JPH05168215A - Stepping motor of permanent magnet type - Google Patents

Stepping motor of permanent magnet type

Info

Publication number
JPH05168215A
JPH05168215A JP35183691A JP35183691A JPH05168215A JP H05168215 A JPH05168215 A JP H05168215A JP 35183691 A JP35183691 A JP 35183691A JP 35183691 A JP35183691 A JP 35183691A JP H05168215 A JPH05168215 A JP H05168215A
Authority
JP
Japan
Prior art keywords
pole
stator
rotor
poles
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35183691A
Other languages
Japanese (ja)
Other versions
JP3095846B2 (en
Inventor
Koki Isozaki
弘毅 礒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP03351836A priority Critical patent/JP3095846B2/en
Publication of JPH05168215A publication Critical patent/JPH05168215A/en
Application granted granted Critical
Publication of JP3095846B2 publication Critical patent/JP3095846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To change the characteristic of oscillation effectively and arbitrarily by adopting monofilar-winding as a winding method, and by enabling bipolar- driving with 6 lead wires to be performed besides driving with 3 lead wires, and unipolar-driving with 9 lead wires. CONSTITUTION:The stator 10 of a stepping motor is provided with the stator poles 11-l-11-6 of 6 poles, and stator pole windings 12-1-12-6 wound on the respective poles so that the poles shifted positionally by 180 deg. may be the same poles, and the pitch of the pole teeth of 2 poles is positionally shifted by 1/2. Then, the poles of the stator 10 are set to be 6 poles and are arranged at equal pitches, and correlation between the pole tooth pitch taus Of the stator 10 and the pole tooth pitch tauR of a rotor is shown as taus=KtauR (however, 0.75<=K<=1.25), and when on arbitrary poles, the center of the stator pole and the center of the rotor pole confronted with each other are permitted to coincide with each other, then an angle to be formed by the center of the stator pole and the center of the rotor pole of counter polarity, is shown as theta=60 deg./Z. (where, the pole number of the rotor pole, Z=6n+ or -4)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリンタ,高速FAX,
PPC用複写機等のOA機器用として好適な永久磁石形
(ハイブリット形)ステッピングモ−タに関する。
BACKGROUND OF THE INVENTION The present invention relates to a printer, a high speed FAX,
The present invention relates to a permanent magnet type (hybrid type) stepping motor suitable for OA equipment such as a PPC copying machine.

【0002】[0002]

【従来の技術の説明】従来の永久磁石形(ハイブリッ
ド)ステッピングモ−タとしては,2相形のものが主流
を占めており,3相構造のものはほとんど見当たらな
い。これは,従来の技術で3相永久磁石形ステッピング
モ−タを構成すると次のような問題があったからであ
る。即ち, 磁極数を6とすると固定子を励磁した際,固定子が2
極に分けられて磁化されるため回転子にモ−メントが働
き,回転音が発生すると同時に位置精度が悪くなる。 このモ−メント発生を防止するため,磁極数を12極
以上にし,励磁した固定子磁極を4極以上にする方法も
試みられているが,2相永久磁石形ステッピングモ−タ
に比べコストが増大する。 従って,永久磁石形のステッピングモ−タではコスト的
に有利な2相形のものが用いられてきた。その構造は図
14に示すように構成されていた。同図において,1は
固定子ハウジング,2は固定子鉄心で,これは磁極 2−
1〜2−8 を構成している。2−10 は各磁極の内周に形成
された極歯である。3は固定子巻線で,前記各磁極に 3
−1〜3−8 で示すように巻かれている。これら固定子鉄
心2,固定子巻線3で固定子Sが構成されている。4,
4はエンドブラケット,5,5は軸受,6は回転子軸,
7,8は夫々回転子磁極,7−10 と8−10 は夫々上記回
転子磁極7,8の外周に形成された極歯,9は永久磁石
で,これら6〜9で回転子Rが構成される。
2. Description of the Related Art As a conventional permanent magnet type (hybrid) stepping motor, a two-phase type is predominant, and a three-phase type is hardly found. This is because the conventional technique has the following problems when a three-phase permanent magnet type stepping motor is constructed. That is, when the number of magnetic poles is 6, when the stator is excited,
Since the magnets are divided into poles and are magnetized, momentum acts on the rotor, which causes rotation noise and at the same time deteriorates the positional accuracy. In order to prevent the occurrence of this moment, a method of increasing the number of magnetic poles to 12 poles or more and exciting stator poles to 4 poles or more has been attempted, but the cost is increased as compared with the two-phase permanent magnet type stepping motor. To do. Therefore, as the permanent magnet type stepping motor, the two-phase type which is cost-effective has been used. The structure was configured as shown in FIG. In the figure, 1 is a stator housing, 2 is a stator core, and this is a magnetic pole 2-
It consists of 1 to 2-8. 2-10 are pole teeth formed on the inner circumference of each magnetic pole. 3 is a stator winding, 3
It is wound as shown by -1 to 3-8. The stator S and the stator windings 3 and 3 form a stator S. 4,
4 is an end bracket, 5 and 5 are bearings, 6 is a rotor shaft,
Reference numerals 7 and 8 are rotor magnetic poles, 7-10 and 8-10 are pole teeth formed on the outer circumferences of the rotor magnetic poles 7 and 8, and 9 is a permanent magnet. To be done.

【0003】[0003]

【発明が解決しようとする課題】ところで,従来の2相
の永久磁石形ステッピングモ−タでは次の問題点があっ
た。 リ−ド線の本数は4本が限度であるのに,駆動回路に
使用するトランジスタは,最低8個は必要とする。 トルクリップルが大きいため,振動が大きい。 低コスト用として4極のモ−タがあるが,高精度用と
して最低8極のモ−タとする必要がある。 微小角とするためには,回転子磁極に100 以上もの多
数の極歯を形成せねばならず,工作上の問題があった。 このため,5相の永久磁石形ステッピングモ−タも登場
しているが,これは次の問題点があった。 リ−ド線は5本が限度であるのに,駆動回路に要する
トランジスタは,最低10個必要である。 磁極は,最低10極必要であり,2相モ−タに比較
し,コスト高となるという問題がある。 微小角を得るために固定子は点対称にしなければなら
ない。しかし,このように点対称にした場合には,コア
の打ち抜きの際に生じる打ち抜き誤差を修正するため
に,通常,行われている積層鉄心の所定厚さの積層毎に
コアを,たとえば,90゜ずつの角度ずらしながら配置し
て積層するような修正動作ができず,全体のコアをその
まま積層せざるを得ないため,上記打ち抜き誤差を吸収
するのは困難である。 磁極が10極となるため,コイル巻数を多く取れず,
トルクを十分引き出せない。 また,2相及び5相形永久磁石ステッピングモ−タで
は固定子の極歯と,回転子の極歯のピッチの関係は同一
ピッチであるか,もしくは固定子の極歯数と回転子の極
歯数を変えて固定子の極歯ピッチと回転子の極歯ピッチ
をたがえる方式(バ−ニヤスロット方式)の2つが通例
であった。このように固定子極歯と回転子極歯の組合せ
が限られているため,振動対策等で共振点の移動,振動
レベル低減対応は,エアギャップの変更,イナ−シャの
変更,巻線の変更等による手段によらなければならなか
った。 上記2相,5相モ−タの問題点を解決する手段として本
特許出願人は先に3相永久磁石形ステッピングモ−タ
(特開平2−254957号,特開平2−269548
号,特開平3−89840号)の特許出願をしている
が,これらの固定子の極歯ピッチと回転子の極歯ピッチ
の関係は,同一ピッチ(K=1)もしくは固定子の極歯
数と回転子の極歯数をτS=180τR/( 180±τR)で表
されるバ−ニヤスロット方式であった。本発明は上記2
相,5相のステッピングモ−タの問題点を解決する手段
として先に出願した3相永久磁石形ステッピングモ−タ
の構造において,更に固定子の極歯ピッチと回転子極歯
ピッチを決められた範囲に設定することにより,先に述
べたエアギャップ,イナ−シャ,巻線等の変更を組合せ
てより効果的に振動特性を任意に変化させるようにした
3相永久磁石形ステッピングモ−タを提供することを目
的とする。
The conventional two-phase permanent magnet type stepping motor has the following problems. Although the number of lead lines is limited to four, at least eight transistors must be used in the drive circuit. Vibration is large due to large torque ripple. There are 4 pole motors for low cost, but it is necessary to have at least 8 pole motors for high precision. In order to make the angle very small, it was necessary to form a large number of pole teeth of 100 or more on the rotor magnetic pole, which was a problem in machining. For this reason, a 5-phase permanent magnet type stepping motor has been introduced, but it has the following problems. Although the number of lead lines is limited to 5, the number of transistors required for the drive circuit is at least 10. At least 10 magnetic poles are required, and there is a problem that the cost is higher than that of a two-phase motor. The stator must be point-symmetric to obtain a small angle. However, in the case of such point symmetry, in order to correct the punching error that occurs during punching of the core, the core is normally used for each lamination of a predetermined thickness of the laminated core, for example, 90 It is difficult to absorb the above-mentioned punching error because the correction operation such as arranging and stacking while shifting the angle by ° cannot be performed, and the entire core has to be stacked as it is. Since the number of magnetic poles is 10, the number of coil turns cannot be increased,
The torque cannot be extracted sufficiently. In the two-phase and five-phase permanent magnet stepping motors, the relationship between the stator pole teeth and the rotor pole teeth has the same pitch, or the number of stator pole teeth and the number of rotor pole teeth are equal. It has been customary to use two different methods, a method of changing the pole tooth pitch of the stator and a pole tooth pitch of the rotor (vernier slot method). In this way, the combination of stator pole teeth and rotor pole teeth is limited, so moving the resonance point and reducing the vibration level as a countermeasure against vibration, etc., requires changing the air gap, changing the inertia, and changing the winding. I had to resort to means such as changes. As a means for solving the problems of the two-phase and five-phase motors, the applicant of the present patent application has previously proposed that a three-phase permanent magnet type stepping motor (Japanese Patent Laid-Open Nos. 2-254957 and 2-269548).
Japanese Patent Application Laid-Open No. 3-89840), the relationship between the pole tooth pitch of the stator and the pole tooth pitch of the rotor is the same pitch (K = 1) or the pole tooth of the stator. It was a vernier slot system in which the number and the number of pole teeth of the rotor are expressed by τ S = 180τ R / (180 ± τ R ). The present invention is the above 2
In the structure of the three-phase permanent magnet type stepping motor previously applied as a means for solving the problems of the one- and five-phase stepping motors, the pole tooth pitch of the stator and the rotor pole tooth pitch are determined within a range. By providing the three-phase permanent magnet type stepping motor in which the vibration characteristics are arbitrarily changed more effectively by combining the above-mentioned changes of the air gap, the inertia, the winding, etc. The purpose is to

【0004】[0004]

【課題を解決するための手段】本発明は当該固定子の内
周に,放射状に複数個の磁極を形成し,各磁極の先端に
は複数個の極歯をそれぞれ等ピッチで形成し,各磁極に
は各々 180度ずれた磁極が同極となるようにそれぞれ巻
線を巻いて成る固定子と;この固定子の内方に空隙を隔
てて同心的に配置され, 1/2ピッチずらした極歯ピッチ
となる極歯を全周に形成した2個の回転子磁極と,この
回転子磁極によって挟持された軸方向に着磁された永久
磁石とより成る回転子とを備えた永久磁石形ステッピン
グモ−タにおいて,次の条件を満足する構成を備えた永
久磁石形ステッピングモ−タに関する。 (1)固定子の磁極を6極とし,これを等ピッチに設け
る。 (2)固定子の極歯ピッチτSと回転子極歯ピッチτR
の相関を次のように定める。τS=KτR 0.75 ≦K
≦1.25 但し,K=1及び τS= 180τR/( 180±τR)で得
られるKの値は除く (3)回転子磁極の極歯数ZをZ=6n±4とする。 (4)任意の磁極で対向する固定子磁極の中心と,回転
子磁極の中心とを一致させた時,隣接する固定子磁極の
中心と,反対磁性の回転子磁極の中心とのなす角をθR
=60°/Zとする。
According to the present invention, a plurality of magnetic poles are radially formed on the inner circumference of the stator, and a plurality of pole teeth are formed at the tip of each magnetic pole at equal pitches. A stator formed by winding each winding so that the magnetic poles shifted by 180 degrees are the same pole; they are concentrically arranged inside this stator with a gap, and are displaced by 1/2 pitch Permanent magnet type having two rotor magnetic poles having pole teeth forming a pole tooth pitch all around, and a rotor composed of axially magnetized permanent magnets sandwiched by the rotor magnetic poles In a stepping motor, the present invention relates to a permanent magnet type stepping motor having a configuration that satisfies the following conditions. (1) The stator has six magnetic poles, which are provided at equal pitches. (2) The correlation between the stator pole tooth pitch τ S and the rotor pole tooth pitch τ R is determined as follows. τ S = K τ R 0.75 ≦ K
≦ 1.25 However, the value of K obtained by K = 1 and τ S = 180τ R / (180 ± τ R ) is excluded. (3) The number of pole teeth Z of the rotor magnetic pole is Z = 6n ± 4. (4) When the centers of the stator magnetic poles facing each other with the arbitrary magnetic poles are aligned with the center of the rotor magnetic pole, the angle between the center of the adjacent stator magnetic pole and the center of the rotor magnetic pole of opposite magnetism θ R
= 60 ° / Z.

【0005】[0005]

【作用】巻線方法としてモノファイラ(ユニファイラ)
巻きを採用し,6本のリ−ド線にしバイポ−ラ駆動した
場合及び巻線方法としてバイファイラ巻きにし,9本の
リ−ド線でユニポ−ラ駆動する場合(センタ−タップを
すべて共通にした場合には7本のリ−ド線でも良い)で
も前記した条件式で決まるステップ角θS でステップ駆
動される。従って,本発明の永久磁石形ステッピングモ
−タは巻線方法を変えることにより,3本のリ−ド線に
よる駆動のほかに,6本のリ−ド線によるバイポ−ラ駆
動,9本のリ−ド線(前記場合には7本のリ−ド線)に
よるユニポ−ラ駆動の大別3種類の駆動方式が可能であ
る。また,固定子の極歯ピッチτSと回転子の極歯ピッ
チτRとの相関をτS=KτRとし,Kを 0.75≦K≦ 1.2
5の範囲に設定し,固定子の極歯ピッチと回転子の極歯
ピッチの相関を変えることにより共振周波数,振動レベ
ル等の振動特性を変化させることができる。さらに,固
定子の極歯ピッチを回転子の極歯ピッチよりも小さくす
ることにより,巻線の挿入作業が容易となる。
[Operation] Monofiler (Unifiler) as winding method
When winding is adopted and bi-polar drive is used with 6 lead wires and when bi-filar winding is used as the winding method and uni-polar drive is used with 9 lead wires (all center taps are common In this case, seven lead lines may be used), and step driving is performed at the step angle θ S determined by the above-mentioned conditional expression. Therefore, in the permanent magnet stepping motor of the present invention, by changing the winding method, in addition to driving by three lead wires, bipolar driving by six lead wires and nine leads. There are three main types of unipolar drive methods that can be used: a lead wire (7 lead wires in the above case). The correlation between the stator pole tooth pitch τ S and the rotor pole tooth pitch τ R is τ S = Kτ R, and K is 0.75 ≦ K ≦ 1.2.
The vibration characteristics such as resonance frequency and vibration level can be changed by setting the range to 5 and changing the correlation between the pole tooth pitch of the stator and the pole tooth pitch of the rotor. Furthermore, by making the pole tooth pitch of the stator smaller than the pole tooth pitch of the rotor, the work of inserting the winding becomes easy.

【0006】[0006]

【実施例】以下各図に示す4つの実施例について本発明
を具体的に説明する。図1は本発明の第1の実施例であ
るステッピングモ−タの固定子側の構造を示す固定子の
平面図である。同図において10は固定子で,これは6
極の固定子磁極11−1 〜11−6 と,これらの磁極には,
夫々各磁極は各々 180°ずれた磁極が同極となるよう巻
かれた固定子磁極巻線12−1〜 12−6 が設けられてい
る。この場合,固定子10は所要枚数の固定子鉄心をそ
の極歯ピッチが重なるよう同一方向に積層して構成する
のが通例である。なお,回転子は従来のものと同様に,
外周に極歯を備えた磁極の間にN,Sに着磁した永久磁
石を挟持しており,2個の磁極の極歯のピッチは1/2ず
らしてある。ところで,本発明のステッピングモ−タ
は,その基本原理からいえば,次の条件を満足するよう
に回転子磁極の極歯数Zほかの構成を定めているもので
ある。 (1)固定子の磁極を6極とし,これを等ピッチに設け
る。 (2)固定子の極歯ピッチτSと回転子極歯ピッチτR
の相関を次のように定める。τS=KτR 但し, 0.75
≦K≦1.25 とする。 (3)任意の磁極で対向する固定子磁極の中心と,回転
子磁極の中心とを一致させた時,隣接する固定子磁極の
中心と,反対極性の回転子磁極の中心とのなす角をθ=
60°/Zとする。 (4)回転子磁極の極歯数ZをZ=6n±4とする。
EXAMPLES The present invention will be described in detail with reference to four examples shown in the drawings. FIG. 1 is a plan view of the stator showing the structure of the stator side of a stepping motor according to the first embodiment of the present invention. In the figure, 10 is a stator, which is 6
The pole stator poles 11-1 to 11-6 and these poles are
Each of the magnetic poles is provided with stator magnetic pole windings 12-1 to 12-6 wound so that the magnetic poles shifted by 180 ° become the same pole. In this case, the stator 10 is usually constructed by laminating a required number of stator cores in the same direction so that their pole tooth pitches overlap. The rotor is the same as the conventional one.
A permanent magnet magnetized in N and S is sandwiched between magnetic poles having pole teeth on the outer circumference, and the pitch of the pole teeth of the two magnetic poles is shifted by 1/2. By the way, according to the basic principle of the stepping motor of the present invention, the number of pole teeth Z and other components of the rotor magnetic pole are determined so as to satisfy the following conditions. (1) The stator has six magnetic poles, which are provided at equal pitches. (2) The correlation between the stator pole tooth pitch τ S and the rotor pole tooth pitch τ R is determined as follows. τ S = K τ R However, 0.75
≦ K ≦ 1.25. (3) When the centers of the stator magnetic poles facing each other with the arbitrary magnetic poles are aligned with the center of the rotor magnetic pole, the angle between the center of the adjacent stator magnetic pole and the center of the rotor magnetic pole of opposite polarity θ =
60 ° / Z. (4) The number of pole teeth Z of the rotor magnetic pole is Z = 6n ± 4.

【0007】次に図2(A),(B)は本発明の第1の
実施例についての固定子磁極11−1,11−2 と回転子磁極
13との関係を展開図で示したものでτS=KτR,0.75
≦K≦1.25でZ=6n−4の場合である。なお,7及び
8は回転子磁極13の一方及び他方側の極歯を,9はこ
れらの極歯の中間に設けられる永久磁石を示す。図2
(C),(D)は本発明の第2の実施例についての固定
子磁極11−1 ,11−2と回転子磁極13との関係を展開
図で示したもので,τS=KτR,0.75≦K≦1.25でZ=
6n+4となる場合である。なお,7及び8は回転子磁
極13の一方及び他方側の極歯を,9はこれらの極歯の
中間に設けられる永久磁石を示す。次に図3(A),
(B)は夫々本発明の第1の実施例の別の実施態様につ
いての固定子磁極11−1 ,11−1’と回転子磁極13との
関係を展開図で示したものである。この内,図3(A)
はτS=KτRで,0.75 ≦K≦1.00,また,同図(B)
はτS=KτRで,1.00≦K≦1.25 であり,且つ両図の
場合ともZ=6n−4である。なお,同図中,実線で示
した固定子磁極11−1 は固定子の極歯ピッチが回転子極
歯ピッチと同じ場合(K=1の場合),点線で示した固
定子磁極11−1'は固定子極歯ピッチが回転子極歯ピッチ
τR の3/4(K=0.75)の場合である。図3(C),
(D)は夫々本発明の第2の実施例の別の実施態様を示
し,この場合も実線K=1の場合,点線は固定子極歯ピ
ッチが回転子極歯ピッチτRの5/4(K=1.25)の場合
で,Z=6n+4の場合である。なお,図3(C)はτ
S=KτRで,0.75 ≦K≦1.00,また,同図(D)はτS
=KτRで,1.00≦K≦1.25 の場合である。これらの各
実施例とも,図3(A)乃至(D)の斜線部の範囲が固
定子の極歯ピッチτSとなる。図4は図3(A)の第1
の実施例の場合で,K=0.8,K=0.9,K=1.0とした
場合における中速域での共振周波数の変化及び共振点に
おける加速度の変化を表したものである。図5は永久磁
石9によりN極に磁化された回転子磁極とS極に磁化さ
れた回転子の展開図を駆動ステップ毎に示したものであ
る。なお,同図中に回転子磁極7の各ステップ時の回転
位置を示すため,その1つの極歯に・印を付して示して
ある。まず,モ−タのステップ動作を単純化するために
図2(A)の磁極配置のときに,1相励磁するために図
6(A)に示すモノファイラ巻きを採用し,6本リ−ド
線でバイポ−ラ駆動する場合について図5を参照して説
明する。今,磁極11-1,11-4がSとなるように電流を流
すと,回転子の極歯7がN極のため吸引され,回転子の
極歯が整列した状態となる(ステップ1)。次に,磁極
11-2,11-5がNとなるように電流を流すと,回転子の極
歯8のS極が磁極11-2,11-5の固定子の極歯に吸引され
て移動し,整列する(ステップ2) 次に,磁極11-3,11-6がSとなるように電流を流すと,
回転子の極歯7のN極が吸引されて移動し,整列する
(ステップ3)。次に,磁極11-1,11-4をN極となるよ
うに電流を流すと,回転子の極歯8のS極が磁極11-1,
11-4の固定子の極歯に吸引されて移動し,整列する(ス
テップ4)。このようにして,ステップ6で回転子の極
歯1ピッチ分が移動する。この時の1ステップでの移動
角度(ステップ角度)θS は60゜/Zで,回転子の歯数
によって決まり,隣接する回転子の磁極間ピッチ角をθ
P とするとき,ステップ角θS はθP/6となる。これ
ら,Z,θP ,θS はZのパラメ−タであるnの値によ
って図7に示す図表のように設定される。この図表では
便宜上16までとし,ステップ角の値は小数第4位の桁
まで表示してある。
Next, FIGS. 2A and 2B are developed views showing the relationship between the stator magnetic poles 11-1 and 11-2 and the rotor magnetic pole 13 in the first embodiment of the present invention. At τ S = K τ R , 0.75
This is the case where ≦ K ≦ 1.25 and Z = 6n−4. Reference numerals 7 and 8 denote pole teeth on one side and the other side of the rotor magnetic pole 13, and 9 denotes a permanent magnet provided between these pole teeth. Figure 2
(C) and (D) are developed views showing the relationship between the stator magnetic poles 11-1 and 11-2 and the rotor magnetic pole 13 in the second embodiment of the present invention, where τ S = K τ R , 0.75 ≦ K ≦ 1.25 and Z =
This is the case of 6n + 4. Reference numerals 7 and 8 denote pole teeth on one side and the other side of the rotor magnetic pole 13, and 9 denotes a permanent magnet provided between these pole teeth. Next, as shown in FIG.
(B) is a development view showing the relationship between the stator magnetic poles 11-1 and 11-1 'and the rotor magnetic pole 13 in another embodiment of the first embodiment of the present invention. Of this, Figure 3 (A)
Is τ S = K τ R , 0.75 ≤ K ≤ 1.00, and the same figure (B)
Is τ S = K τ R , 1.00 ≦ K ≦ 1.25, and Z = 6n−4 in both cases. In the figure, the stator magnetic pole 11-1 shown by the solid line is the stator magnetic pole 11-1 shown by the dotted line when the stator pole tooth pitch is the same as the rotor pole tooth pitch (when K = 1). 'Is the case where the stator pole tooth pitch is 3/4 (K = 0.75) of the rotor pole tooth pitch τ R. FIG. 3 (C),
(D) each shows another embodiment of the second embodiment of the present invention, and in this case also, when the solid line K = 1, the dotted line indicates that the stator pole tooth pitch is 5/4 of the rotor pole tooth pitch τ R. (K = 1.25) and Z = 6n + 4. Note that τ in FIG.
S = Kτ R , 0.75 ≤ K ≤ 1.00, and Fig. (D) shows τ S
= Kτ R and 1.00 ≦ K ≦ 1.25. In each of these embodiments, the shaded area in FIGS. 3A to 3D is the pole tooth pitch τ S of the stator. FIG. 4 shows the first of FIG.
In the case of the embodiment of the present invention, the change of the resonance frequency in the medium speed range and the change of the acceleration at the resonance point when K = 0.8, K = 0.9 and K = 1.0 are shown. FIG. 5 is a development view of the rotor magnetic pole magnetized to the N pole and the rotor magnetized to the S pole by the permanent magnet 9 for each driving step. In addition, in order to show the rotational position of the rotor magnetic pole 7 at each step in the figure, one pole tooth is marked with a mark. First, in order to simplify the step operation of the motor, when the magnetic poles are arranged as shown in FIG. 2A, the monofilar winding shown in FIG. A case where the bipolar drive is performed with the dead line will be described with reference to FIG. Now, when a current is passed so that the magnetic poles 11-1 and 11-4 become S, the rotor pole teeth 7 are attracted because they are N poles, and the rotor pole teeth are aligned (step 1). .. Next, the magnetic pole
When a current is applied so that 11-2 and 11-5 become N, the S pole of the rotor pole tooth 8 is attracted and moved by the pole teeth of the stator of the magnetic poles 11-2 and 11-5, and is aligned. (Step 2) Next, when a current is passed so that the magnetic poles 11-3 and 11-6 become S,
The N pole of the pole teeth 7 of the rotor is attracted, moved, and aligned (step 3). Next, when an electric current is applied to the magnetic poles 11-1 and 11-4 so as to become the N pole, the S pole of the rotor pole tooth 8 becomes the magnetic poles 11-1 and
It is attracted to the pole teeth of the stator 11-4, moves, and is aligned (step 4). In this way, in step 6, one pitch of pole teeth of the rotor is moved. At this time, the moving angle (step angle) θ S in one step is 60 ° / Z, which is determined by the number of teeth of the rotor, and the pitch angle between the magnetic poles of the adjacent rotors is θ.
When P , the step angle θ S becomes θ P / 6. These Z, θ P and θ S are set as shown in the chart of FIG. 7 by the value of n which is a parameter of Z. In this diagram, for convenience, the number is up to 16, and the value of the step angle is displayed up to the fourth decimal place.

【0008】本発明のステッピングモ−タにおいて,図
8(A)及び(B)に夫々示すように3本の外部リ−ド
線を介してY接続及び△接続された固定子巻線12-1〜12
-6に対して図9(A)及び(B)に夫々示すような励磁
シ−ケンスを与え,図10(A)及び(B)中に夫々
〜で示すように電力を順次シフトして供給した場合,
各巻線 12-1〜12-6 は図11(A)及び(B)に夫々示
すように磁極の移動が行われ,本発明のステッピングモ
−タは前記した条件式で決まるステップ角θSでステッ
プ駆動される。なお,11−1〜11−6は各巻線12−1〜12
−6が巻かれる固定子磁極を示す。同様にして,図6
(A)に示すように巻線方法としてモノファイラ(ユニ
ファイラ)巻きを採用し,6本のリ−ド線にしバイポ−
ラ駆動した場合及び図13に示すように巻線方法として
バイファイラ巻きにし,9本のリ−ド線でユニポ−ラ駆
動する場合(センタ−タップをすべて共通にした場合に
は7本のリ−ド線でも良い)でも前記した条件式で決ま
るステップ角θSでステップ駆動される。従って,本発
明の永久磁石形ステッピングモ−タは巻線方法を変える
ことにより,3本のリ−ド線による駆動のほかに,6本
のリ−ド線によるバイポ−ラ駆動,9本のリ−ド線(前
記場合には7本のリ−ド線)によるユニポ−ラ駆動の大
別3種類の駆動方式が可能である。また,図3からKを
0.75≦K≦ 1.25の範囲に設定し,固定子の極歯ピッチ
と回転子の極歯ピッチの相関を変えることにより,振動
特性を変化させることができる。なお,図7の図表か
ら,たとえば,nを 16 とした場合,回転子磁極の極歯
数を 100としても,0.6 度のステップ角となり,2相モ
−タでは極歯数を 150にしないと, 0.6度のステップ角
とならない点を考慮すると,本発明のステッピングモ−
タは微小角を得易いモ−タであることが分かる。上記の
説明は簡単のため,本発明の第1の実施例の場合で説明
したが,第2乃至第4の各実施例の場合でもその動作は
変わらない。
In the stepping motor of the present invention, as shown in FIGS. 8A and 8B, the stator winding 12-1 is Y-connected and Δ-connected via three external lead wires. ~ 12
The excitation sequence as shown in FIGS. 9 (A) and (B) is given to -6, and the electric power is sequentially shifted and supplied as shown by in FIGS. 10 (A) and (B). if you did this,
The magnetic poles of the windings 12-1 to 12-6 are moved as shown in FIGS. 11 (A) and 11 (B), respectively, and the stepping motor of the present invention is stepped at the step angle θ S determined by the above-mentioned conditional expression. Driven. 11-1 to 11-6 are the windings 12-1 to 12-6.
-6 shows a stator pole around which -6 is wound. Similarly, FIG.
As shown in (A), a monofilar (unifilar) winding is adopted as the winding method, and six lead wires are used.
Drive, and bifilar winding as a winding method as shown in FIG. 13, and unipolar drive with 9 lead wires (7 lead wires when all center taps are common). Line may be used), and the step drive is performed at the step angle θ S determined by the above-mentioned conditional expression. Therefore, in the permanent magnet stepping motor of the present invention, by changing the winding method, in addition to driving by three lead wires, bipolar driving by six lead wires and nine leads. There are three main types of unipolar drive methods that can be used: a lead wire (7 lead wires in the above case). Also, from FIG.
The vibration characteristics can be changed by setting the range of 0.75 ≦ K ≦ 1.25 and changing the correlation between the pole tooth pitch of the stator and the pole tooth pitch of the rotor. From the chart in Fig. 7, if n is 16, for example, even if the number of pole teeth on the rotor magnetic pole is 100, the step angle will be 0.6 °, and the number of pole teeth must be 150 for a two-phase motor. In consideration of the fact that the step angle is not 0.6 degrees, the stepping mode of the present invention is
It can be seen that the motor is a motor that easily obtains minute angles. For the sake of simplicity, the above description has been made in the case of the first embodiment of the present invention, but the operation is the same in the cases of the second to fourth embodiments.

【0009】[0009]

【発明の効果】本発明の永久磁石形ステッピングモ−タ
は,上記のように,特定の条件を充足するように構成
し,次のような優れた効果を有するもので,プリンタ,
高速FAX,PPC複写機等の高精度を要する各種OA
機器用として有用である。 従来の2相モ−タではリ−ド線を4本,駆動回路のト
ランジスタは8個必要とし,又5相モ−タではリ−ド線
は5本,上記トランジスタを10個必要としたのに対
し,本発明のものでは3相により駆動できるため,その
場合はリ−ド線3本,トランジスタも6個で済むため駆
動回路の構成が大巾に簡単化でき,安価とできる。 従来のものは,磁極数も2相のものでは8極,5相の
ものでは10極とする必要があったが,本発明のもので
は6極で済み,この点でも構造が簡単となり,製作工程
が簡略化,小型化できる。 トルクリップルは,従来の2相モ−タに比べ,1/2
となり振動が改善できる。 固定子の極歯ピッチと回転子の極歯ピッチを変化させ
ることにより共振周波数,振動レベルを変えることがで
きる。また,固定子の極歯ピッチを回転子の極歯ピッチ
より小さくすることにより巻線の挿入作業が容易にな
る。 固定子磁極を回転子軸に対して左右対称に配置するよ
うにし,コアの打ち抜きの際に生じる打ち抜き誤差を積
層鉄心の所定厚さの積層毎にコアを,たとえば,90゜ず
つの角度ずらしながら配置して積層することで修正動作
を行える構造とした。このため,位置精度が大幅に改善
できる。 磁極数が6個と少ないため,コイルの巻数を多くと
れ,従来の同形状のモ−タに対し,トルクが30%以上
改善できる。 巻線のインピ−ダンスを大きくし,3相交流モ−タと
しても使用可能である。 回転子の位置検出を設けることによりブラシレスモ−
タとしても使用可能である。
As described above, the permanent magnet type stepping motor of the present invention is constructed so as to satisfy the specific conditions and has the following excellent effects.
High-speed FAX, PPC copiers, etc.
It is useful for equipment. A conventional two-phase motor requires four lead lines and eight drive circuit transistors, and a five-phase motor requires five lead lines and ten transistors. On the other hand, in the case of the present invention, since it can be driven by three phases, in that case, only three lead lines and six transistors are required, so that the structure of the drive circuit can be greatly simplified and the cost can be reduced. In the conventional type, the number of magnetic poles needed to be 8 poles for a 2-phase type and 10 poles for a 5-phase type, but the present invention only required 6 poles, which also simplifies the structure. The process can be simplified and downsized. Torque ripple is 1/2 compared to the conventional two-phase motor
The vibration can be improved. The resonance frequency and vibration level can be changed by changing the pole tooth pitch of the stator and the pole tooth pitch of the rotor. Further, by making the pole tooth pitch of the stator smaller than the pole tooth pitch of the rotor, the work of inserting the winding becomes easy. By arranging the stator poles symmetrically with respect to the rotor axis, the punching error that occurs when punching the core is adjusted by shifting the core by 90 degrees for each lamination of a predetermined thickness of the laminated core. The structure is such that the correction operation can be performed by disposing and stacking. Therefore, the position accuracy can be greatly improved. Since the number of magnetic poles is as small as 6, the number of windings of the coil can be increased, and the torque can be improved by 30% or more as compared with the conventional motor having the same shape. It can be used as a three-phase AC motor by increasing the winding impedance. Brushless mode is provided by providing rotor position detection.
It can also be used as a data.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例となる固定子の平面図で
ある。
FIG. 1 is a plan view of a stator that is a first embodiment of the present invention.

【図2】本発明の固定子磁極と回転子磁極の関係を示す
展開図で,同図(A),(B)は夫々本発明の第1の実
施例を,また同図(C),(D)は夫々本発明の第2の
実施例を示すものである。
FIG. 2 is a development view showing the relationship between the stator magnetic poles and the rotor magnetic poles of the present invention. FIGS. 2A and 2B are respectively the first embodiment of the present invention and FIG. (D) shows the second embodiment of the present invention.

【図3】本発明の固定子磁極と回転子磁極の関係を示す
展開図で,同図(A),(B)は夫々本発明の第1の実
施例の別の実施態様を,また同図(C),(D)は夫々
本発明の第2の実施例の別の実施態様を示すものであ
る。
FIG. 3 is a development view showing the relationship between the stator magnetic poles and the rotor magnetic poles of the present invention, and FIGS. 3A and 3B respectively show another embodiment of the first embodiment of the present invention. FIGS. 7C and 7D respectively show another embodiment of the second embodiment of the present invention.

【図4】図3(A)の第1の実施例の場合で,K=0.
8,K=0.9,K=1.0とした場合における中速域での特
性図を示し,本図(A)は中速域における共振周波数の
変化を,また同図(B)は共振点における加速度の変化
を表したものである。
FIG. 4 shows the case of the first embodiment of FIG. 3A, where K = 0.
A characteristic diagram in the medium speed range when 8, K = 0.9 and K = 1.0 is shown. This figure (A) shows the change of the resonance frequency in the medium speed range, and the figure (B) shows the acceleration at the resonance point. It represents the change of.

【図5】本発明の第1の実施例における回転子磁極の移
動を表す展開図である。
FIG. 5 is a development view showing movement of rotor magnetic poles in the first embodiment of the present invention.

【図6】同図(A)はモノファイラ巻きをし,6本リ−
ド線による場合の接続図,同図(B)はこの接続におい
てバイポ−ラ駆動する場合の結線図である。
FIG. 6 (A) shows a monofilament winding with 6 reels.
The connection diagram in the case of using the connection line, and FIG. 6B is a connection diagram in the case where the bipolar drive is performed in this connection.

【図7】本発明の極歯数Z,隣接する回転子の磁極間ピ
ッチθρ,ステップ角θ等の関係を示す図表である。
FIG. 7 is a table showing the relationship among the number of pole teeth Z, the magnetic pole pitch θ ρ of adjacent rotors, the step angle θ S, etc. of the present invention.

【図8】本発明のステッピングモ−タを3本の外部リ−
ド線により給電して駆動するための結線を示すもので,
同図(A)及び(B)は夫々Y結線図及び△結線であ
る。
FIG. 8 shows a stepping motor of the present invention with three external leads.
It shows the connection for power supply and drive with
FIGS. 9A and 9B are a Y connection diagram and a Δ connection diagram, respectively.

【図9】本図(A)及び(B)は夫々Y結線及び△結線
の場合の固定子巻線の励磁のシ−ケンスを示す波形図で
ある。
9A and 9B are waveform diagrams showing the excitation sequence of the stator winding in the case of Y connection and Δ connection, respectively.

【図10】本図(A)及び(B)は夫々Y結線及び△結
線の場合の固定子巻線に供給する3相励磁電力の切り換
えを示す接続図である。
10A and 10B are connection diagrams showing switching of three-phase excitation power supplied to a stator winding in the case of Y connection and Δ connection, respectively.

【図11】本図(A)はY結線の場合の各固定子巻線の
磁極の推移を示す図表,同図(B)は3本のリ−ド線に
よる場合の接続図である。
FIG. 11A is a chart showing the transition of the magnetic poles of each stator winding in the case of Y connection, and FIG. 11B is a connection diagram in the case of three lead wires.

【図12】本図(A)は△結線での各固定子巻線の磁極
の推移を示す図表,同図(B)は3本のリ−ド線による
場合の接続図である。
FIG. 12A is a chart showing the transition of the magnetic poles of each stator winding in a Δ connection, and FIG. 12B is a connection diagram when three lead wires are used.

【図13】本発明のステッピングモ−タを9本の外部リ
−ド線により給電して駆動する場合の接続図である。
FIG. 13 is a connection diagram for driving the stepping motor of the present invention by feeding power from nine external lead wires.

【図14】従来例を示すもので,その内,本図(A)は
縦断正面図,同図(B)は同図(A)におけるX−X断面
図である。
FIG. 14 shows a conventional example, of which FIG. 14A is a vertical front view, and FIG. 14B is a sectional view taken along line XX in FIG.

【符号の説明】10 :固定子 11−1〜11−6:固定子磁極 12−1〜12−6:固定子磁極巻線 13:回転子[Explanation of symbols] 10 : Stator 11-1 to 11-6: Stator magnetic pole 12-1 to 12-6: Stator magnetic pole winding 13: Rotor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 当該固定子の内周に,放射状に複数個の
磁極を形成し,各磁極の先端には複数個の極歯をそれぞ
れ等ピッチで形成し,各磁極には各々 180度ずれた磁極
が同極となるようにそれぞれ巻線を巻いて成る固定子
と;この固定子の内方に空隙を隔てて同心的に配置さ
れ, 1/2ピッチずらした極歯ピッチとなる極歯を全周に
形成した2個の回転子磁極と,この回転子磁極によって
挟持された軸方向に着磁された永久磁石とより成る回転
子とを備えた永久磁石形ステッピングモ−タにおいて,
次の構成を備えたことを特徴とする永久磁石形ステッピ
ングモ−タ。 (1)固定子の磁極を6極とし,これを等ピッチに設け
る。 (2)固定子の極歯ピッチτSと回転子極歯ピッチτR
の相関を次のように定める。 τS=KτR 0.75 ≦
K≦1.25 但し,K=1及び τS= 180τR/( 180±τR)で得
られるKの値は除く (3)回転子磁極の極歯数ZをZ=6n±4とする。 (4)任意の磁極で対向する固定子磁極の中心と,回転
子磁極の中心とを一致させた時,隣接する固定子磁極の
中心と,反対磁性の回転子磁極の中心とのなす角を θ
R=60°/Zとする。
1. A plurality of magnetic poles are formed radially on the inner circumference of the stator, a plurality of pole teeth are formed at the tip of each magnetic pole at equal pitches, and each magnetic pole is offset by 180 degrees. A stator formed by winding each winding so that the magnetic poles have the same polarity; and a pole tooth with a pole tooth pitch that is concentrically arranged inside this stator with a gap, and is shifted by 1/2 pitch. In a permanent magnet type stepping motor having two rotor magnetic poles formed on the entire circumference and a rotor composed of axially magnetized permanent magnets sandwiched by the rotor magnetic poles,
A permanent magnet type stepping motor having the following configuration. (1) The stator has six magnetic poles, which are provided at equal pitches. (2) The correlation between the stator pole tooth pitch τ S and the rotor pole tooth pitch τ R is determined as follows. τ S = K τ R 0.75 ≦
K ≦ 1.25 However, the value of K obtained by K = 1 and τ S = 180τ R / (180 ± τ R ) is excluded. (3) The number of pole teeth Z of the rotor magnetic pole is Z = 6n ± 4. (4) When the centers of the stator magnetic poles facing each other with the arbitrary magnetic poles are aligned with the center of the rotor magnetic pole, the angle between the center of the adjacent stator magnetic pole and the center of the rotor magnetic pole of opposite magnetism θ
Let R = 60 ° / Z.
JP03351836A 1991-12-16 1991-12-16 Permanent magnet type stepping motor Expired - Fee Related JP3095846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03351836A JP3095846B2 (en) 1991-12-16 1991-12-16 Permanent magnet type stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03351836A JP3095846B2 (en) 1991-12-16 1991-12-16 Permanent magnet type stepping motor

Publications (2)

Publication Number Publication Date
JPH05168215A true JPH05168215A (en) 1993-07-02
JP3095846B2 JP3095846B2 (en) 2000-10-10

Family

ID=18419942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03351836A Expired - Fee Related JP3095846B2 (en) 1991-12-16 1991-12-16 Permanent magnet type stepping motor

Country Status (1)

Country Link
JP (1) JP3095846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346129B1 (en) * 1998-10-19 2002-07-22 가부시키가이샤 도요다 지도숏키 Sr motor, sr linear motor and load transfer equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346129B1 (en) * 1998-10-19 2002-07-22 가부시키가이샤 도요다 지도숏키 Sr motor, sr linear motor and load transfer equipment

Also Published As

Publication number Publication date
JP3095846B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US5128570A (en) Permanent magnet type stepping motor
JP3071064B2 (en) Permanent magnet type stepping motor
JP3131403B2 (en) Stepping motor
US6762526B2 (en) Multi-phase flat-type PM stepping motor and driving circuit thereof
US6605883B2 (en) Multi-phase flat-type PM stepping motor and driving circuit thereof
US5804904A (en) Brushless DC motor and a method of generation power therewith
US6259176B1 (en) Multi-phase outer-type PM stepping motor
CN1393982A (en) Three-phase ring coil type permanent magnet rotary motor
US7342330B2 (en) Hybrid type double three-phase electric rotating machine
JP3084220B2 (en) Hybrid type step motor
JPH07336967A (en) Axial-direction air-gap synchronous motor
JP3095846B2 (en) Permanent magnet type stepping motor
JP2835616B2 (en) Permanent magnet type stepping motor
JP3665105B2 (en) 6-phase hybrid stepping motor
JP2835615B2 (en) Permanent magnet type stepping motor
JP3357817B2 (en) Multi-phase PM type stepping motor
JP3537904B2 (en) Permanent magnet type stepping motor and driving method thereof
JP2844359B2 (en) Permanent magnet type stepping motor
JP3004580B2 (en) Stepping motor
JP3523714B2 (en) Hybrid type stepping motor
JPH01259748A (en) Stepping motor
JP2006109675A (en) Permanent magnet type three-phase dynamo-electric machine
JPH078123B2 (en) 3-phase DC motor
JPH10164807A (en) Permanent magnet type synchronous motor
JP3601916B2 (en) Permanent magnet type stepping motor and driving method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090804

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090804

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110804

LAPS Cancellation because of no payment of annual fees