JPH05166319A - Floating type magnetic head - Google Patents

Floating type magnetic head

Info

Publication number
JPH05166319A
JPH05166319A JP3334694A JP33469491A JPH05166319A JP H05166319 A JPH05166319 A JP H05166319A JP 3334694 A JP3334694 A JP 3334694A JP 33469491 A JP33469491 A JP 33469491A JP H05166319 A JPH05166319 A JP H05166319A
Authority
JP
Japan
Prior art keywords
magnetic head
kgf
slider
depth
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3334694A
Other languages
Japanese (ja)
Other versions
JP3237154B2 (en
Inventor
Kenichiro Kaneko
健一郎 金子
Masatake Miyazaki
正剛 宮崎
Shigeo Maeda
成夫 前田
Junichi Kimura
淳一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33469491A priority Critical patent/JP3237154B2/en
Publication of JPH05166319A publication Critical patent/JPH05166319A/en
Application granted granted Critical
Publication of JP3237154B2 publication Critical patent/JP3237154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 本発明は簡単な工程で生産でき、コンタクト
・スタート・ストップ特性を向上させることができ、信
頼性、生産性に優れ低原価で量産性に適した浮動型磁気
ヘッドの提供を目的とする。 【構成】 表面から160nmの深さにおける硬度にお
いて表面硬度が350〜800(kgf/mm2) である無機化
合物の相と表面硬度が600〜1000(kgf/mm2) であ
る無機化合物の相を有するスライダを備えた浮動型磁気
ヘッドのスライダの磁気記録媒体との対向面aに、表面
硬度350〜800(kgf/mm2) の相が表面硬度600〜
1000(kgf/mm2) の相に比べ数十〜1000Åの深さ
の凹部を有し、及び/又は距離55μmにおける接触式
表面粗さ計での表面粗さ曲線上に50Å以上の深さの凹
部が平均1.5個以上好ましくは2個以上存在する形状
に加工された構成よりなる。
(57) [Summary] (Correction) [Purpose] The present invention can be manufactured by a simple process, can improve contact start / stop characteristics, is excellent in reliability and productivity, and is suitable for mass production at low cost. And a floating magnetic head. [Structure] An inorganic compound phase having a surface hardness of 350 to 800 (kgf / mm 2 ) and an inorganic compound phase having a surface hardness of 600 to 1000 (kgf / mm 2 ) at a depth of 160 nm from the surface are formed. The surface of the slider of the floating magnetic head provided with the slider has a surface hardness of 350 to 800 (kgf / mm 2 ) on the surface a facing the magnetic recording medium.
Compared with the phase of 1000 (kgf / mm 2 ), it has a recess with a depth of several tens to 1000 Å and / or has a depth of 50 Å or more on the surface roughness curve of a contact surface roughness meter at a distance of 55 μm. It is configured to be processed into a shape having 1.5 or more, preferably 2 or more recesses on average.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜媒体を使用した小
型ハードディスク装置等に好適に用いられる浮動型磁気
ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating magnetic head suitable for use in a small hard disk drive or the like using a thin film medium.

【0002】[0002]

【従来の技術】近年、小型ハードディスク装置において
は、浮動型磁気ヘッドを磁気記録媒体の停止時にはその
上で停止させ、磁気記録媒体の回転とともに磁気記録媒
体から一定の間隔(以下、浮上量とする)で浮上させる
というコンタクト・スタート・ストップ(以下、CSS
と略す)方式が採用されている。またその高記録密度化
は主に浮上量を小さくすることでなされており、そのた
めに様々な努力が行われている。
2. Description of the Related Art In recent years, in a small hard disk device, a floating magnetic head is stopped on a magnetic recording medium when the magnetic recording medium is stopped so that the magnetic recording medium rotates and a fixed distance (hereinafter referred to as a flying height) from the magnetic recording medium. ) Contact start / stop (hereinafter referred to as CSS)
Abbreviated) method is adopted. Further, the high recording density is mainly made by reducing the flying height, and various efforts are made for that purpose.

【0003】以下に従来の浮動型磁気ヘッドについて説
明する。浮動型磁気ヘッドは、表面から160nmにお
ける表面硬度(深さを160nmにするのはデータの精
度を高めるためである)が600〜1400(kgf/mm2)
であるCaTiO3,SrTiO3を主成分とする相の混
合体で形成されたスライダとMn−Znフェライトコア
及びガラスから構成される通称コンポジットヘッドと呼
ばれる磁気ヘッドが用いられている。この浮動型磁気ヘ
ッドの磁気記録媒体対向面の加工は、微小なダイヤモン
ド粒子と錫製のラッピング定盤を用いた湿式軟質金属ラ
ップにより行われている。
A conventional floating magnetic head will be described below. The floating magnetic head has a surface hardness of 160 nm from the surface (having a depth of 160 nm is for improving the accuracy of data) is 600 to 1400 (kgf / mm 2 ).
A magnetic head called a composite head, which is composed of a slider formed of a mixture of phases containing CaTiO 3 and SrTiO 3 as main components, a Mn—Zn ferrite core, and glass, is used. The surface of the floating magnetic head facing the magnetic recording medium is processed by wet soft metal lapping using a lapping plate made of fine diamond particles and tin.

【0004】しかし、湿式軟質金属ラップ加工によるコ
ンポジットヘッドは、CSS特性と呼ばれるヘッド・デ
ィスク間の摩擦摩耗特性が悪く、特に前述したように低
浮上量化が求められている今日、CSS特性の改善は極
めて重要な課題となっている。
However, the composite head produced by wet soft metal lapping has a poor head-disk friction and wear characteristic called CSS characteristic. In particular, as described above, it is required to reduce the flying height. It is a very important issue.

【0005】そこで、コンポジットヘッドのCSS特性
を改善する方法として、磁気記録媒体との接触面積を減
らす観点から、コンポジットヘッドの磁気記録媒体対向
面をある程度粗すことが有効とされ、粗い粒子を用いて
ラッピング加工する方法や、特開平1−251308号
公報に開示されたような逆スパッタ法を用いる方法等に
よってCSS特性の改善が図られている。
Therefore, as a method of improving the CSS characteristics of the composite head, it is effective to roughen the surface of the composite head facing the magnetic recording medium to some extent from the viewpoint of reducing the contact area with the magnetic recording medium, and coarse particles are used. The CSS characteristics are improved by a method such as lapping, a method using a reverse sputtering method disclosed in Japanese Patent Laid-Open No. 1-251308, and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の粗い粒子を用いて加工する方法では、スクラッチを発
生させるという問題点があり、一方、逆スパッタ法等を
用いる方法では、その応用性及び作業性の点より量産性
に欠けるという問題点を有していた。特にコンポジット
ヘッドにおいては、それぞれ物性の異なる3種の材料、
すなわち非磁性セラミックスとMn−Znフェライト及
びガラスからなるが、ガラスとMn−Znフェライトの
物理的エッチング速度が非磁性セラミックスの物理的エ
ッチング速度より大きいために、これらがスライダ表面
より大きく削られてしまうという問題点があり、特にガ
ラス部の凹部は5000Åにも及び、コア強度の面から
大きな問題点となっている。これを防止するにはガラス
部とMn−Znフェライト部を完全にマスクして加工せ
ねばならず、作業工数が増え、生産性を大きく低下させ
るという問題点があった。また、微小な無機物系の塵や
有機物が存在すると、同様なエッチング速度の不均一化
が生じ、凹凸量のコントロール化が困難で、更にCSS
時にヘッドクラッシュを引き起こす突起が発生し易く品
質上信頼性に欠け、また製品歩留りが低いという問題点
があった。更に、非磁性セラミックス部においては、逆
に物理的エッチング速度が極めて遅く、逆スパッタ法に
よっても凹凸を発生させること自体が困難であるという
問題点があった。
However, the above-described conventional method of processing using coarse particles has a problem that scratches are generated, while the method using the reverse sputtering method has its applicability and workability. However, there is a problem that mass productivity is lacking. Especially in the composite head, three kinds of materials with different physical properties,
That is, it is composed of non-magnetic ceramics, Mn-Zn ferrite and glass, but since the physical etching rate of glass and Mn-Zn ferrite is higher than the physical etching rate of non-magnetic ceramics, these are largely scraped from the slider surface. In particular, the concave portion of the glass portion reaches 5000 liters, which is a serious problem in terms of core strength. In order to prevent this, the glass part and the Mn-Zn ferrite part must be completely masked and processed, which causes a problem that the number of working steps is increased and the productivity is greatly reduced. In addition, the presence of minute inorganic dust or organic matter causes similar non-uniformity of the etching rate, making it difficult to control the amount of unevenness.
At times, there are problems that projections that cause head crashes are likely to occur and that the quality is unreliable and that the product yield is low. Further, in the non-magnetic ceramic portion, on the contrary, there is a problem that the physical etching rate is extremely slow and it is difficult to generate unevenness even by the reverse sputtering method.

【0007】本発明は上記従来の問題点を解決するもの
で、簡単な工程で生産でき、CSS特性を向上させ、信
頼性、生産性に優れ低原価で量産性に適した浮動型磁気
ヘッドを提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a floating magnetic head which can be produced by a simple process, has improved CSS characteristics, is excellent in reliability and productivity, is low in cost, and is suitable for mass production. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の浮動型磁気ヘッドは、表面から160nmの
深さにおける硬度において表面硬度が350〜800(k
gf/mm2) である無機化合物の相と前記表面硬度が600
〜1000(kgf/mm2) である無機化合物の相を有するス
ライダを備えた浮動型磁気ヘッドであって、前記スライ
ダの磁気記録媒体との対向面に、前記表面硬度350〜
800(kgf/mm2) の相が前記表面硬度600〜1000
(kgf/mm2) の相に比べ数十〜1000Åの深さの凹部を
有し、及び/又は距離55μmにおける接触式表面粗さ
計での表面粗さ曲線上に50Å以上の深さの凹部が平均
1.5個以上好ましくは2個以上存在する形状に加工さ
れた構成を有している。
To achieve this object, the floating magnetic head of the present invention has a surface hardness of 350 to 800 (k) at a hardness of 160 nm from the surface.
gf / mm 2 ) The phase of the inorganic compound and the surface hardness is 600
What is claimed is: 1. A floating magnetic head comprising a slider having a phase of an inorganic compound of about 1000 (kgf / mm 2 ), wherein the surface hardness of the slider faces the magnetic recording medium of 350 to
800 (kgf / mm 2 ) phase has the surface hardness of 600 to 1000
Compared with the phase of (kgf / mm 2 ), it has a recess with a depth of several tens to 1000Å and / or a recess with a depth of 50Å or more on the surface roughness curve of a contact surface roughness meter at a distance of 55 μm. Has an average of 1.5 or more, preferably 2 or more.

【0009】[0009]

【作用】この構成によって、浮動型磁気ヘッドの磁気記
録媒体との対向面における磁気記録媒体との接触面積を
減少させることができ、CSS特性を向上させることが
できる。
With this configuration, the contact area of the floating magnetic head on the surface facing the magnetic recording medium can be reduced, and the CSS characteristics can be improved.

【0010】[0010]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例における浮動型磁
気ヘッドの外観斜視図である。1は非磁性材料からなる
スライダ、2はMn−ZnフェライトからなるMn−Z
nフェライトコア、3はMn−Znフェライトコア2を
スライダ1に接着するためのガラス、aは適度な凹凸状
に加工されたスライダ1の磁気記録媒体との対向面であ
る。
FIG. 1 is an external perspective view of a floating magnetic head according to an embodiment of the present invention. Reference numeral 1 is a slider made of a non-magnetic material, 2 is Mn-Z made of Mn-Zn ferrite
Reference numeral 3 denotes an n-ferrite core, 3 is a glass for adhering the Mn-Zn ferrite core 2 to the slider 1, and a is a surface of the slider 1 which is processed to have an appropriate uneven shape and faces the magnetic recording medium.

【0012】ここで、スライダの非磁性材料としては次
のものを調整した。非磁性材料A,Bは、CaTi
3,SrTiO3,TiO2,P25,SiO2,ZrO
2,Al23の固溶体又は混合物あるいはその構成元素
からなる化合物で略構成される焼結体であって、その主
な組成は、CaTiO3,SrTiO3,TiO2,P2
5,SiO2,ZrO2,Al23換算で、非磁性材料A
では、42,37,14,2,1.5,3,0.5mol%
であり、非磁性材料Bでは、43,38,14,1,
1,2.7,0.3mol%である。
Here, the following were adjusted as the non-magnetic material for the slider. Non-magnetic materials A and B are CaTi
O 3 , SrTiO 3 , TiO 2 , P 2 O 5 , SiO 2 , ZrO
2 , a solid solution or a mixture of Al 2 O 3 , or a sintered body substantially composed of a compound consisting of its constituent elements, the main composition of which is CaTiO 3 , SrTiO 3 , TiO 2 , P 2 O
5 , non-magnetic material A in terms of SiO 2 , ZrO 2 , Al 2 O 3
Then, 42,37,14,2,1.5,3,0.5 mol%
And in the non-magnetic material B, 43, 38, 14, 1,
It is 1, 2.7, 0.3 mol%.

【0013】次いで、各々の非磁性材料A,Bを焼成し
てスライダを作製した。以上のように構成された本実施
例における浮動型磁気ヘッドについて、以下その製造方
法を説明する。
Next, each of the non-magnetic materials A and B was fired to produce a slider. The manufacturing method of the floating magnetic head of the present embodiment having the above-described structure will be described below.

【0014】Mn−Znフェライトコア2を溶融したガ
ラス3を用いてスライダ1に接着して作製された浮動型
磁気ヘッドを加工用治具(図示せず)上に固定する。次
いで、微細なダイヤモンド粒子等をラッピング砥粒と
し、アクリル樹脂等の高弾性体をラッピング定盤とする
加工機を用いて、スライダ1の磁気記録媒体対向面を軟
質ラップし、浮動型磁気ヘッドを作製した。
A floating type magnetic head manufactured by adhering the Mn-Zn ferrite core 2 to the slider 1 using the glass 3 is fixed on a processing jig (not shown). Then, using a processing machine in which fine diamond particles or the like are used as lapping abrasive grains and a highly elastic body such as acrylic resin is used as a lapping surface plate, the magnetic recording medium facing surface of the slider 1 is softly lapped to form a floating magnetic head. It was made.

【0015】(実験例1,2)以上のようにして製造し
た浮動型磁気ヘッドについて、そのスライダの鏡面加工
部の表面硬度及び表面積占有率を検討した。
(Experimental Examples 1 and 2) With respect to the floating magnetic head manufactured as described above, the surface hardness and the surface area occupation rate of the mirror-finished portion of the slider were examined.

【0016】スライダの鏡面加工部の模式図を図2に示
す。この模式図2における各部の表面から160nmに
おける表面硬度及び表面積占有率を測定した。この結果
を(表1)に示す。
FIG. 2 shows a schematic view of the mirror-finished portion of the slider. The surface hardness and the surface area occupation ratio at 160 nm from the surface of each part in this schematic diagram 2 were measured. The results are shown in (Table 1).

【0017】実験例1は非磁性材料Aを、実験例2は非
磁性材料Bを用いて作製したスライダを用いて行った。
Experimental Example 1 was performed using a non-magnetic material A, and Experimental Example 2 was performed using a slider manufactured using a non-magnetic material B.

【0018】[0018]

【表1】 [Table 1]

【0019】ここで、表面硬度は島津製作所製ダイナミ
ック硬度計を用い、最大荷重1gfにおける負荷と圧子
の挿入深さから求めた。表面積占有率は、鏡面のSEM
写真(2000倍)より求めた。
Here, the surface hardness was determined from the load at a maximum load of 1 gf and the insertion depth of the indenter using a dynamic hardness tester manufactured by Shimadzu Corporation. Surface area occupancy is SEM of mirror surface
It was determined from the photograph (× 2000).

【0020】この(表1)から明らかなように、非磁性
材料A及びBを用いたスライダの鏡面は表面積において
4.5%,2%を占める表面から160nmにおける表
面硬度350〜800(kgf/mm2) の酸化物の相と、前記
表面硬度600〜1000(kgf/mm2) の酸化物の相の混
合体から構成されていることがわかった。
As is clear from this (Table 1), the mirror surface of the slider using the non-magnetic materials A and B occupies 4.5% and 2% of the surface area, and the surface hardness at 160 nm from the surface is 350 to 800 (kgf / kgf / It was found to be composed of a mixture of an oxide phase of mm 2 ) and an oxide phase of the surface hardness of 600 to 1000 (kgf / mm 2 ).

【0021】(実験例3〜6)次に、図1に示す浮動型
磁気ヘッドを前記材料A又はBのいずれか1を用いて作
製し、次の条件でラッピングを行い、その表面形状を検
討した。
(Experimental Examples 3 to 6) Next, the floating type magnetic head shown in FIG. 1 was produced using any one of the materials A and B, and lapping was performed under the following conditions to examine the surface shape. did.

【0022】尚、ラッピング定盤としてアクリル樹脂製
のものを用い、ラッピング砥粒として平均粒径0.12
μmのダイヤモンド粒子を用いた。ラッピング定盤の回
転数は40rpm と60rpm の2種類で行った。各実験例
について、浮動型磁気ヘッド30個を各々作製した。
The lapping plate made of acrylic resin was used, and the lapping abrasive grains had an average particle size of 0.12.
μm diamond particles were used. The number of rotations of the lapping plate was 40 rpm and 60 rpm. For each experimental example, 30 floating magnetic heads were manufactured.

【0023】次に、この加工面の表面形状を、各々の実
験例の浮動型磁気ヘッドについて、触針式表面粗さ計に
て55μmの距離にわたり計10箇所測定した。
Next, the surface shape of the machined surface was measured at a total of 10 points on the floating magnetic head of each experimental example by a stylus type surface roughness meter over a distance of 55 μm.

【0024】なお加工面の表面形状は、測定値をパソコ
ンに取り込み解析して求めた。触針式表面粗さ計は、ダ
イヤモンド製の先端半径0.1μmの触針を用いて、倍
率100万の条件にて測定した。その測定結果を(表
2)に示す。
The surface shape of the machined surface was obtained by analyzing the measurement values by loading them into a personal computer. The stylus surface roughness meter was measured under the condition of a magnification of 1,000,000 using a stylus made of diamond and having a tip radius of 0.1 μm. The measurement results are shown in (Table 2).

【0025】[0025]

【表2】 [Table 2]

【0026】次に、実験例3と実験例5の浮動型磁気ヘ
ッドについて、接触式表面粗さ計を用い表面形状を測定
した。その結果を図3に示す。
Next, the surface shapes of the floating magnetic heads of Experimental Example 3 and Experimental Example 5 were measured by using a contact type surface roughness meter. The result is shown in FIG.

【0027】図3(a)は実験例3の表面形状を示す粗
さ曲線のグラフであり、図3(b)は実験例5の表面形
状を示す粗さ曲線のグラフである。
FIG. 3A is a graph of the roughness curve showing the surface shape of Experimental Example 3, and FIG. 3B is a graph of the roughness curve showing the surface shape of Experimental Example 5.

【0028】上記の表面形状を有する各実験例の浮動型
磁気ヘッドをアセンブリし、3.5インチハードディス
クを用いてCSS特性の測定を行い、各浮動型磁気ヘッ
ドのCSS特性を評価した。
The floating magnetic heads of the respective experimental examples having the above surface shapes were assembled, the CSS characteristics were measured using a 3.5-inch hard disk, and the CSS characteristics of each floating magnetic head were evaluated.

【0029】このCSS特性の測定に用いたハードディ
スクは次の通りである。 基板;アルミニュウム 下地;Cr 磁性層;Co−Niスパッタ膜 表面層;カーボンスパッタ層及びカーボン層表面に塗布
されたフッソ系個体潤滑剤層 Diskの表面粗さ;Ra≒55Å CSSテスト時のディスク駆動条件は以下の通りであ
る。
The hard disk used for measuring the CSS characteristics is as follows. Substrate: Aluminum Underlayer: Cr Magnetic layer: Co-Ni sputtered film Surface layer: Carbon sputtered layer and fluorine-based solid lubricant layer applied to the surface of the carbon layer Surface roughness of the disk; Ra ≈ 55Å Disk drive condition at CSS test Is as follows.

【0030】ヘッド圧力;93mN(9.5gf) 測定位置;25mm 定常回転数迄の所要時間;4秒 定常回転数と時間;2300rpmで1秒 定常回転数から停止する迄の所要時間;4秒 回転と回転間の停止時間;1秒 上記の測定によって得られた測定結果を(表3)に示
す。
Head pressure: 93 mN (9.5 gf) Measuring position: 25 mm Time required for steady rotation speed: 4 seconds Steady rotation speed and time: 1 second at 2300 rpm Time required for stopping from steady rotation speed: 4 seconds Rotation And stop time between rotations: 1 second The measurement results obtained by the above measurement are shown in (Table 3).

【0031】[0031]

【表3】 [Table 3]

【0032】μはCSS2万回後における回転数1rp
mのディスクとヘッド間の動摩擦係数μkの平均値、Δ
μはCSS1回後とCSS2万回後における前記動摩擦
係数の平均値の増加量である。
Μ is the number of revolutions 1 rp after CSS 20,000 times
The average value of the dynamic friction coefficient μk between the disk of m and the head, Δ
μ is an increase amount of the average value of the dynamic friction coefficient after one CSS and 20,000 CSS.

【0033】(比較例1〜4)実験例と同一の材料を用
いて浮動型磁気ヘッドを作製し、スライダ1の磁気記録
媒体対向面aを軟質金属ラップにより加工した。
(Comparative Examples 1 to 4) A floating magnetic head was manufactured using the same material as the experimental example, and the magnetic recording medium facing surface a of the slider 1 was processed by a soft metal wrap.

【0034】加工方法は、ラッピング定盤として、錫製
のものを用いた点を除いては、実験例と同様にして行
い、各比較例について、浮動型磁気ヘッド30個を各々
作製した。
The working method was the same as that of the experimental example except that a lapping plate made of tin was used, and 30 floating magnetic heads were produced for each comparative example.

【0035】次にこの加工面の表面形状を実験例と同様
にして測定した。その測定結果を(表2)に示す。
Next, the surface shape of this processed surface was measured in the same manner as in the experimental example. The measurement results are shown in (Table 2).

【0036】次に、比較例1及び比較例3の浮動型磁気
ヘッドについて、接触式表面粗さ計を用い実験例と同様
にして表面形状を測定した。その結果を図4に示す。
Next, the surface shapes of the floating magnetic heads of Comparative Examples 1 and 3 were measured using a contact type surface roughness meter in the same manner as in the experimental example. The result is shown in FIG.

【0037】図4(a)は比較例1の表面形状を示す粗
さ曲線のグラフであり、図4(b)は比較例3の表面形
状を示す粗さ曲線のグラフである。
FIG. 4A is a graph of a roughness curve showing the surface shape of Comparative Example 1, and FIG. 4B is a graph of a roughness curve showing the surface shape of Comparative Example 3.

【0038】上記の表面形状を有する各々の比較例の浮
動型磁気ヘッドをアセンブリし、3.5インチハードデ
ィスクを用い、実験例と同一の条件でCSS特性を測定
した。その結果を(表3)に示す。
The floating magnetic head of each comparative example having the above surface shape was assembled, and the CSS characteristics were measured under the same conditions as the experimental example using a 3.5-inch hard disk. The results are shown in (Table 3).

【0039】図3及び(表2)より明らかなように、実
験例3乃至6の浮動型磁気ヘッドの加工面においては、
材料及び定盤回転数を問わず、深さ数十〜1000Åの
凹部と、この凹部に起因する明確な凹凸形状が得られ
た。一方、図4及び(表2)より明らかなように、比較
例1乃至4の磁気ヘッドの加工面においては、深さ数十
〜150Å程の凹部は存在したものの、明確な凹凸形状
は得られなかった。また実験例と比較例の浮動型磁気ヘ
ッド間においては、深さ50Å以上の前記凹部の発生頻
度が異なり、実験例においては平均で1.5個以上の凹
部が粗さ曲線上で存在したのに対し、一方比較例におい
てはこの個数は、0.3〜0.8個であった。
As is clear from FIG. 3 and (Table 2), in the processed surfaces of the floating magnetic heads of Experimental Examples 3 to 6,
Regardless of the material and the number of rotations of the surface plate, a recess having a depth of several tens to 1000 Å and a clear uneven shape due to the recess were obtained. On the other hand, as is clear from FIG. 4 and (Table 2), on the machined surfaces of the magnetic heads of Comparative Examples 1 to 4, there were recesses having a depth of several tens to 150 Å, but clear concavo-convex shapes were obtained. There wasn't. Further, the frequency of occurrence of the recesses having a depth of 50 Å or more was different between the floating magnetic heads of the experimental example and the comparative example, and in the experimental examples, 1.5 or more recesses were present on the roughness curve on average. On the other hand, in the comparative example, the number was 0.3 to 0.8.

【0040】なおこの凹部は、CaTiO3,SrTi
3及びその固溶体又はTiO2又は微量のP,Si,Z
r,Alが拡散した母相とは組成が異なり、P,Si,
Zr,Alに富んだTi,Ca,Srの酸化物の相であ
った。
The recess is made of CaTiO 3 , SrTi.
O 3 and its solid solution or TiO 2 or a trace amount of P, Si, Z
The composition is different from that of the mother phase in which r and Al are diffused.
It was a phase of oxides of Ti, Ca, Sr rich in Zr, Al.

【0041】また、(表3)より明らかなように、実験
例の浮動型磁気ヘッドにおいては、μの値が0.2〜
0.24と小さく安定していた。又Δμの値はどの実験
例においても略0であり、CSS特性が優れていること
を示していた。特に材料Aを用いた実験例3及び4のΔ
μの値が負となり、極めて高いCSS特性を持つことが
わかった。
Further, as is clear from (Table 3), in the floating magnetic head of the experimental example, the value of μ is 0.2 to
It was as small as 0.24 and stable. Further, the value of Δμ was almost 0 in all the experimental examples, indicating that the CSS characteristics were excellent. In particular, Δ of Experimental Examples 3 and 4 using the material A
It was found that the value of μ is negative and has extremely high CSS characteristics.

【0042】一方、比較例の浮動型磁気ヘッドにおいて
は、μの値が0.28〜0.36と大きく、Δμの値も
0.06〜0.17とバラツキが大きなことから、CS
S特性が劣っていることがわかった。
On the other hand, in the floating magnetic head of the comparative example, the value of μ is as large as 0.28 to 0.36, and the value of Δμ is as large as 0.06 to 0.17.
It was found that the S characteristics were inferior.

【0043】次に、本発明で用いたスライダの相構成
と、粗さ曲線との関係について説明する。
Next, the relationship between the phase structure of the slider used in the present invention and the roughness curve will be described.

【0044】図5(a)は加工面の結晶相と粒子状態を
示す模式図であり、図5(b)は図5(a)におけるA
−B断面を示す模式図である。
FIG. 5 (a) is a schematic view showing the crystal phase and the state of particles on the processed surface, and FIG. 5 (b) is a view of A in FIG. 5 (a).
It is a schematic diagram which shows a -B cross section.

【0045】H1,H2,H3は凹部の深さ、Cは凹部
の最低部となる粒子、Dは凹部の最低部となる相1間の
粒界である。
H1, H2 and H3 are the depths of the recesses, C is the grain at the bottom of the recess, and D is the grain boundary between phases 1 at the bottom of the recess.

【0046】図5(a)の断面における凹部は、図5
(b)に示すように、化学的に異なる組成の、柔らかい
硬度を有する相1の粒子及び粒子群であると推察され
る。即ち、この凹部は加工時に相1の粒子が母相または
相2の粒子より激しく摩耗することで発生するものであ
る。凹部の位置としては、粒内に最低部を有する粒子C
を含む粒子や粒子群の場合も存在するし、相1間の粒界
Dの場合も存在する。従って、この結果得られる凹凸形
状は、前記特開平1−251308にあるような各粒子
の粒界を境界とする凹凸ではなく、相1と母相、又は相
2間の相間に発生する凹凸形状なのである。ここで、凹
部の深さは図5で示すように深い方をとった。
The recess in the cross section of FIG. 5A is shown in FIG.
As shown in (b), it is presumed to be particles and a group of particles of phase 1 having a chemically different composition and having a soft hardness. That is, the concave portions are generated when the particles of phase 1 are worn more severely than the particles of mother phase or phase 2 during processing. Regarding the position of the concave portion, the particle C having the lowest part in the particle
There are cases of particles and groups of particles containing, and there are cases of grain boundaries D between phases 1. Therefore, the uneven shape obtained as a result is not the uneven shape having the grain boundary of each particle as a boundary as described in JP-A-1-251308, but the uneven shape generated between the phase 1 and the mother phase or between the phases 2. That is why. Here, the depth of the concave portion is deep as shown in FIG.

【0047】尚、本実施例における浮動型磁気ヘッドの
スライダは非磁性セラミックス材料よりなる酸化物であ
ったが、前記の硬度分布等を有するものであれば、酸化
物以外の無機化合物であってもよいし、同様に磁性セラ
ミックスであってもよい。更に、前記の硬度分布を有
し、それ以外の硬度の相を一乃至複数個含む無機化合物
であってもよい。
Although the slider of the floating magnetic head in this embodiment is an oxide made of a non-magnetic ceramic material, it may be an inorganic compound other than the oxide as long as it has the above hardness distribution. It may also be magnetic ceramics. Further, it may be an inorganic compound having the hardness distribution described above and containing one or more phases of hardness other than the above.

【0048】以上のように本実施例によれば、硬度の高
い相と硬度の低い相の2相を有するスライダを用いて、
浮動型磁気ヘッドを作製し、その磁気記録媒体との対向
面を、軟質ラップ等によって加工し、適度な凹凸状にす
ることにより、磁気記録媒体との加工面における接触面
積が減少し、CSS特性を飛躍的に向上させることがで
きる。
As described above, according to this embodiment, the slider having the two phases of high hardness and low hardness is used.
By manufacturing a floating magnetic head and processing the surface facing the magnetic recording medium with a soft wrap or the like to form an appropriate unevenness, the contact area on the processed surface with the magnetic recording medium is reduced, and the CSS characteristics Can be dramatically improved.

【0049】[0049]

【発明の効果】以上のように本発明は、表面硬度350
〜800(kgf/mm2) の無機化合物の相と前記表面硬度が
600〜1000(kgf/mm2) の無機化合物の相の2相を
有するスライダを備えた浮動型磁気ヘッドであって、ス
ライダの磁気記録媒体との対向面を軟質ラップ等によっ
て前記表面硬度350〜800(kgf/mm2) の相が前記表
面硬度600〜1000(kgf/mm2) の相に比べ数十〜1
000Å窪み、距離55μmにおける接触式表面粗さ計
での表面粗さ曲線上に、50Å以上の深さの凹部が平均
1.5個以上存在するような形状に加工することによっ
て、加工面における磁気記録媒体との接触面積を減少さ
せ、CSS特性を飛躍的に向上させることのできる、工
程が簡単で、生産性、信頼性、耐久性に優れ低原価で量
産性に適した浮動型磁気ヘッドを実現できるものであ
る。
As described above, the present invention has a surface hardness of 350.
A floating magnetic head comprising a slider having two phases, an inorganic compound phase having a surface hardness of ~ 800 (kgf / mm 2 ) and an inorganic compound phase having a surface hardness of 600 to 1,000 (kgf / mm 2 ). The surface having a surface hardness of 350 to 800 (kgf / mm 2 ) is several tens to one as compared with the surface hardness of 600 to 1000 (kgf / mm 2 ) by a soft wrap or the like on the surface facing the magnetic recording medium.
000 Å dents, the surface roughness curve of a contact type surface roughness meter at a distance of 55 μm is processed into a shape such that there are an average of 1.5 or more recesses with a depth of 50 Å or more, and A floating magnetic head that can reduce the contact area with the recording medium and dramatically improve the CSS characteristics, has a simple process, has excellent productivity, reliability, and durability, is low cost, and is suitable for mass production. It can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における浮動型磁気ヘッドの
斜視図
FIG. 1 is a perspective view of a floating magnetic head according to an embodiment of the present invention.

【図2】材料A及び材料Bの鏡面の模式図FIG. 2 is a schematic diagram of mirror surfaces of materials A and B.

【図3】(a)実験例3における加工面の表面形状を示
す粗さ曲線のグラフ (b)実験例5における加工面の表面形状を示す粗さ曲
線のグラフ
3A is a graph of a roughness curve showing a surface shape of a machined surface in Experimental Example 3; FIG. 3B is a graph of a roughness curve showing a surface shape of a machined surface in Experimental Example 5;

【図4】(a)比較例1における加工面の表面形状を示
す粗さ曲線のグラフ (b)比較例3における加工面の表面形状を示す粗さ曲
線のグラフ
4A is a graph of a roughness curve showing a surface shape of a machined surface in Comparative Example 1. FIG. 4B is a graph of a roughness curve showing a surface shape of a machined surface in Comparative Example 3.

【図5】(a)加工面の結晶相と粒子状態を示す模式図 (b)図5(a)におけるA−B断面を示す模式図5A is a schematic diagram showing a crystal phase and a particle state of a processed surface. FIG. 5B is a schematic diagram showing an AB cross section in FIG. 5A.

【符号の説明】[Explanation of symbols]

1 スライダ 2 Mn−Znフェライトコア 3 ガラス a スライダの磁気記録媒体との対向面 C 凹部の最低部となる粒子 D 凹部の最低部となる相1間の粒界 H1 凹部の深さ H2 凹部の深さ H3 凹部の深さ 1 Slider 2 Mn-Zn Ferrite Core 3 Glass a Surface of slider facing magnetic recording medium C Grain that is the lowest part of the recess D D Grain boundary between phases 1 that is the lowest part of the recess H1 Depth of recess H2 Depth of recess H3 Depth of recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 淳一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Kimura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面から160nmの深さにおける硬度に
おいて表面硬度が350〜800(kgf/mm2) である無機
化合物の相と前記表面硬度が600〜1000(kgf/m
m2) である無機化合物の相を有するスライダを備えた浮
動型磁気ヘッドであって、前記スライダの磁気記録媒体
との対向面に、前記表面硬度350〜800(kgf/mm2)
の相が前記表面硬度600〜1000(kgf/mm2) の相に
比べ数十〜1000Åの深さの凹部を有し、及び/又は
距離55μmにおける接触式表面粗さ計での表面粗さ曲
線上に50Å以上の深さの凹部が平均1.5個以上好ま
しくは2個以上存在することを特徴とする浮動型磁気ヘ
ッド。
1. A phase of an inorganic compound having a surface hardness of 350 to 800 (kgf / mm 2 ) at a depth of 160 nm from the surface and the surface hardness of 600 to 1000 (kgf / m 2 ).
m 2 ), a floating magnetic head provided with a slider having a phase of an inorganic compound, the surface hardness of 350 to 800 (kgf / mm 2 ) on the surface of the slider facing the magnetic recording medium.
Has a recess with a depth of several tens to 1000 Å as compared with the phase having a surface hardness of 600 to 1000 (kgf / mm 2 ), and / or a surface roughness curve in a contact type surface roughness meter at a distance of 55 μm. A floating magnetic head having an average of 1.5 or more, preferably 2 or more recesses with a depth of 50 Å or more on the top.
JP33469491A 1991-12-18 1991-12-18 Floating magnetic head Expired - Fee Related JP3237154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33469491A JP3237154B2 (en) 1991-12-18 1991-12-18 Floating magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33469491A JP3237154B2 (en) 1991-12-18 1991-12-18 Floating magnetic head

Publications (2)

Publication Number Publication Date
JPH05166319A true JPH05166319A (en) 1993-07-02
JP3237154B2 JP3237154B2 (en) 2001-12-10

Family

ID=18280178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33469491A Expired - Fee Related JP3237154B2 (en) 1991-12-18 1991-12-18 Floating magnetic head

Country Status (1)

Country Link
JP (1) JP3237154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404772B2 (en) 1992-10-22 2003-05-12 松下電器産業株式会社 Manufacturing method of floating magnetic head

Also Published As

Publication number Publication date
JP3237154B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US5673156A (en) Hard disk drive system having virtual contact recording
JPH01251308A (en) Floating magnetic head and its manufacture
JP2543265B2 (en) Magnetic disk
EP0583989A2 (en) Slider for a magnetic head
JPH0660368A (en) Magnetic recording medium and manufacturing method thereof
JPH0795369B2 (en) Perpendicular magnetic recording medium
JPWO1999046765A1 (en) Magnetic recording medium and magnetic storage device
JP3237154B2 (en) Floating magnetic head
JP3012668B2 (en) Floating magnetic head
JPH05166321A (en) Production of floating type magnetic head
JPH05166320A (en) Floating magnetic head slider material and floating magnetic head using the same
JP2982357B2 (en) Ceramic composition for floating magnetic head slider and floating magnetic head using the same
JPH0823935B2 (en) Thin film magnetic recording medium
JPH02281485A (en) Floating type magnetic head and production thereof
JPH06243451A (en) Magnetic recording medium and magnetic recording device
JP2534014B2 (en) Floating magnetic head
JP3287063B2 (en) Ceramic material for floating magnetic head and floating magnetic head using the same
JP3404772B2 (en) Manufacturing method of floating magnetic head
JPH0644547A (en) Floating type magnetic head
JPH02310869A (en) Production of floating type magnetic head
JP3051851B2 (en) Substrate for magnetic disk
JPH07272263A (en) Magnetic disk
JPH06325342A (en) Magnetic recording medium
JPH02310870A (en) Production of floating type magnetic head
JPH076360A (en) Magnetic recording medium and manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees