with reference to FIG.

【0042】図7は本実施例におけるリニア型超音波モ
ータ50を説明する斜視図である。尚、本実施例におい
ては、前述した第3実施例における超音波振動子30を
リニア型超音波モータ50に駆動源として用いており、
前記第3実施例と構成上の差異がないものについては同
じ符号を付与し、詳細な説明は省略する。
FIG. 7 is a perspective view for explaining the linear ultrasonic motor 50 in this embodiment. In addition, in this embodiment, the ultrasonic transducer 30 in the above-described third embodiment is used as a drive source in the linear ultrasonic motor 50,
The same reference numerals are given to those having no structural difference from the third embodiment, and detailed description thereof will be omitted.

【0043】基材51には、逆U字状のブリッジ部51
aが形成されており、該ブリッジ部51aの上端部に超
音波振動子30が、弾性体33を下方にして且つ該弾性
体33がx方向に延長される如く配設されている。基材
51の底面51bにはバネ51cが設けられており、該
バネ51cは、不図示の固定部材に支持されるガイドレ
ール53を、連結腕52に支持された押圧ローラ52
a,52bと弾性体33の負荷質量体33bとにより挟
み込むように、連結腕52及び押圧ローラ52a,52
bをz軸方向の上方に向けて付勢している。
The base material 51 includes an inverted U-shaped bridge portion 51.
a is formed, and the ultrasonic transducer 30 is arranged at the upper end of the bridge portion 51a such that the elastic body 33 is located downward and the elastic body 33 is extended in the x direction. A spring 51c is provided on the bottom surface 51b of the base material 51. The spring 51c includes a guide rail 53 supported by a fixing member (not shown) and a pressing roller 52 supported by a connecting arm 52.
a, 52b and the load mass body 33b of the elastic body 33 so as to be sandwiched therebetween, the connecting arm 52 and the pressing rollers 52a, 52
b is urged upward in the z-axis direction.

【0044】弾性体33の負荷質量体33bには、ガイ
ドレール53と接触する部分に摺動部材54が設けられ
ている。この摺動部材54は通常、ステンレス鋼,真
鍮,ポリイミドフィルム,PPS,炭素板,セラミック
板,アルミニウムにアルマイト処理をした板等が用いら
れている。本実施例においては摺動部材54として、ス
テンレス鋼を所望の形状に加工したものを使用してい
る。尚、負荷質量体33b自身をこれらの材料により形
成しても良いことは勿論である。
The load mass body 33b of the elastic body 33 is provided with a sliding member 54 at a portion in contact with the guide rail 53. The sliding member 54 is usually made of stainless steel, brass, polyimide film, PPS, carbon plate, ceramic plate, aluminum anodized plate, or the like. In this embodiment, as the sliding member 54, stainless steel processed into a desired shape is used. It goes without saying that the load mass body 33b itself may be formed of these materials.

【0045】本実施例の作用を説明する。積層型圧電素
子32a,32bに90゜の位相差を有する、駆動周波
電圧を印加する。該駆動周波電圧の周波数は弾性体33
の共振屈曲周波数とする。これにより弾性体33の共振
屈曲振動における腹はy−z平面内での回転振動を行な
う。よって、ガイドレール53に対してy軸方向の駆動
力が加わり、超音波振動子30は該ガイドレール53に
対してy軸方向に移動する。積層型圧電素子32aに印
加する駆動周波電圧に対する、積層型圧電素子32bに
印加する電圧の位相差を正負切換えることにより、弾性
体33の共振屈曲振動における腹の、y−z平面内にお
ける回転方向が逆転されるので、y軸方向の移動方向が
制御できる。
The operation of this embodiment will be described. A driving frequency voltage having a phase difference of 90 ° is applied to the laminated piezoelectric elements 32a and 32b. The frequency of the drive frequency voltage is the elastic body 33.
The resonance bending frequency of As a result, the antinode of the resonance bending vibration of the elastic body 33 performs rotational vibration in the yz plane. Therefore, a driving force in the y-axis direction is applied to the guide rail 53, and the ultrasonic transducer 30 moves in the y-axis direction with respect to the guide rail 53. By changing the phase difference between the voltage applied to the laminated piezoelectric element 32b and the drive frequency voltage applied to the laminated piezoelectric element 32a, the rotation direction of the antinode in the resonance bending vibration of the elastic body 33 in the yz plane. Is reversed, the movement direction in the y-axis direction can be controlled.

【0046】以上の如く構成することにより本実施例に
おいては、小型で簡単な構成の、駆動力の高いリニア型
超音波モータ50を得ることができる。尚、本実施例に
おいてはガイドレール53に駆動力を与え、超音波振動
子30自体を移動させているが、ガイドレール53の変
わりに、所定位置の軸に回動自在に軸支された回転部材
を回転駆動するように構成しても良いことは勿論であ
る。
According to the present embodiment, the linear ultrasonic motor 50 having a small size and a simple structure and a high driving force can be obtained by the above structure. In this embodiment, the driving force is applied to the guide rail 53 to move the ultrasonic transducer 30 itself, but instead of the guide rail 53, the rotation rotatably supported by the shaft at a predetermined position. Of course, the members may be configured to be driven to rotate.

【0047】尚、以上に述べた実施例においては、超音
波振動子の加振手段として、積層型の圧電素子を用いた
が、これは電歪素子や磁歪素子を複数枚積層したもので
も良く、又、これらの駆動源の振動を拡大する変位拡大
機構を設けても一向に構わない。更に、積層型圧電素子
の加振方向を、隣接するものどうしで90゜ずらしてい
るが、これは例えば120゜,60゜等、同一平面内に
さえ位置しなければいくらでも構わない。この場合、隣
接する積層型圧電素子の駆動周波電圧の位相差も、適宜
変更して良い。
In the above-described embodiments, the laminated piezoelectric element is used as the vibrating means of the ultrasonic vibrator, but this may be a laminate of a plurality of electrostrictive elements or magnetostrictive elements. Alternatively, a displacement magnifying mechanism for magnifying the vibration of these drive sources may be provided. Further, the vibration directions of the laminated piezoelectric elements are shifted by 90 ° between the adjacent ones, but this may be any number such as 120 ° and 60 ° as long as they are not located in the same plane. In this case, the phase difference between the drive frequency voltages of the adjacent laminated piezoelectric elements may be changed as appropriate.

【0048】[0048]

【発明の効果】以上詳述した如く、本発明における超音
波振動子においては、棒状の弾性体の共振屈曲振動にお
ける複数の節に、それぞれ隣接する節どうしでずらした
方向に振動を与えるように構成したので、簡単な構成で
駆動効率の高いものを得ることができる。
As described above in detail, in the ultrasonic vibrator of the present invention, vibration is applied to a plurality of nodes in the resonance bending vibration of the rod-shaped elastic body in the directions displaced by the adjacent nodes. Since it is configured, it is possible to obtain the one with high driving efficiency with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)乃至(d)は本発明の概念を説明する
図。
FIG. 1A to FIG. 1D are views for explaining the concept of the present invention.

【図2】本発明の第1実施例を示す斜視図。FIG. 2 is a perspective view showing a first embodiment of the present invention.

【図3】上記第1実施例の変形例を示す斜視図。FIG. 3 is a perspective view showing a modified example of the first embodiment.

【図4】本発明の第2実施例を示す斜視図。FIG. 4 is a perspective view showing a second embodiment of the present invention.

【図5】(a)は本発明の第3実施例を示す斜視図、
(b)は該第3実施例の部分断面図。
5A is a perspective view showing a third embodiment of the present invention, FIG.
FIG. 6B is a partial sectional view of the third embodiment.

【図6】本発明の第4実施例を示す斜視図。FIG. 6 is a perspective view showing a fourth embodiment of the present invention.

【図7】本発明における超音波振動子をリニア型超音波
モータの駆動源として使用した第5実施例を示す斜視
図。
FIG. 7 is a perspective view showing a fifth embodiment in which the ultrasonic transducer according to the invention is used as a drive source for a linear ultrasonic motor.

【符号の説明】[Explanation of symbols]

1,10,20,30,40 超音波振動子 2,13,23,33,47,48 弾性体 12a,12b,22a,22b,22c,22d,3
2a,32b,41,42 積層型圧電素子(加振手
段)
1, 10, 20, 30, 40 Ultrasonic transducer 2, 13, 23, 33, 47, 48 Elastic body 12a, 12b, 22a, 22b, 22c, 22d, 3
2a, 32b, 41, 42 Multilayer piezoelectric element (vibrating means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 芳久 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 津幡 敏晴 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 今林 浩之 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 若林 勝裕 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yoshihisa Taniguchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Toshiharu Tsubata 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Hiroyuki Imabayashi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Katsuhiro Wakabayashi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 棒状の弾性体と、この弾性体の、共振屈
曲振動における複数の節に振動を加える複数の加振手段
と、 を具備しており、上記複数の加振手段は、それぞれ隣接
する他の加振手段に対して、加振方向がずれていること
を特徴とする超音波振動子。
1. A rod-shaped elastic body, and a plurality of vibrating means for applying vibration to a plurality of nodes of resonance bending vibration of the elastic body, wherein the plurality of vibrating means are adjacent to each other. The ultrasonic transducer is characterized in that the vibration direction is deviated from the other vibration means.
【請求項2】 上記弾性体の共振屈曲振動における腹の
部分に、負荷となる質量体を設けたことを特徴とする、
請求項1に記載の超音波振動子。
2. A mass body serving as a load is provided at an antinode portion of the elastic flexural vibration of the elastic body,
The ultrasonic transducer according to claim 1.
【請求項3】 上記弾性体の共振屈曲振動における腹の
部分に圧接され、上記弾性体に対して移動自在にされる
可動部材を有することを特徴とする、請求項1に記載の
超音波振動子。
3. The ultrasonic vibration according to claim 1, further comprising a movable member which is pressed against an antinode portion of the resonance bending vibration of the elastic body and is movable with respect to the elastic body. Child.
JP3351872A 1991-12-13 1991-12-13 Supersonic vibrator Withdrawn JPH05168263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351872A JPH05168263A (en) 1991-12-13 1991-12-13 Supersonic vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351872A JPH05168263A (en) 1991-12-13 1991-12-13 Supersonic vibrator

Publications (1)

Publication Number Publication Date
JPH05168263A true JPH05168263A (en) 1993-07-02

Family

ID=18420190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351872A Withdrawn JPH05168263A (en) 1991-12-13 1991-12-13 Supersonic vibrator

Country Status (1)

Country Link
JP (1) JPH05168263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072785A (en) * 2006-09-12 2008-03-27 Canon Inc Vibrating type linear driving device and camera lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072785A (en) * 2006-09-12 2008-03-27 Canon Inc Vibrating type linear driving device and camera lens

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
KR20110083600A (en) Semi-resonant driving systems and methods thereof
JPH0795777A (en) Oscillatory wave driving device
JPH08280185A (en) Ultrasonic actuator
JPH06269186A (en) Two degree of freedom oscillation type microactuator
EP0718899A2 (en) Vibration actuator
JPS62259485A (en) Piezoelectric driving apparatus
JPH05168263A (en) Supersonic vibrator
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JP2001264676A (en) Optical scanner
JPH08182351A (en) Ultrasonic actuator
JPH06105569A (en) Ultrasonic actuator
JP2000125576A (en) Carrying device using vibration actuator
JPH08242592A (en) Ultrasonic actuator
JPH11235063A (en) Stage utilizing ultrasonic motor and electronic apparatus and printer employing the stage
JPH07255189A (en) Ultrasonic actuator
JPH0315278A (en) Elastic vibrator in traveling bending vibration motor
JPH07337044A (en) Ultrasonic actuator
JP4477915B2 (en) Ultrasonic motor
JP4064365B2 (en) Actuator and control device equipped with actuator
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith
JP2538033B2 (en) Planar ultrasonic actuator
JP3306211B2 (en) Ultrasonic actuator
JPH04281A (en) Micro-slide device
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311