JPH05166237A - Magneto-optical head device - Google Patents

Magneto-optical head device

Info

Publication number
JPH05166237A
JPH05166237A JP3333754A JP33375491A JPH05166237A JP H05166237 A JPH05166237 A JP H05166237A JP 3333754 A JP3333754 A JP 3333754A JP 33375491 A JP33375491 A JP 33375491A JP H05166237 A JPH05166237 A JP H05166237A
Authority
JP
Japan
Prior art keywords
light
magneto
polarization
order
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3333754A
Other languages
Japanese (ja)
Other versions
JP3018689B2 (en
Inventor
Ryuichi Katayama
龍一 片山
Yutaka Yamanaka
豊 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3333754A priority Critical patent/JP3018689B2/en
Priority to DE69223124T priority patent/DE69223124T2/en
Priority to EP92121587A priority patent/EP0547624B1/en
Publication of JPH05166237A publication Critical patent/JPH05166237A/en
Priority to US08/377,614 priority patent/US5453963A/en
Application granted granted Critical
Publication of JP3018689B2 publication Critical patent/JP3018689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To simultaneously satisfy two conditions of the simple constitution of an electric circuit and the prevention of the deterioration of regenerative C/N in a magneto-optical head device using a diffraction element for detecting an error signal or an information signal. CONSTITUTION:A reflected beam from a disk 5 is separated to three beams of zero-order light and + or -1st-order diffracted light by a polarization property simple grating 34 having polarization dependency in diffraction efficiency and further, respective light beams are separated to three beams of the zero-order light and the + or -1st-order diffracted light by a nonpolarization hologram 35 having no polarization dependency in the diffraction efficiency. The error signal is detected by using a part of beams separated by the nonpolarization hologram 35 between the zero-order light of the polarization property simple grating 34. On the other hand, the information signal is detected from the difference between the remaining light beam separated by the nonpolarization hologram 35 among the zero-order light of the polarization property simple grating 34 and the + or -1st diffracted light of the polarization property simple grating 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気ディスクに情報
の記録,再生,あるいは消去を行うための光磁気ヘッド
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical head device for recording, reproducing or erasing information on a magneto-optical disk.

【0002】[0002]

【従来の技術】近年、光磁気ヘッド装置の小型,低価格
化を目的として、誤差信号検出や情報信号検出に回折素
子を用いた構成が提案されている。
2. Description of the Related Art Recently, a structure using a diffraction element for detecting an error signal and an information signal has been proposed for the purpose of reducing the size and cost of a magneto-optical head device.

【0003】図9に回折素子を用いた従来の光磁気ヘッ
ド装置の構成例を示す(例えば特開平3−29137号
公報参照)。光源の半導体レーザ1からの出射光はコリ
メータレンズ2で平行光に変換され、ビームスプリッタ
3を透過したのち、対物レンズ4により、光磁気記録媒
体であるディスク5上に集光される。ディスク5からの
反射光は、対物レンズ4で再び平行光に変換されたの
ち、ビームスプリッタ3で反射され、集光光学系外に分
離される。この光は、レンズ6で収束光に変換されたの
ち、回折素子である偏光性ホログラム7に入射する。偏
光性ホログラム7からの透過光(0次光)および±1次
回折光は、共通の光検出器8で受光される。 偏光性ホ
ログラム7は、図10に示すように、格子方向の異なる
4つの領域9〜12に分割されている。また、基板の光
学軸13の方向は、入射光の偏光方向に対し約45°に
設定されている。
FIG. 9 shows a configuration example of a conventional magneto-optical head device using a diffraction element (see, for example, Japanese Patent Laid-Open No. 3-29137). The light emitted from the semiconductor laser 1 of the light source is converted into parallel light by the collimator lens 2, transmitted through the beam splitter 3, and then focused by the objective lens 4 on the disk 5 which is a magneto-optical recording medium. The reflected light from the disk 5 is converted into parallel light again by the objective lens 4 and then reflected by the beam splitter 3 to be separated outside the condensing optical system. This light is converted into convergent light by the lens 6, and then enters the polarization hologram 7 which is a diffraction element. The transmitted light (0th order light) and the ± 1st order diffracted lights from the polarization hologram 7 are received by the common photodetector 8. The polarization hologram 7 is divided into four regions 9 to 12 having different lattice directions, as shown in FIG. The direction of the optical axis 13 of the substrate is set to about 45 ° with respect to the polarization direction of incident light.

【0004】図11に偏光性ホログラム7の断面形状を
示す。複屈折性を有するニオブ酸リチウム基板14上
に、プロトン交換領域15および位相補償膜16から成
る二層の回折格子が形成されている。位相補償膜16と
しては、例えばNb2 5 が用いられる。回折格子のラ
イン部とスペース部の位相差は、光学軸13に垂直な偏
光成分(常光)に対しては0、光学軸13に平行な偏光
成分(異常光)に対してはπに設定されている。従っ
て、入射光の常光成分は回折されずに全て透過し、異常
光成分は透過せずに全て回折される。
FIG. 11 shows a sectional shape of the polarization hologram 7. On a lithium niobate substrate 14 having birefringence, a two-layer diffraction grating composed of a proton exchange region 15 and a phase compensation film 16 is formed. As the phase compensation film 16, for example, Nb 2 O 5 is used. The phase difference between the line portion and the space portion of the diffraction grating is set to 0 for the polarization component (ordinary ray) perpendicular to the optical axis 13 and π for the polarization component (extraordinary ray) parallel to the optical axis 13. ing. Therefore, all the ordinary components of the incident light are transmitted without being diffracted, and all the extraordinary components are diffracted without being transmitted.

【0005】図12に光検出器8の構成と、光検出器8
上の光スポット17〜25の形状を示す。(a)はディ
スク5が対物レンズ4に近すぎる場合、(b)はディス
ク5が対物レンズ4の焦点に正しく位置している場合、
(c)はディスク5が対物レンズ4から遠すぎる場合を
それぞれ示している。光検出器8は、8つの受光部26
〜33に分かれている。光スポット17は偏光性ホログ
ラム7の0次光(常光成分)であり、受光部26で受光
される。光スポット18〜21は、偏光性ホログラム7
の+1次回折光(異常光成分)であり、領域9〜12で
の回折光がそれぞれ光スポット18,19,20,21
に対応している。図の(b)では、光スポット18は受
光部27,28の分割線上、光スポット19は受光部2
9,30の分割線上にそれぞれ集光される。また、光ス
ポット20は受光部31、光スポット21は受光部32
でそれぞれ受光される。光スポット22〜25は、偏光
性ホログラム7の−1次回折光(異常光成分)であり、
領域9〜12での回折光がそれぞれ光スポット23,2
2,25,24に対応している。4つの光スポットは全
て受光部33で受光される。
FIG. 12 shows the structure of the photodetector 8 and the photodetector 8.
The shape of the upper light spots 17-25 is shown. (A) shows that the disc 5 is too close to the objective lens 4, (b) shows that the disc 5 is correctly positioned at the focal point of the objective lens 4,
(C) shows the case where the disk 5 is too far from the objective lens 4. The photodetector 8 has eight light receiving parts 26.
It is divided into ~ 33. The light spot 17 is the 0th order light (ordinary light component) of the polarization hologram 7 and is received by the light receiving unit 26. The light spots 18 to 21 are polarized holograms 7.
+ 1st order diffracted light (extraordinary light component), and the diffracted light in regions 9 to 12 are light spots 18, 19, 20, 21 respectively.
It corresponds to. In (b) of the figure, the light spot 18 is on the dividing line of the light receiving portions 27 and 28, and the light spot 19 is the light receiving portion 2.
It is condensed on each of the dividing lines of 9 and 30. Further, the light spot 20 is the light receiving portion 31, and the light spot 21 is the light receiving portion 32.
Are received respectively. The light spots 22 to 25 are the −1st order diffracted light (extraordinary light component) of the polarization hologram 7,
The diffracted lights in the regions 9 to 12 are the light spots 23 and 2 respectively.
It corresponds to 2, 25, 24. All four light spots are received by the light receiving unit 33.

【0006】受光部26〜33からの出力をそれぞれV
(26)〜V(33)で表わすと、フォーカス誤差信号
はフーコー法の原理により、(V(27)+V(3
0))−(V(28)+V(29))から得ることがで
きる。また、トラック誤差信号はプッシュプル法の原理
により、V(31)−V(32)から得ることができ
る。一方、情報信号は差動検出法の原理により、0次光
と±1次回折光の差であるV(26)−(V(27)+
V(28)+V(29)+V(30)+V(31)+V
(32)+V(33))、または0次光と−1次回折光
の差であるV(26)−V(33)から得ることができ
る。
Outputs from the light receiving portions 26 to 33 are respectively V
When expressed by (26) to V (33), the focus error signal is (V (27) + V (3
0))-(V (28) + V (29)). Further, the track error signal can be obtained from V (31) -V (32) by the push-pull method principle. On the other hand, the information signal is V (26) − (V (27) +, which is the difference between the 0th-order light and the ± 1st-order diffracted lights, due to the principle of the differential detection method.
V (28) + V (29) + V (30) + V (31) + V
(32) + V (33)) or V (26) −V (33) which is the difference between the 0th order light and the −1st order diffracted light.

【0007】[0007]

【発明が解決しようとする課題】偏光性ホログラム7に
おける常光成分の透過率は理論的に100%、異常光成
分の±1次回折効率は理論的にそれぞれ40.5%であ
る。一方、差動検出法において、半導体レーザの強度変
動やディスクの反射率変動に起因する同相ノイズを抑圧
するには、情報信号検出に用いる常光成分と異常光成分
の光量がほぼ等しい必要がある。
The transmittance of the ordinary light component in the polarization hologram 7 is theoretically 100%, and the ± 1st order diffraction efficiency of the extraordinary light component is theoretically 40.5%. On the other hand, in the differential detection method, in order to suppress the in-phase noise caused by the variation in the intensity of the semiconductor laser and the variation in the reflectance of the disk, it is necessary that the amounts of the ordinary light component and the extraordinary light component used for detecting the information signal are substantially equal.

【0008】情報信号を0次光と±1次回折光の差から
得る方式では、常光成分と異常光成分の光量比は10
0:81とややアンバランスになるが、同相ノイズはか
なり抑圧できる。しかしこの方式では、+1次回折光を
誤差信号検出と情報信号検出の両方に用いるため、二種
類の信号を電気回路上で分離する必要があり、電気回路
の構成が複雑になる。
In the system in which the information signal is obtained from the difference between the 0th order light and the ± 1st order diffracted lights, the light quantity ratio between the ordinary light component and the extraordinary light component is 10
It is slightly unbalanced at 0:81, but in-phase noise can be suppressed considerably. However, in this method, the + 1st order diffracted light is used for both the error signal detection and the information signal detection, so that it is necessary to separate two types of signals on the electric circuit, which complicates the structure of the electric circuit.

【0009】情報信号を0次光と−1次回折光の差から
得る方式では、誤差信号検出と情報信号検出に別々の光
を用いるため、二種類の信号を電気回路上で分離する必
要はない。しかしこの方式では、常光成分と異常光成分
の光量比は100:40.5とかなりアンバランスにな
り、このままでは同相ノイズを十分に抑圧できない。偏
光性ホログラム7の光学軸13の方向と入射光の偏光方
向がなす角度を45°からずらすことにより光量比を
1:1にすることは可能であるが、それに伴って今度は
キャリアレベルが低下するため、いずれにしても結果と
して再生C/Nの低下が生じる。
In the method in which the information signal is obtained from the difference between the 0th-order light and the -1st-order diffracted light, separate lights are used for error signal detection and information signal detection, so that it is not necessary to separate two types of signals on an electric circuit. .. However, in this method, the light quantity ratio between the ordinary light component and the extraordinary light component is 100: 40.5, which is a considerable unbalance, and in this state, in-phase noise cannot be sufficiently suppressed. It is possible to make the light amount ratio 1: 1 by shifting the angle formed by the direction of the optical axis 13 of the polarization hologram 7 and the polarization direction of the incident light from 45 °, but with this, the carrier level is lowered this time. Therefore, in any case, as a result, the reproduction C / N decreases.

【0010】このように、従来の光磁気ヘッド装置に
は、電気回路の構成が簡単であり、かつ再生C/Nの低
下が生じないという二つの条件を同時に満たすことがで
きないという課題がある。
As described above, the conventional magneto-optical head device has a problem that the two conditions that the electric circuit has a simple structure and the reproduction C / N does not decrease cannot be satisfied at the same time.

【0011】本発明の目的は、このような従来の課題を
解決し、二つの条件を同時に満たすことが可能な光磁気
ヘッド装置を提供することにある。
An object of the present invention is to provide a magneto-optical head device which can solve the above-mentioned conventional problems and satisfy two conditions at the same time.

【0012】[0012]

【課題を解決するための手段】本発明の第一の光磁気ヘ
ッド装置は、光源と、この光源からの出射光を光磁気記
録媒体上に集光する集光光学系と、前記光磁気記録媒体
からの反射光を前記集光光学系外に分離する分離手段
と、前記分離手段により分離された光を回折する回折素
子と、この回折素子からの透過光および回折光を受光す
る光検出器を少なくとも有する光磁気ヘッド装置におい
て、前記回折素子は、複屈折性を有する基板上に、回折
効率に偏光依存性を有する回折格子が形成された第一の
回折素子と、等方性の基板上に、回折効率に偏光依存性
を有しない回折格子が形成された第二の回折素子と二枚
で構成されていることを特徴とする。
A first magneto-optical head device of the present invention comprises a light source, a condensing optical system for condensing light emitted from the light source on a magneto-optical recording medium, and the magneto-optical recording. Separation means for separating the reflected light from the medium to the outside of the condensing optical system, a diffraction element for diffracting the light separated by the separation means, and a photodetector for receiving the transmitted light and the diffracted light from the diffraction element. In a magneto-optical head device having at least: a first diffraction element in which a diffraction grating having polarization dependence on diffraction efficiency is formed on a substrate having birefringence, and the diffraction element is on an isotropic substrate. In addition, it is characterized in that the second diffraction element is formed with a second diffraction element in which a diffraction grating having no polarization dependence on the diffraction efficiency is formed.

【0013】本発明の第二の光磁気ヘッド装置は、光源
と、この光源からの出射光を光磁気記録媒体上に集光す
る集光光学系と、前記光磁気記録媒体からの反射光を前
記集光光学系外に分離する分離手段と、前記分離手段に
より分離された光を回折する回折素子と、この回折素子
からの透過光および回折光を受光する光検出器を少なく
とも有する光磁気ヘッド装置において、前記回折素子
は、複屈折性を有する基板の一方の面に、回折効率に偏
光依存性を有する第一の回折格子が形成されており、前
記基板の他方の面に、回折効率に偏光依存性を有しない
第二の回折格子が形成されている構成であることを特徴
とする。
A second magneto-optical head device of the present invention comprises a light source, a condensing optical system for condensing light emitted from the light source onto a magneto-optical recording medium, and reflected light from the magneto-optical recording medium. A magneto-optical head having at least a separating means for separating the light from the condensing optical system, a diffractive element for diffracting the light separated by the separating means, and a photodetector for receiving the transmitted light and the diffracted light from the diffractive element. In the device, in the diffraction element, a first diffraction grating having polarization dependency on diffraction efficiency is formed on one surface of a substrate having birefringence, and the other surface of the substrate has diffraction efficiency. It is characterized in that a second diffraction grating having no polarization dependency is formed.

【0014】[0014]

【作用】本発明の光磁気ヘッド装置においては、光磁気
記録媒体からの反射光は、回折効率に偏光依存性を有す
る第一の回折格子により0次光(常光成分)および±1
次回折光(異常光成分)の3つに分離され、回折効率に
偏光依存性を有しない第二の回折格子により、それぞれ
がさらに0次光および±1次回折光の3つに分離され
る。誤差信号は、例えば第一の回折格子の0次光のう
ち、第二の回折格子で分離された一部の光を用いて検出
する。一方、情報信号は、例えば第一の回折格子の0次
光のうち、第二の回折格子で分離された残りの光と、第
一の回折格子の±1次回折光との差から検出する。
In the magneto-optical head device of the present invention, the reflected light from the magneto-optical recording medium is the 0th-order light (ordinary component) and ± 1 by the first diffraction grating having the polarization dependence of the diffraction efficiency.
The second diffracted light (extraordinary light component) is separated into three, and the second diffraction grating, which does not have polarization dependence on the diffraction efficiency, further separates each into three light of 0th order light and ± 1st order diffracted light. The error signal is detected using, for example, a part of the 0th-order light of the first diffraction grating, which is separated by the second diffraction grating. On the other hand, the information signal is detected, for example, from the difference between the 0th order light of the first diffraction grating and the remaining light separated by the second diffraction grating, and the ± 1st order diffracted light of the first diffraction grating.

【0015】このような構成によれば、誤差信号と情報
信号を電気回路上で分離する必要がなく、電気回路の構
成が簡単になる。また、情報信号検出に用いる常光成分
と異常光成分の光量がほぼ等しくなるように第二の回折
格子の回折効率を設定することにより、キャリアレベル
の低下を伴わずに同相ノイズを抑圧できるため、再生C
/Nの低下も生じない。
With such a structure, it is not necessary to separate the error signal and the information signal on the electric circuit, and the structure of the electric circuit is simplified. Further, by setting the diffraction efficiency of the second diffraction grating so that the light amounts of the ordinary light component and the extraordinary light component used for information signal detection are substantially equal, it is possible to suppress common mode noise without lowering the carrier level. Play C
There is no decrease in / N.

【0016】[0016]

【実施例】以下に図面を参照して本発明の実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1に、本発明の第一の光磁気ヘッド装置
の実施例の構成を示す。ディスク5からの反射光がレン
ズ6で収束光に変換されるまでの構成は図9に示す従来
例と同じであるので、説明は省略する。レンズ6で収束
光に変換された光は、回折効率に偏光依存性を有する第
一の回折素子である偏光性単純格子34に入射し、0次
光および±1次回折光に分離される。これらの光は、回
折効率に偏光依存性を有しない第二の回折素子である無
偏光ホログラム35に入射し、それぞれがさらに0次光
および±1次回折光に分離される。これらの光は、共通
の光検出器36で受光される。
FIG. 1 shows the configuration of an embodiment of the first magneto-optical head device of the present invention. The structure until the reflected light from the disk 5 is converted into the convergent light by the lens 6 is the same as that of the conventional example shown in FIG. The light converted into the convergent light by the lens 6 enters the polarizing simple grating 34, which is the first diffractive element having the polarization dependence of the diffraction efficiency, and is separated into the 0th-order light and the ± 1st-order diffracted lights. These lights are incident on the non-polarization hologram 35 which is the second diffractive element having no polarization dependency on the diffraction efficiency, and are further separated into 0th-order light and ± 1st-order diffracted lights. These lights are received by the common photodetector 36.

【0018】偏光性単純格子34は、図2に示すよう
に、全面が単一の領域で構成されている。また、基板の
光学軸13の方向は、入射光の偏光方向に対し約45°
に設定されている。
As shown in FIG. 2, the polarizing simple grating 34 has a single area on the entire surface. The direction of the optical axis 13 of the substrate is about 45 ° with respect to the polarization direction of the incident light.
Is set to.

【0019】図3に偏光性単純格子34の断面形状を示
す。複屈折性を有するニオブ酸リチウム基板14上に、
プロトン交換領域15および位相補償膜16から成る二
層の回折格子が形成されている。位相補償膜16として
は、例えばNb2 5 が用いられる。回折格子のライン
部とスペース部の位相差は、光学軸13に垂直な偏光成
分(常光)に対しては0、光学軸13に平行な偏光成分
(異常光)に対してはπに設定されている。従って、入
射光の常光成分は回折されずに全て透過し、異常光成分
は透過せずに全て回折される。
FIG. 3 shows a sectional shape of the polarizing simple grating 34. On the lithium niobate substrate 14 having birefringence,
A two-layer diffraction grating including the proton exchange region 15 and the phase compensation film 16 is formed. As the phase compensation film 16, for example, Nb 2 O 5 is used. The phase difference between the line portion and the space portion of the diffraction grating is set to 0 for the polarization component (ordinary ray) perpendicular to the optical axis 13 and π for the polarization component (extraordinary ray) parallel to the optical axis 13. ing. Therefore, all the ordinary components of the incident light are transmitted without being diffracted, and all the extraordinary components are diffracted without being transmitted.

【0020】無偏光ホログラム35は、図4に示すよう
に、格子方向の異なる4つの領域9〜12に分割されて
いる。(a)は図10に示す偏光性ホログラム7と同様
に、全体が領域9,10に二分割され、これに目玉状の
領域11,12が付加された構成、(b)は全体が2本
の対角線で均等に領域9〜12に四分割された構成であ
る。
As shown in FIG. 4, the non-polarization hologram 35 is divided into four regions 9 to 12 having different lattice directions. Similar to the polarization hologram 7 shown in FIG. 10, (a) is a structure in which the whole is divided into two regions 9 and 10, and eyeball-shaped regions 11 and 12 are added thereto, and (b) is two in total. It is a configuration in which it is divided into four areas 9 to 12 evenly by the diagonal line.

【0021】図5に無偏光ホログラム35の断面形状を
示す。等方性のガラス基板37上に、誘電体膜38から
成る回折格子が形成されている。誘電体膜38として
は、例えばSiO2 が用いられる。回折格子のライン部
とスペース部の位相差は、誘電体膜38の厚さを変える
ことにより自由に設定できる。入射光は偏光方向に関係
なく、位相差から決まる回折効率に従って透過光と回折
光に分離される。
FIG. 5 shows the cross-sectional shape of the non-polarization hologram 35. A diffraction grating made of a dielectric film 38 is formed on an isotropic glass substrate 37. As the dielectric film 38, for example, SiO 2 is used. The phase difference between the line portion and the space portion of the diffraction grating can be freely set by changing the thickness of the dielectric film 38. Incident light is separated into transmitted light and diffracted light according to the diffraction efficiency determined by the phase difference, regardless of the polarization direction.

【0022】図6に光検出器36の構成と、光検出器3
6上の光スポット39〜65の配置を示す。この図はデ
ィスク5が対物レンズ4の焦点に正しく位置している場
合を示している。光検出器36は、14個の受光部66
〜79に分かれている。
FIG. 6 shows the structure of the photodetector 36 and the photodetector 3.
6 shows the arrangement of light spots 39-65 on No. 6. This figure shows the case where the disk 5 is correctly positioned at the focal point of the objective lens 4. The photodetector 36 includes 14 light receiving units 66.
It is divided into ~ 79.

【0023】光スポット39は、偏光性単純格子34の
0次光(常光成分)かつ無偏光ホログラム35の0次光
であり、受光部66で受光される。光スポット40〜4
3は、偏光性単純格子34の0次光(常光成分)かつ無
偏光ホログラム35の+1次回折光であり、領域9〜1
2での回折光がそれぞれ光スポット40,41,42,
43に対応している。光スポット40は受光部67,6
8の分割線上、光スポット41は受光部69,70の分
割線上にそれぞれ集光される。また、光スポット42は
受光部71、光スポット43は受光部72でそれぞれ受
光される。光スポット44〜47は、偏光性単純格子3
4の0次光(常光成分)かつ無偏光ホログラム35の−
1次回折光であり、領域9〜12での回折光がそれぞれ
光スポット45,44,47,46に対応している。4
つの光スポットは全て受光部73で受光される。
The light spot 39 is the 0th order light (ordinary component) of the polarizing simple grating 34 and the 0th order light of the non-polarization hologram 35, and is received by the light receiving section 66. Light spot 40-4
Reference numeral 3 denotes the 0th-order light (ordinary light component) of the polarizing simple grating 34 and the + 1st-order diffracted light of the non-polarization hologram 35.
The diffracted light at 2 is the light spot 40, 41, 42,
It corresponds to 43. The light spot 40 is the light receiving portion 67, 6
The light spot 41 is focused on the dividing line of 8 and on the dividing line of the light receiving units 69 and 70. The light spot 42 is received by the light receiving portion 71, and the light spot 43 is received by the light receiving portion 72. The light spots 44 to 47 are the polarization simple grating 3
No. 4 zero-order light (ordinary component) and non-polarization hologram 35 −
The first-order diffracted light, and the diffracted lights in the regions 9 to 12 correspond to the light spots 45, 44, 47, and 46, respectively. Four
All one light spots are received by the light receiving unit 73.

【0024】光スポット48は、偏光性単純格子34の
+1次回折光(異常光成分)かつ無偏光ホログラム35
の0次光であり、受光部74で受光される。光スポット
49〜52は、偏光性単純格子34の+1次回折光(異
常光成分)かつ無偏光ホログラム35の+1次回折光で
あり、領域9〜12での回折光がそれぞれ光スポット4
9,50,51,52に対応している。4つの光スポッ
トは全て受光部75で受光される。光スポット53〜5
6は、偏光性単純格子34の+1次回折光(異常光成
分)かつ無偏光ホログラム35の−1次回折光であり、
領域9〜12での回折光がそれぞれ光スポット54,5
3,56,55に対応している。4つの光スポットは全
て受光部76で受光される。
The light spot 48 is the + 1st order diffracted light (extraordinary light component) of the polarizing simple grating 34 and the non-polarization hologram 35.
And is received by the light receiving section 74. The light spots 49 to 52 are the + 1st order diffracted light (extraordinary light component) of the polarizing simple grating 34 and the + 1st order diffracted light of the non-polarization hologram 35, and the diffracted lights in the regions 9 to 12 are the light spots 4 respectively.
It corresponds to 9, 50, 51 and 52. All four light spots are received by the light receiving unit 75. Light spots 53-5
Reference numeral 6 denotes the + 1st-order diffracted light (extraordinary light component) of the polarizing simple grating 34 and the -1st-order diffracted light of the non-polarization hologram 35,
The diffracted lights in the regions 9 to 12 are the light spots 54 and 5 respectively.
It corresponds to 3,56,55. All four light spots are received by the light receiving unit 76.

【0025】光スポット57は、偏光性単純格子34の
−1次回折光(異常光成分)かつ無偏光ホログラム35
の0次光であり、受光部77で受光される。光スポット
58〜61は、偏光性単純格子34の−1次回折光(異
常光成分)かつ無偏光ホログラム35の+1次回折光で
あり、領域9〜12での回折光がそれぞれ光スポット5
8,59,60,61に対応している。4つの光スポッ
トは全て受光部78で受光される。光スポット62〜6
5は、偏光性単純格子34の−1次回折光(異常光成
分)かつ無偏光ホログラム35の−1次回折光であり、
領域9〜12での回折光がそれぞれ光スポット63,6
2,65,64に対応している。4つの光スポットは全
て受光部79で受光される。
The light spot 57 is the −1st order diffracted light (extraordinary light component) of the polarizing simple grating 34 and the non-polarization hologram 35.
Is the 0th order light and is received by the light receiving unit 77. The light spots 58 to 61 are the −1st order diffracted light (extraordinary light component) of the polarizing simple grating 34 and the + 1st order diffracted light of the non-polarization hologram 35, and the diffracted light in the regions 9 to 12 is the light spot 5 respectively.
It corresponds to 8, 59, 60, 61. All four light spots are received by the light receiving unit 78. Light spots 62-6
Reference numeral 5 denotes the -1st-order diffracted light (abnormal light component) of the polarizing simple grating 34 and the -1st-order diffracted light of the non-polarization hologram 35,
The diffracted lights in the regions 9 to 12 are light spots 63 and 6 respectively.
It corresponds to 2,65,64. All four light spots are received by the light receiving unit 79.

【0026】受光部66〜79からの出力をそれぞれV
(66)〜V(79)で表わすと、フォーカス誤差信号
はフーコー法の原理により、(V(67)+V(7
0))−(V(68)+V(69))から得ることがで
きる。また、トラック誤差信号はプッシュプル法の原理
により、V(71)−V(72)から得ることができ
る。一方、情報信号は差動検出法の原理により、偏光性
単純格子34の0次光のうち無偏光ホログラム35の0
次光と−1次回折光を足したものと、偏光性単純格子3
4の±1次回折光のうち無偏光ホログラム35の0次光
と±1次回折光を足したものとの差である(V(66)
+V(73))−(V(74)+V(75)+V(7
6)+V(77)+V(78)+V(79))から得る
ことができる。この場合、受光部66と73、受光部7
4〜76、受光部77〜79をそれぞれ一体化すること
も可能である。
Outputs from the light receiving units 66 to 79 are respectively set to V
When expressed by (66) to V (79), the focus error signal is (V (67) + V (7
0))-(V (68) + V (69)). Further, the track error signal can be obtained from V (71) -V (72) by the push-pull method principle. On the other hand, according to the principle of the differential detection method, the information signal is 0 of the non-polarization hologram 35 in the 0th order light of the polarization simple grating 34.
Addition of the 2nd-order light and the -1st-order diffracted light, and the polarizing simple grating 3
This is the difference between the 0th-order light of the non-polarization hologram 35 and the ± 1st-order diffracted light of the ± 1st-order diffracted light of 4 (V (66)).
+ V (73))-(V (74) + V (75) + V (7
6) + V (77) + V (78) + V (79)). In this case, the light receiving units 66 and 73, the light receiving unit 7
It is also possible to integrate 4 to 76 and the light receiving portions 77 to 79, respectively.

【0027】本実施例において、偏光性単純格子34に
おける常光成分の透過率は理論的に100%、異常光成
分の±1次回折効率は理論的にそれぞれ40.5%であ
る。ここで、無偏光ホログラム35のライン部とスペー
ス部の位相差を例えば81.9°に設定すると、透過率
は理論的に57.0%、±1次回折効率は理論的にそれ
ぞれ17.4%となる。従って、偏光性単純格子34の
0次光(常光成分)のうち無偏光ホログラム35の0次
光と−1次回折光を足したものの効率と、偏光性単純格
子34の±1次回折光(異常光成分)のうち無偏光ホロ
グラム35の0次光と±1次回折光を足したものの効率
は、共に74.4%となる。このように、情報信号検出
に用いる常光成分と異常光成分の光量を等しくすること
により、キャリアレベルの低下を伴わずに同相ノイズを
抑圧できるため、再生C/Nの低下は生じない。
In this embodiment, the transmittance of the ordinary light component in the polarizing simple grating 34 is theoretically 100%, and the ± 1st order diffraction efficiency of the extraordinary light component is theoretically 40.5%. Here, when the phase difference between the line portion and the space portion of the non-polarization hologram 35 is set to 81.9 °, for example, the transmittance is theoretically 57.0%, and the ± 1st-order diffraction efficiencies are theoretically 17.4%, respectively. %. Therefore, of the 0th-order light (ordinary light component) of the polarizing simple grating 34, the efficiency of the sum of the 0th-order light and the -1st-order diffracted light of the non-polarization hologram 35, and the ± 1st-order diffracted light (extraordinary light) Among the components, the efficiency of both the 0th-order light and the ± 1st-order diffracted lights of the non-polarization hologram 35 is 74.4%. In this way, by making the light amounts of the ordinary light component and the extraordinary light component used for detecting the information signal equal, it is possible to suppress the in-phase noise without lowering the carrier level, so that the reproduction C / N does not decrease.

【0028】また、本実施例の方式では、誤差信号検出
と情報信号検出に別々の光を用いるため、二種類の信号
を電気回路上で分離する必要がなく、電気回路の構成が
簡単になる。
Further, in the method of this embodiment, since separate light is used for error signal detection and information signal detection, it is not necessary to separate two types of signals on the electric circuit, and the construction of the electric circuit is simplified. ..

【0029】図1には、ビームスプリッタ3と光検出器
36の間に、レンズ6、偏光性単純格子34、無偏光ホ
ログラム35がこの順に配置されている構成を示した
が、レンズ6、偏光性単純格子34、無偏光ホログラム
35はどの順に配置されていても構わない。また、ビー
ムスプリッタ3、レンズ6、偏光性単純格子34、無偏
光ホログラム35のうち二つ以上の素子を、接着により
一体化することも可能である。
In FIG. 1, the lens 6, the polarizing simple grating 34, and the non-polarization hologram 35 are arranged in this order between the beam splitter 3 and the photodetector 36. The simple grating 34 and the non-polarization hologram 35 may be arranged in any order. It is also possible to integrate two or more elements of the beam splitter 3, the lens 6, the polarization simple grating 34, and the non-polarization hologram 35 by adhesion.

【0030】図7に、本発明の第二の光磁気ヘッド装置
の実施例の構成を示す。ディスク5からの反射光がレン
ズ6で収束光に変換されるまでの構成は図9に示す従来
例と同じであるので、説明は省略する。本実施例におい
ては、回折素子として、基板の入射側に偏光性単純格子
面80、基板の出射側に無偏光ホログラム面81がそれ
ぞれ形成されたものを用いる。レンズ6で収束光に変換
された光は、回折効率に偏光依存性を有する第一の回折
格子である偏光性単純格子面80において、0次光およ
び±1次回折光に分離される。これらの光は、回折効率
に偏光依存性を有しない第二の回折格子である無偏光ホ
ログラム面81において、それぞれがさらに0次光およ
び±1次回折光に分離される。これらの光は、共通の光
検出器36で受光される。
FIG. 7 shows the configuration of an embodiment of the second magneto-optical head device of the present invention. The structure until the reflected light from the disk 5 is converted into the convergent light by the lens 6 is the same as that of the conventional example shown in FIG. In this embodiment, as the diffractive element, an element in which a polarizing simple grating surface 80 is formed on the entrance side of the substrate and a non-polarization hologram surface 81 is formed on the exit side of the substrate is used. The light converted into the convergent light by the lens 6 is separated into the 0th-order light and the ± 1st-order diffracted lights at the polarizing simple grating surface 80 which is the first diffraction grating having the polarization dependence of the diffraction efficiency. These lights are further separated into 0th-order light and ± 1st-order diffracted lights on the non-polarization hologram surface 81 which is the second diffraction grating having no polarization dependence on the diffraction efficiency. These lights are received by the common photodetector 36.

【0031】偏光性単純格子面80は、図2に示す偏光
性単純格子34と同様に、全面が単一の領域で構成され
ている。また、基板の光学軸13の方向は、入射光の偏
光方向に対し約45°に設定されている。
Similar to the polarizing simple grating 34 shown in FIG. 2, the polarizing simple grating surface 80 is entirely composed of a single region. The direction of the optical axis 13 of the substrate is set to about 45 ° with respect to the polarization direction of incident light.

【0032】無偏光ホログラム面81は、図4に示す無
偏光ホログラム35と同様に、格子方向の異なる4つの
領域9〜12に分割されている。(a)は全体が領域
9,10に二分割され、これに目玉状の領域11,12
が付加された構成、(b)は全体が2本の対角線で均等
に領域9〜12に四分割された構成である。
The non-polarization hologram surface 81 is divided into four regions 9 to 12 having different lattice directions, like the non-polarization hologram 35 shown in FIG. (A) is wholly divided into regions 9 and 10, and eyeball-shaped regions 11 and 12 are divided into two regions.
(B) is a configuration in which the whole is equally divided into four regions 9 to 12 by two diagonal lines.

【0033】図8に、本実施例に用いる回折素子の断面
形状を示す。複屈折性を有するニオブ酸リチウム基板1
4の入射側には、プロトン交換領域15および位相補償
膜16から成る二層の回折格子である偏光性単純格子面
80が形成されている。位相補償膜16としては、例え
ばNb2 5 が用いられる。回折格子のライン部とスペ
ース部の位相差は、光学軸13に垂直な偏光成分(常
光)に対しては0、光学軸13に平行な偏光成分(異常
光)に対してはπに設定されている。従って、入射光の
常光成分は回折されずに全て透過し、異常光成分は透過
せずに全て回折される。一方、複屈折性を有するニオブ
酸リチウム基板14の出射側には、誘電体膜82から成
る回折格子である無偏光ホログラム面81が形成されて
いる。誘電体膜82としては、例えばNb2 5 が用い
られる。回折格子のライン部とスペース部の位相差は、
誘電体膜82の厚さを変えることにより自由に設定でき
る。入射光は偏光方向に関係なく、位相差から決まる回
折効率に従って透過光と回折光に分離される。
FIG. 8 shows the sectional shape of the diffractive element used in this embodiment. Lithium niobate substrate having birefringence 1
On the incident side of No. 4, a polarizing simple grating plane 80 which is a two-layer diffraction grating composed of the proton exchange region 15 and the phase compensation film 16 is formed. As the phase compensation film 16, for example, Nb 2 O 5 is used. The phase difference between the line portion and the space portion of the diffraction grating is set to 0 for the polarization component (ordinary ray) perpendicular to the optical axis 13 and π for the polarization component (extraordinary ray) parallel to the optical axis 13. ing. Therefore, all the ordinary components of the incident light are transmitted without being diffracted, and all the extraordinary components are diffracted without being transmitted. On the other hand, a non-polarization hologram surface 81 which is a diffraction grating made of a dielectric film 82 is formed on the exit side of the lithium niobate substrate 14 having birefringence. As the dielectric film 82, for example, Nb 2 O 5 is used. The phase difference between the line part and the space part of the diffraction grating is
It can be freely set by changing the thickness of the dielectric film 82. Incident light is separated into transmitted light and diffracted light according to the diffraction efficiency determined by the phase difference, regardless of the polarization direction.

【0034】光検出器36の構成と、光検出器36上の
光スポットの配置に関しては、本発明の第一の光磁気ヘ
ッド装置の実施例と同じく図6に示す通りであるので、
説明は省略する。また、フォーカス誤差信号、トラック
誤差信号、情報信号の検出方法に関しても、本発明の第
一の光磁気ヘッド装置の実施例と同じであるので、説明
は省略する。
The configuration of the photodetector 36 and the arrangement of the light spots on the photodetector 36 are as shown in FIG. 6 as in the first embodiment of the magneto-optical head device of the present invention.
The description is omitted. The method of detecting the focus error signal, the track error signal, and the information signal is also the same as in the first embodiment of the magneto-optical head device of the present invention, and therefore its explanation is omitted.

【0035】本実施例においても、本発明の第一の光磁
気ヘッド装置の実施例と同様に、情報信号検出に用いる
常光成分と異常光成分の光量を等しくすることにより、
キャリアレベルの低下を伴わずに同相ノイズを抑圧でき
るため、再生C/Nの低下は生じない。また、誤差信号
検出と情報信号検出に別々の光を用いるため、二種類の
信号を電気回路上で分離する必要がなく、電気回路の構
成が簡単になる。
Also in this embodiment, as in the first magneto-optical head device of the present invention, by making the light amounts of the ordinary light component and the extraordinary light component used for detecting the information signal equal,
Since the common-mode noise can be suppressed without lowering the carrier level, the reproduction C / N does not decrease. Further, since different lights are used for error signal detection and information signal detection, it is not necessary to separate the two types of signals on the electric circuit, and the structure of the electric circuit is simplified.

【0036】図7には、回折素子として、基板の入射側
に偏光性単純格子面80、基板の出射側に無偏光ホログ
ラム面81がそれぞれ形成されたものを示したが、偏光
性単純格子面80と無偏光ホログラム面81の順序を逆
にしても構わない。さらに、レンズ6と回折素子の順序
を逆にしても構わない。また、ビームスプリッタ3、レ
ンズ6、回折素子のうち二つ以上の素子を、接着により
一体化することも可能である。
FIG. 7 shows a diffractive element in which a polarizing simple grating surface 80 is formed on the incident side of the substrate and an unpolarized hologram surface 81 is formed on the emitting side of the substrate. The order of 80 and the non-polarization hologram surface 81 may be reversed. Furthermore, the order of the lens 6 and the diffraction element may be reversed. It is also possible to integrate two or more of the beam splitter 3, the lens 6, and the diffractive element by bonding.

【0037】[0037]

【発明の効果】以上に述べたように、本発明の光磁気ヘ
ッド装置においては、誤差信号と情報信号を電気回路上
で分離する必要がなく、電気回路の構成が簡単になる。
また、情報信号検出に用いる常光成分と異常光成分の光
量を等しくすることにより、キャリアレベルの低下を伴
わずに同相ノイズを抑圧できるため、再生C/Nの低下
も生じない。すなわち、本発明によれば、従来の光磁気
ヘッド装置では実現できなかった、上記二つの条件を同
時に満たすことが可能な光磁気ヘッド装置を得ることが
できる。
As described above, in the magneto-optical head device of the present invention, it is not necessary to separate the error signal and the information signal on the electric circuit, and the electric circuit configuration is simplified.
Further, by making the light amounts of the ordinary light component and the extraordinary light component used for the information signal detection equal, it is possible to suppress the in-phase noise without lowering the carrier level, so that the reproduction C / N does not decrease. That is, according to the present invention, it is possible to obtain a magneto-optical head device capable of simultaneously satisfying the above two conditions, which cannot be realized by the conventional magneto-optical head device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の光磁気ヘッド装置の実施例の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a first magneto-optical head device of the present invention.

【図2】本発明の第一の光磁気ヘッド装置の実施例に用
いる偏光性単純格子の構成と、基板の光学軸の方向を示
す図である。
FIG. 2 is a diagram showing a configuration of a polarizing simple grating used in an embodiment of a first magneto-optical head device of the present invention and a direction of an optical axis of a substrate.

【図3】本発明の第一の光磁気ヘッド装置の実施例に用
いる偏光性単純格子の断面形状を示す図である。
FIG. 3 is a diagram showing a cross-sectional shape of a polarizing simple grating used in an embodiment of the first magneto-optical head device of the present invention.

【図4】本発明の第一の光磁気ヘッド装置の実施例に用
いる無偏光ホログラムの構成を示す図である。
FIG. 4 is a diagram showing a configuration of a non-polarization hologram used in an embodiment of the first magneto-optical head device of the present invention.

【図5】本発明の第一の光磁気ヘッド装置の実施例に用
いる無偏光ホログラムの断面形状を示す図である。
FIG. 5 is a diagram showing a cross-sectional shape of a non-polarization hologram used in an embodiment of the first magneto-optical head device of the present invention.

【図6】本発明の第一および第二の光磁気ヘッド装置の
実施例に用いる光検出器の構成と、光検出器上の光スポ
ットの配置を示す図である。
FIG. 6 is a diagram showing a configuration of a photodetector used in an embodiment of the first and second magneto-optical head devices of the present invention and an arrangement of light spots on the photodetector.

【図7】本発明の第二の光磁気ヘッド装置の実施例の構
成を示す図である。
FIG. 7 is a diagram showing a configuration of an embodiment of a second magneto-optical head device of the present invention.

【図8】本発明の第二の光磁気ヘッド装置の実施例に用
いる回折素子の断面形状を示す図である。
FIG. 8 is a diagram showing a cross-sectional shape of a diffraction element used in an example of the second magneto-optical head device of the present invention.

【図9】従来の光磁気ヘッド装置の構成例を示す図であ
る。
FIG. 9 is a diagram showing a configuration example of a conventional magneto-optical head device.

【図10】従来の光磁気ヘッド装置に用いる偏光性ホロ
グラムの構成と、基板の光学軸の方向を示す図である。
FIG. 10 is a diagram showing a configuration of a polarization hologram used in a conventional magneto-optical head device and a direction of an optical axis of a substrate.

【図11】従来の光磁気ヘッド装置に用いる偏光性ホロ
グラムの断面形状を示す図である。
FIG. 11 is a diagram showing a cross-sectional shape of a polarization hologram used in a conventional magneto-optical head device.

【図12】従来の光磁気ヘッド装置に用いる光検出器の
構成と、光検出器上の光スポットの形状を示す図であ
る。
FIG. 12 is a diagram showing a configuration of a photodetector used in a conventional magneto-optical head device and a shape of a light spot on the photodetector.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 コリメータレンズ 3 ビームスプリッタ 4 対物レンズ 5 ディスク 6 レンズ 7 偏光性ホログラム 8 光検出器 9〜12 領域 13 光学軸 14 ニオブ酸リチウム基板 15 プロトン交換領域 16 位相補償膜 17〜25 光スポット 26〜33 受光部 34 偏光性単純格子 35 無偏光ホログラム 36 光検出器 37 ガラス基板 38 誘電体膜 39〜65 光スポット 66〜79 受光部 80 偏光性単純格子面 81 無偏光ホログラム面 82 誘電体膜 1 Semiconductor Laser 2 Collimator Lens 3 Beam Splitter 4 Objective Lens 5 Disk 6 Lens 7 Polarizing Hologram 8 Photodetector 9-12 Region 13 Optical Axis 14 Lithium Niobate Substrate 15 Proton Exchange Region 16 Phase Compensation Film 17-25 Light Spot 26 ˜33 Light receiving part 34 Polarizing simple grating 35 Non-polarizing hologram 36 Photodetector 37 Glass substrate 38 Dielectric film 39 to 65 Light spot 66 to 79 Light receiving part 80 Polarizing simple grating surface 81 Non-polarizing hologram surface 82 Dielectric film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源と、この光源からの出射光を光磁気記
録媒体上に集光する集光光学系と、前記光磁気記録媒体
からの反射光を前記集光光学系外に分離する分離手段
と、前記分離手段により分離された光を回折する回折素
子と、この回折素子からの透過光および回折光を受光す
る光検出器を少なくとも有する光磁気ヘッド装置におい
て、前記回折素子は、複屈折性を有する基板上に、回折
効率に偏光依存性を有する回折格子が形成された第一の
回折素子と、等方性の基板上に、回折効率に偏光依存性
を有しない回折格子が形成された第二の回折素子の二枚
で構成されていることを特徴とする光磁気ヘッド装置。
1. A light source, a condensing optical system for condensing light emitted from the light source onto a magneto-optical recording medium, and a separation for separating reflected light from the magneto-optical recording medium outside the condensing optical system. Means, a diffractive element for diffracting the light separated by the separating means, and a photodetector for receiving transmitted light and diffracted light from the diffractive element, wherein the diffractive element is a birefringent element. The first diffractive element has a diffraction grating having polarization dependence on diffraction efficiency, and a diffraction grating having no polarization dependence on diffraction efficiency is formed on an isotropic substrate. And a second diffractive element, which is a magneto-optical head device.
【請求項2】光源と、この光源からの出射光を光磁気記
録媒体上に集光する集光光学系と、前記光磁気記録媒体
からの反射光を前記集光光学系外に分離する分離手段
と、前記分離手段により分離された光を回折する回折素
子と、この回折素子からの透過光および回折光を受光す
る光検出器を少なくとも有する光磁気ヘッド装置におい
て、前記回折素子は、複屈折性を有する基板の一方の面
に、回折効率に偏光依存性を有する第一の回折格子が形
成されており、前記基板の他方の面に、回折効率に偏光
依存性を有しない第二の回折格子が形成されている構成
であることを特徴とする光磁気ヘッド装置。
2. A light source, a condensing optical system that condenses light emitted from the light source onto a magneto-optical recording medium, and a separation that separates reflected light from the magneto-optical recording medium outside the condensing optical system. Means, a diffractive element for diffracting the light separated by the separating means, and a photodetector for receiving transmitted light and diffracted light from the diffractive element, wherein the diffractive element is a birefringent element. A first diffraction grating having a polarization dependence on the diffraction efficiency is formed on one surface of the substrate having an optical property, and a second diffraction grating having no polarization dependence on the diffraction efficiency is formed on the other surface of the substrate. A magneto-optical head device having a structure in which a grating is formed.
JP3333754A 1991-12-18 1991-12-18 Magneto-optical head device Expired - Lifetime JP3018689B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3333754A JP3018689B2 (en) 1991-12-18 1991-12-18 Magneto-optical head device
DE69223124T DE69223124T2 (en) 1991-12-18 1992-12-18 System for magneto-optical head
EP92121587A EP0547624B1 (en) 1991-12-18 1992-12-18 Magneto-optical head system
US08/377,614 US5453963A (en) 1991-12-18 1995-01-25 Magneto-optical head system for detection of error and information signals by diffraction lights

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333754A JP3018689B2 (en) 1991-12-18 1991-12-18 Magneto-optical head device

Publications (2)

Publication Number Publication Date
JPH05166237A true JPH05166237A (en) 1993-07-02
JP3018689B2 JP3018689B2 (en) 2000-03-13

Family

ID=18269586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333754A Expired - Lifetime JP3018689B2 (en) 1991-12-18 1991-12-18 Magneto-optical head device

Country Status (1)

Country Link
JP (1) JP3018689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684762A (en) * 1994-04-07 1997-11-04 Asahi Kogaku Kogyo Kabushiki Kaisha Opto-magnetic head apparatus
US5850380A (en) * 1995-08-04 1998-12-15 Asahi Kogaku Kogyo Kabushiki Kaisha Photomagnetic head apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552234C (en) * 2006-12-29 2009-10-21 财团法人工业技术研究院 Centrifugal compressor rotor mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684762A (en) * 1994-04-07 1997-11-04 Asahi Kogaku Kogyo Kabushiki Kaisha Opto-magnetic head apparatus
US5850380A (en) * 1995-08-04 1998-12-15 Asahi Kogaku Kogyo Kabushiki Kaisha Photomagnetic head apparatus

Also Published As

Publication number Publication date
JP3018689B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US20090052301A1 (en) Optical system for detecting data signal and tracking error signal including polarizing optical element
WO2007043663A1 (en) Optical head
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JPH07176095A (en) Magneto-optical head device
JPH0954973A (en) Optical head device
JP2713257B2 (en) Optical head device
US6556532B2 (en) Optical pickup device
JP3667984B2 (en) Broadband polarization separation element and optical head using the broadband polarization separation element
JP3018689B2 (en) Magneto-optical head device
JPWO2006064777A1 (en) OPTICAL HEAD DEVICE, OPTICAL INFORMATION RECORDING / REPRODUCING DEVICE HAVING OPTICAL HEAD DEVICE
JP2570563B2 (en) Optical head device
JP2993273B2 (en) Magneto-optical head device
JP3047630B2 (en) Magneto-optical head device
JP2576632B2 (en) Magneto-optical head device
JPH08297875A (en) Optical pickup
JP3123216B2 (en) Magneto-optical head device
JPH0792319A (en) Optical element and optical device using the same
JPH11353728A (en) Magneto-optical head
WO2000058960A1 (en) Optical pickup
JPH0887782A (en) Optical pickup
JPH0935352A (en) Optical pickup device
JPH1125499A (en) Optical head device
JP2001250291A (en) Optical head
JPH10300929A (en) Polarizing diffraction element, optical pickup, and method for detecting photomagnetic signal