JPH05166174A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH05166174A
JPH05166174A JP33322891A JP33322891A JPH05166174A JP H05166174 A JPH05166174 A JP H05166174A JP 33322891 A JP33322891 A JP 33322891A JP 33322891 A JP33322891 A JP 33322891A JP H05166174 A JPH05166174 A JP H05166174A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33322891A
Other languages
Japanese (ja)
Inventor
Yoichi Inoue
陽一 井上
Yoshihiro Sato
良広 佐藤
Katsuyuki Tanaka
勝之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33322891A priority Critical patent/JPH05166174A/en
Publication of JPH05166174A publication Critical patent/JPH05166174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To reform a protective film and to improve the corrosion resistance and the sliding durability by implanting ions of hydrogen atoms in the protective film. CONSTITUTION:A 10-20mum thickness NiP plated base film 2 on an Al substrate 1, a 50-300nm thickness Cr intermediate film 3 on base film and besides a 30-60nm thickness CoCr magnetic film 4 on the film 3 are formed. Further on the film 4 a 20-50nm thickness carbon protective film 5 is formed by sputtering and an ion implantation layer 10 having corrosion suppressing effect is formed in the film by H ion implantation and a lubricating film 6 is applied on the layer 10. At this time, since the implanted ions are not present in the magnetic film, the magnetic characteristics are not affected and the corrosion resistance and the sliding durability are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非磁性基板上に強磁性
金属の薄膜を形成し、その上に保護膜と潤滑膜を設けた
磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium in which a thin film of a ferromagnetic metal is formed on a non-magnetic substrate and a protective film and a lubricating film are provided on the thin film.

【0002】[0002]

【従来の技術】磁気記録媒体は、磁気記録の高密度化に
伴い従来の酸化鉄からCoを主成分としたCoNi系、
あるいはCoCr系磁性金属をスパッタリングあるいは
メッキにより薄膜化して設けた媒体の実用化が進みつつ
ある。しかし、この記録媒体の信頼性、すなわち、長期
にわたる記録再生特性を保持確保するためには、ヘッド
との耐摺動性及び耐食性を向上することが必要である。
そこで、該磁性金属の上に種々の保護膜を形成する方法
が提案されてきた。しかし、いずれの保護層でも数10
nmの薄膜で構成しなければならないので、微小のポーラ
スや表面欠陥を皆無にすることができず水分浸透を防止
するだけの防水性は確保されない。保護膜の機械的耐久
性を上げるものは、特開平1−263912 号,特開昭60−23
7634号あるいは特開平2−12614号公報に記載のように、
ダイアモンド保護膜に窒素をイオン注入して、強度を上
昇させ耐摺動性を向上するものがある。
2. Description of the Related Art A magnetic recording medium has a CoNi system containing Co as a main component from a conventional iron oxide, as the density of magnetic recording has increased.
Alternatively, a medium provided with a thin film of CoCr-based magnetic metal by sputtering or plating is being put to practical use. However, in order to maintain and secure the reliability of this recording medium, that is, the recording and reproducing characteristics for a long period of time, it is necessary to improve the sliding resistance with respect to the head and the corrosion resistance.
Therefore, methods of forming various protective films on the magnetic metal have been proposed. However, with any protective layer,
Since it must be composed of a thin film with a thickness of nm, it is not possible to eliminate microscopic pores and surface defects, and it is not possible to ensure the waterproofness to prevent water penetration. Those which improve the mechanical durability of the protective film are disclosed in JP-A-1-263912 and JP-A-60-23.
As described in 7634 or JP-A-2-12614,
There is a diamond protective film in which nitrogen is ion-implanted to increase strength and improve sliding resistance.

【0003】[0003]

【発明が解決しようとする課題】実際の磁気ディスクで
は通常10年以上メンテナンスフリーでデータ破壊のな
いことが要求される。そのためには、腐食発生によるデ
ータ破壊と同時にヘッド摺動による摩擦摩耗を低減する
ことが同時に要求される。この従来技術では耐摺動性は
向上しても、耐環境性、特に耐食信頼性を同時には解決
できないものである。この2つの性質を満足するような
信頼性の高い記録媒体を提供することを目的とするもの
である。
Actual magnetic disks are usually required to be maintenance-free for 10 years or longer and free from data destruction. For that purpose, at the same time, it is required to reduce data destruction due to corrosion and reduce frictional wear due to head sliding. In this conventional technique, even if the sliding resistance is improved, the environment resistance, especially the corrosion resistance cannot be solved at the same time. It is an object of the present invention to provide a highly reliable recording medium that satisfies these two properties.

【0004】[0004]

【課題を解決するための手段】本発明は保護膜表面に水
素イオンを磁気記録媒体の保護膜中に注入し、保護膜自
体の改質を図ることにより達成するものである。
The present invention is accomplished by injecting hydrogen ions into the protective film of the magnetic recording medium on the surface of the protective film to modify the protective film itself.

【0005】[0005]

【作用】水素イオンのような小さな原子量の原子を保護
膜中に注入すると被注入材の組織は極めて緻密になり、
機械的強度の向上が図れる。また、組織内にある不純物
が還元反応により除去され純度の高く耐環境性の膜を形
成できる。これにより、耐摺動性,耐食性共に信頼性の
高い記録媒体を実現するものである。
[Function] When a small atomic weight atom such as hydrogen ion is injected into the protective film, the structure of the injected material becomes extremely dense,
The mechanical strength can be improved. Further, impurities existing in the tissue are removed by the reduction reaction, so that a film having high purity and environment resistance can be formed. As a result, it is possible to realize a recording medium with high reliability in both sliding resistance and corrosion resistance.

【0006】[0006]

【実施例】以下、本発明の第1の実施例を図1〜図6及
び表1,表2を用いて、第2の実施例を表3を用いて説
明する。図1は、本発明の第1の実施例の磁気記録媒体
の膜構成を示す断面図、図2はその深さ方向の元素分析
結果を示す図、図3は本発明の実施例である磁気記録媒
体を製造するディスク製造装置を示す断面図、図4は図
3に示した装置のうちのイオン注入部を示す装置の断面
図、図5は図1に示した磁気記録媒体の耐食性を試験し
たアノード分極特性結果、図6はイオン注入した磁気記
録媒体の高温高湿下における磁性特性の変化を測定した
耐食性結果を示している。また、表1には第1の実施例
の磁気記録媒体のヘッドとの耐摩擦性能の結果ヘッドと
の静摩擦性能の結果を、表2にはその動摩擦性能の結果
を表している。表3には第2の実施例の磁気記録媒体の
ヘッドによる耐摩耗性能の結果を表している。
EXAMPLE A first example of the present invention will be described below with reference to FIGS. 1 to 6 and Tables 1 and 2, and a second example will be described with reference to Table 3. FIG. 1 is a cross-sectional view showing a film structure of a magnetic recording medium of a first embodiment of the present invention, FIG. 2 is a view showing an elemental analysis result in the depth direction thereof, and FIG. 3 is a magnetic field of an embodiment of the present invention. FIG. 4 is a cross-sectional view showing a disk manufacturing apparatus for manufacturing a recording medium, FIG. 4 is a cross-sectional view of an apparatus showing an ion implantation part of the apparatus shown in FIG. 3, and FIG. 5 is a corrosion resistance test of the magnetic recording medium shown in FIG. 6 shows the results of the anodic polarization characteristics, and FIG. 6 shows the results of corrosion resistance obtained by measuring changes in the magnetic characteristics of the ion-implanted magnetic recording medium under high temperature and high humidity conditions. Further, Table 1 shows the result of the friction resistance performance with the head of the magnetic recording medium of the first embodiment, the result of the static friction performance with the head, and Table 2 shows the result of the dynamic friction performance. Table 3 shows the results of the wear resistance performance of the head of the magnetic recording medium of the second embodiment.

【0007】第1の実施例の記録媒体の膜構成は、Al
のサブストレート1上に厚さ10〜20μmのNiPメ
ッキ下地膜2、その上に、図1に示すように、厚さ50
〜300nmのCr中間膜3、その上に厚さ30〜60
nmのCoCr系磁性膜4、さらにその上に厚さ20〜
50nmのカーボン保護膜5をそれぞれスパッタリング
形成し、そのカーボン膜の膜中にはHイオン注入によっ
て形成された腐食抑制効果のあるイオン注入層10そし
てその上にはパーフロオロポリエーテル剤等の潤滑剤を
ディップ法で塗布し潤滑膜6を形成している。
The film structure of the recording medium of the first embodiment is Al
10 to 20 μm thick NiP plating base film 2 on the substrate 1, and a thickness of 50 nm on the substrate 1 as shown in FIG.
.About.300 nm Cr intermediate film 3, with a thickness of 30 to 60 thereon
nm CoCr-based magnetic film 4 and a thickness of 20-
A carbon protective film 5 having a thickness of 50 nm is formed by sputtering, and an ion implantation layer 10 having a corrosion inhibiting effect formed by H ion implantation is formed in the carbon film, and a lubricant such as a perfluoropolyether agent is formed on the ion implantation layer 10. Is applied by the dip method to form the lubricating film 6.

【0008】この記録媒体の深さ成分分析の結果を図2
を用いて説明する。記録媒体の深さ方向の分析は通常、
オージェ電子分光分析(AES)あるいは二次イオン質
量分析(SIMS)を使用して表面をドライエッチング
しながら元素分析をする。図2において、縦軸は各元素
の検出強度、横軸は表面からのエッチング時間、すなわ
ち、表面からの深さを表わしている。なお、潤滑膜は除
去したもので分析をしている。表面近くからカーボン保
護膜5そしてコバルトとクロム磁性膜4そしてクロム中
間膜3の順に構成されている。各膜を構成する元素は通
常のスパッタプロセスで形成した場合、膜構成の各成分
金属は相似形を成すがイオン注入のような表層処理を後
でした場合には特有の深さ分布を示す。まず、カーボン
保護膜5の中はカーボンA1 とイオン注入層A2 より構
成される。磁性膜4はコバルトB1 とクロムB2 と第三
の添加元素B3 を示している。また、中間膜3のクロム
はC1 で示される。イオン注入層A2 は、保護膜を構成
する他の元素の最大濃度深さ(分布の中心深さ)とは一
致しないことが特徴であり、かつ磁性膜中には殆ど存在
していないので、磁気特性に与える影響はほとんど無
い。
The results of the depth component analysis of this recording medium are shown in FIG.
Will be explained. Depth analysis of the recording medium is usually
Elemental analysis is performed while dry etching the surface using Auger electron spectroscopy (AES) or secondary ion mass spectrometry (SIMS). In FIG. 2, the vertical axis represents the detected intensity of each element, and the horizontal axis represents the etching time from the surface, that is, the depth from the surface. The lubricant film is removed before analysis. A carbon protective film 5, a cobalt / chromium magnetic film 4, and a chromium intermediate film 3 are formed in this order from near the surface. When the elements forming each film are formed by a normal sputtering process, each component metal of the film structure has a similar shape, but shows a unique depth distribution after the surface layer treatment such as ion implantation. First, the carbon protective film 5 is composed of carbon A 1 and an ion-implanted layer A 2 . The magnetic film 4 shows cobalt B 1 , chromium B 2, and a third additive element B 3 . The chromium of the intermediate film 3 is represented by C 1 . The ion-implanted layer A 2 is characterized in that it does not match the maximum concentration depth (center depth of distribution) of the other elements constituting the protective film, and since it is almost absent in the magnetic film, There is almost no effect on the magnetic properties.

【0009】次に、この磁気記録媒体の製造装置につい
て図3,図4を用いて説明する。
Next, an apparatus for manufacturing this magnetic recording medium will be described with reference to FIGS.

【0010】AlのサブストレートにNiPをメッキで
形成したもの31は製造装置本体19内にインライン直
線搬送型のパレット13上に固定され、レール14に吊
り下げられたまま矢印方向に走行する。サブストレート
31は両側から同時に成膜と処理ができるようになって
おり、Cr中間膜3を形成するためのCrスパッタ装置
15,CoCr系磁性膜4を形成するためのCoCrス
パッタ装置16,カーボン保護膜5を形成するためのカ
ーボン装置17の順に走行し、膜形成がなされた後、前
処理部18に入り、その後イオン注入装置32に入る。
この装置では、スパッタ法によりCr,CoCr系磁性
膜、さらにカーボンと連続成膜しその後、バケット形式
のイオン注入装置32でHイオンを注入しイオン注入層
10を形成する。
An Al substrate 31, which is formed by plating NiP, is fixed on a pallet 13 of the in-line linear transfer type in the manufacturing apparatus main body 19 and is hung in a rail 14 and travels in the direction of the arrow. The substrate 31 can be simultaneously formed and processed from both sides. A Cr sputter device 15 for forming the Cr intermediate film 3, a CoCr sputter device 16 for forming the CoCr-based magnetic film 4, and a carbon protection. The carbon device 17 for forming the film 5 is run in this order, and after the film is formed, it enters the pretreatment unit 18 and then the ion implantation device 32.
In this apparatus, a Cr / CoCr-based magnetic film and carbon are continuously formed by a sputtering method, and then H ions are implanted by a bucket type ion implanter 32 to form the ion implanted layer 10.

【0011】イオン注入装置32の詳細は図4を用いて
説明する。このイオン注入装置は、真空ポンプ21が接
続された真空チャンバー20内にあるインライン直線搬
送型のパレット13に磁気記録媒体12(サブストレー
ト31を成膜したもの)は固定されており、媒体全面に
イオン注入ができるように構成されている。イオン源2
2よりゲート弁23を開けてイオンを注入できる構造と
なっている。
Details of the ion implanter 32 will be described with reference to FIG. In this ion implanter, a magnetic recording medium 12 (having a substrate 31 formed thereon) is fixed on a pallet 13 of an in-line linear transport type inside a vacuum chamber 20 to which a vacuum pump 21 is connected, and the entire surface of the medium is fixed. It is configured to allow ion implantation. Ion source 2
2 has a structure in which the gate valve 23 can be opened to implant ions.

【0012】このイオン源22内は、ガス容器25から
ガスコントローラ24を通り供給された後、フィラメン
ト電源26でイオン化し、そのイオンを加速電源27で
加速できるようになっている。この装置では、異なるイ
オンを続けて注入する場合はガスコントローラ24の導
入口を切り替えてイオン注入ができる構造となってい
る。また、イオン源は発熱が大きいので純水冷却装置2
8が付帯している。前述のゲート弁23を開放の状態に
すれば、注入イオンをイオン源22から真空チャンバー
20内の磁気記録媒体12に照射できる。このイオン注
入装置による注入条件は、加速電圧15kV,イオン電
流密度0.31mA/cm2,真空度1×10~5torr,注入時
間30秒である。このような注入条件を選択することに
より磁気記録媒体面の温度上昇を250℃以下に押えか
つ磁性膜表面層にのみイオン注入がなされ、磁気特性を
劣化することがない。
After being supplied from the gas container 25 through the gas controller 24, the ion source 22 is ionized by the filament power supply 26, and the ions can be accelerated by the acceleration power supply 27. In this device, when different ions are continuously injected, the introduction port of the gas controller 24 is switched to allow ion injection. Further, since the ion source generates a large amount of heat, the pure water cooling device 2
8 is attached. When the gate valve 23 described above is opened, implanted ions can be irradiated from the ion source 22 to the magnetic recording medium 12 in the vacuum chamber 20. The implantation conditions of this ion implantation apparatus are an acceleration voltage of 15 kV, an ion current density of 0.31 mA / cm 2 , a degree of vacuum of 1 × 10 to 5 torr, and an implantation time of 30 seconds. By selecting such implantation conditions, the temperature rise of the surface of the magnetic recording medium can be suppressed to 250 ° C. or less, and ion implantation is performed only in the magnetic film surface layer, so that the magnetic characteristics are not deteriorated.

【0013】次に、この第1の実施例の記録媒体の腐食
速度を測定した結果について説明する。測定方法として
は、日本工業規格JIS0579によるアノード分極測
定法に準じて実施した。大気環境下における腐食現象で
も、湿度に起因するものは溶液中における腐食電流結果
と良い相関があることが一般に知られている。金属の腐
食速度とは、金属がイオン化して電流が流れることと対
応しているので、その大きさをもって腐食性能を評価で
きる。図5は試験溶液を脱酸素処理した1%硫酸ナトリ
ウム溶液中に電位を−0.2V(カロメル電極電位)か
ら+0.6Vまで上昇させ、その各電位時におけるアノ
ード腐食電流密度を測定した結果を縦軸にlog スケール
で示したものである。イオン未注入試料の場合、腐食電
位は−0.17Vであり、0Vでは約1μA/cm2,0.4V
では40μA/cm2になっているのに対し、Nを注入し
インヒビタを保護膜中に形成した試料では、腐食電位は
−0.09Vとあまり変化していないが、0Vでは0.4
μA/cm2,0.4Vでは1.5μA/cm2と腐食電流密度
が小さく、腐食速度を大きく低減する効果が認められ
る。次に湿り気を含む大気環境下における磁化特性の劣
化について調べた結果を図6に示す。磁性膜4の保持力
Hc(0e)を、80℃×95%の腐食加速環境下にお
いて時間の結果と共に測定した結果を図5に示す。初期
に保持力Hcが950エルステッド(0e)ある磁気記
録媒体2枚のうち、1枚は上記条件でHイオンを注入
し、未注入の媒体と比較した。未注入のものは8日あた
りから減少し、10日目には約10%低下した。また、
イオン注入した媒体は16日あたりから減少し、17日
目で約10%低下した。このように、イオン注入により
高温高湿下の腐食加速試験でも約2倍寿命が延びる効果
が確認された。
Next, the results of measuring the corrosion rate of the recording medium of the first embodiment will be described. The measurement method was carried out according to the anodic polarization measurement method according to Japanese Industrial Standard JIS0579. It is generally known that even in the corrosion phenomenon under the atmospheric environment, the one caused by the humidity has a good correlation with the result of the corrosion current in the solution. The corrosion rate of a metal corresponds to the fact that the metal is ionized and a current flows, so the corrosion performance can be evaluated by its magnitude. Fig. 5 shows the results of measuring the anodic corrosion current density at each potential by increasing the potential from -0.2 V (calomel electrode potential) to +0.6 V in the deoxidized 1% sodium sulfate solution of the test solution. The vertical axis is the log scale. In the case of the non-ion-implanted sample, the corrosion potential is -0.17 V, and at 0 V it is about 1 μA / cm 2 , 0.4 V.
While the corrosion potential of the sample in which N was injected and the inhibitor was formed in the protective film did not change much to -0.09V, it was 0.4 μA / cm 2 at 0.4V at 0V.
.mu.A / cm 2, and 0.4V in 1.5 .mu.A / cm 2 Corrosion current density is small, is observed greatly reduced effectively the corrosion rate. Next, FIG. 6 shows the result of examination on deterioration of the magnetization characteristics in an atmospheric environment including humid air. The coercive force Hc (0e) of the magnetic film 4 was measured together with the result of time under the corrosion acceleration environment of 80 ° C. × 95%, and the result is shown in FIG. Of the two magnetic recording media having a coercive force Hc of 950 oersted (0e) in the initial stage, one of the magnetic recording media was implanted with H ions under the above conditions and compared with a non-implanted medium. Uninjected ones decreased from around 8 days, and decreased by about 10% on the 10th day. Also,
The amount of the ion-implanted medium decreased from about 16 days, and decreased by about 10% on the 17th day. As described above, it was confirmed that the ion implantation prolongs the life by about twice even in the corrosion acceleration test under high temperature and high humidity.

【0014】一方、実際の磁気記録媒体はこの耐食信頼
性と同時に、磁気ヘッドとの耐摺動信頼性を確保するこ
とが必要不可欠である。記録媒体の起動/停止における
摩擦・摩耗及び停止時におけるヘッドとの吸着(粘着)
が小さいことが要求される。磁気ディスク装置では通常
CSS(コンタクト・スタート・ストップ)動作を繰返
すため、多数回のCSS動作においても摩擦係数が変化
しないことが望まれる。そこで、その回数に応じた動摩
擦係数の変化より、耐摺動性能を評価する。ヘッドはウ
インチエスタ型の磁気ヘッドスライダを押付け荷重10
gfで設定し、動摩擦係数μを測定した結果を表1に示
す。
On the other hand, in an actual magnetic recording medium, it is essential to secure not only the corrosion resistance but also the sliding resistance with the magnetic head. Friction and wear when starting / stopping the recording medium and adsorption (adhesion) with the head when stopping
Is required to be small. Since a magnetic disk device normally repeats CSS (contact start / stop) operations, it is desired that the friction coefficient does not change even after many CSS operations. Therefore, the sliding resistance performance is evaluated from the change of the dynamic friction coefficient according to the number of times. The head is a winch-ester type magnetic head slider.
Table 1 shows the results of measuring the dynamic friction coefficient μ by setting gf.

【0015】[0015]

【表1】 [Table 1]

【0016】未注入媒体は初期的に0.10 であったも
のが、CSS回数が一千回を越えると急に上昇し一万回
で0.28 、三万回では0.44 まで上がるのに対し、
イオン注入した媒体では三万回経過してもμは0.20
と実用上問題となるレベルまで大きくなることもなく安
定した摺動性を示していた。これはイオン注入により媒
体表面の安定性が増加したのと同時に、強度・硬度が増
加したことにもよると考えられる。また、高湿環境下に
おけるヘッドとの吸着(粘着)特性を調べるため、25
℃×90%RHに一週間放置した後の静摩擦係数μsを
測定した結果を表2に示す。μsは初期に比べる上昇は
するものの、イオン注入の媒体の方がその上昇幅は少な
く、優れていた。
Initially, the uninjected medium was 0.10, but when the number of CSSs exceeded 1,000, it rose sharply to 0.28 at 10,000 times and to 0.44 at 30,000 times. As opposed to
In the ion-implanted medium, μ is 0.20 even after 30,000 times.
As a result, stable slidability was exhibited without increasing to a practically problematic level. It is considered that this is because the stability of the medium surface was increased by the ion implantation, and at the same time, the strength and hardness were increased. In addition, in order to investigate the adsorption (adhesion) characteristics with the head under high humidity environment, 25
Table 2 shows the results of measurement of the static friction coefficient μs after leaving it for 1 week at 90 ° C. × 90% RH. Although the μs increased compared to the initial stage, the ion-implanted medium was superior because the increase range was smaller.

【0017】[0017]

【表2】 [Table 2]

【0018】以上、本第1の実施例によれば、磁気記録
媒体の保護膜上からイオン注入することにより、磁気変
換特性は劣化することなく耐食性及び耐摺動性を向上で
きる効果がある。特に、カーボン保護膜が多少摩耗して
も腐食抑制層が保護膜中に内在しているので安定した耐
食信頼性を保持できる効果がある。
As described above, according to the first embodiment, by implanting ions from above the protective film of the magnetic recording medium, it is possible to improve the corrosion resistance and the sliding resistance without deteriorating the magnetic conversion characteristics. In particular, even if the carbon protective film is worn to some extent, the corrosion inhibiting layer is present in the protective film, so that stable corrosion resistance can be maintained.

【0019】次に、第2の実施例を説明する。第1の実
施例との違いについて以下述べる。保護膜は窒化ほう素
(BN)を形成し、その後、メタンCH4 を加速電圧2
0kVの高電圧でイオン注入し、その表面上にパーフロ
オロポリエーテル油等の潤滑油を塗布する。このように
質量数の大きいCを同時に注入することによりH原子の
イオン注入層17は表面近くだけでなくかなり深さ方向
にも深く導入できる。このため、耐摩耗性及び複合膜の
密着性は著しく改善される。この磁気記録媒体のヘッド
摺動による媒体保護膜の摩擦量を測定した結果を表3に
示す。
Next, a second embodiment will be described. Differences from the first embodiment will be described below. The protective film forms boron nitride (BN), and then methane CH 4 is added to accelerate voltage 2
Ions are implanted at a high voltage of 0 kV, and lubricating oil such as perfluoropolyether oil is applied on the surface thereof. By implanting C having a large mass number at the same time, the ion-implanted layer 17 of H atoms can be introduced not only near the surface but also deeply in the depth direction. Therefore, the wear resistance and the adhesion of the composite film are significantly improved. Table 3 shows the results of measuring the amount of friction of the medium protective film due to the head sliding of this magnetic recording medium.

【0020】[0020]

【表3】 [Table 3]

【0021】CSSを三万回経過時において、未注入媒
体が8.2nm であるのに対し、イオン注入媒体は1.
2nm と摩耗性が著しく向上することが判明した。こ
れは、保護膜深くまでイオン注入した水素原子により膜
中の不純物が還元除去されるため、耐食性を顕著に高め
る効果がある。以上、本第2の実施例によれば、顕著に
耐摩耗性を向上させる効果があると同時に、耐食性を高
める効果がある。
After passing 30,000 times of CSS, the unimplanted medium is 8.2 nm, while the ion-implanted medium is 1.
It was found that the wear resistance was significantly improved to 2 nm. This is effective in significantly increasing the corrosion resistance because the hydrogen atoms ion-implanted deep into the protective film reduce and remove impurities in the film. As described above, according to the second embodiment, not only the effect of significantly improving the wear resistance but also the effect of increasing the corrosion resistance are provided.

【0022】以上の実施例では媒体構成元素及びイオン
注入元素を特定しているが、本特許の趣旨は水素イオン
を高電圧下で加速し、磁気記録媒体の保護膜膜に打ち込
み、保護膜の改質し、耐環境性が向上するものである。
Although the medium constituent elements and the ion implantation elements are specified in the above embodiments, the purpose of the present patent is to accelerate hydrogen ions under a high voltage and implant them in the protective film of the magnetic recording medium to form a protective film. It is modified to improve the environment resistance.

【0023】第1及び第2の実施例の磁気記録媒体は、
通常その外径が2.5″,3.5″,5.25″ ,8〜1
4″のいずれかで、1枚あるいは複数枚が磁気記録媒体
設置部のスピンドル回転部に固定され、これに対向する
ように磁気変換ヘッドが備えられ、磁気記録装置を構成
する。したがって、このような磁気記録データの信頼性
を確保するには、磁気記録媒体の耐候性,耐摺動性を向
上することが必要不可欠であり、磁気記録装置を実現す
ることができる。
The magnetic recording media of the first and second embodiments are
Usually its outer diameter is 2.5 ", 3.5", 5.25 ", 8 to 1
4 ″, one or a plurality of sheets are fixed to the spindle rotating portion of the magnetic recording medium installation portion, and the magnetic conversion head is provided so as to face the spindle rotating portion, thus constituting the magnetic recording device. In order to ensure the reliability of various magnetic recording data, it is essential to improve the weather resistance and sliding resistance of the magnetic recording medium, and a magnetic recording device can be realized.

【0024】[0024]

【発明の効果】本発明によれば、保護膜の硬度・強度の
上昇を図り、ヘッドとの耐摺動性を向上することができ
さらに、耐食性能も同時に向上できる。
According to the present invention, the hardness and strength of the protective film can be increased, the sliding resistance with the head can be improved, and the corrosion resistance can be improved at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す記録媒体の断面
図。
FIG. 1 is a cross-sectional view of a recording medium showing a first embodiment of the present invention.

【図2】図1に示す媒体の深さ方向の元素分析結果を示
す説明図。
2 is an explanatory diagram showing the results of elemental analysis in the depth direction of the medium shown in FIG.

【図3】本発明の記録媒体の製造装置の断面図。FIG. 3 is a cross-sectional view of a recording medium manufacturing apparatus of the present invention.

【図4】図3の製造装置のイオン注入部を示す断面図。4 is a sectional view showing an ion implantation part of the manufacturing apparatus of FIG.

【図5】本発明の第1の実施例の磁気記録媒体の溶液中
での耐食性能を示すアノード分極曲線の測定結果を示す
説明図。
FIG. 5 is an explanatory diagram showing measurement results of an anodic polarization curve showing corrosion resistance performance in a solution of the magnetic recording medium of the first embodiment of the present invention.

【図6】本実施例の高温高湿下における耐食性能を示す
保磁力の時間変化の結果を示す説明図。
FIG. 6 is an explanatory diagram showing the results of time-dependent changes in coercive force showing corrosion resistance under high temperature and high humidity in this example.

【符号の説明】[Explanation of symbols]

1…サブストレート、2…下地膜、3…中間膜、5…保
護膜、6…潤滑膜、7…イオン注入層、12…磁気記録
媒体。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Base film, 3 ... Intermediate film, 5 ... Protective film, 6 ... Lubrication film, 7 ... Ion-implanted layer, 12 ... Magnetic recording medium.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に形成された磁性薄膜と、前
記磁性薄膜上に非磁性の保護膜を持つ記録媒体に、水素
イオンを含む元素でイオン注入処理を行い、さらにその
上に潤滑剤を塗布することを特徴とする磁気記録媒体。
1. A recording medium having a magnetic thin film formed on a non-magnetic substrate and a non-magnetic protective film on the magnetic thin film is subjected to ion implantation treatment with an element containing hydrogen ions, and lubrication is further performed thereon. A magnetic recording medium, characterized in that an agent is applied.
JP33322891A 1991-12-17 1991-12-17 Magnetic recording medium Pending JPH05166174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33322891A JPH05166174A (en) 1991-12-17 1991-12-17 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33322891A JPH05166174A (en) 1991-12-17 1991-12-17 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05166174A true JPH05166174A (en) 1993-07-02

Family

ID=18263758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33322891A Pending JPH05166174A (en) 1991-12-17 1991-12-17 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05166174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643385A2 (en) * 1993-09-12 1995-03-15 Fujitsu Limited Magnetic recording medium, magnetic head and magnetic recording apparatus
KR100475020B1 (en) * 1997-12-29 2005-06-13 삼성전자주식회사 Hard disk with improved corrosion protection and carbon layer manufacturing method of hard disk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643385A2 (en) * 1993-09-12 1995-03-15 Fujitsu Limited Magnetic recording medium, magnetic head and magnetic recording apparatus
EP0643385A3 (en) * 1993-09-12 1996-01-17 Fujitsu Ltd Magnetic recording medium, magnetic head and magnetic recording apparatus.
US6132875A (en) * 1993-09-12 2000-10-17 Fujitsu Limited Magnetic recording medium and magnetic head having carbon protective layers
KR100475020B1 (en) * 1997-12-29 2005-06-13 삼성전자주식회사 Hard disk with improved corrosion protection and carbon layer manufacturing method of hard disk

Similar Documents

Publication Publication Date Title
US6589676B1 (en) Corrosion resistant magnetic thin film media
JP2531438B2 (en) Magnetic head and manufacturing method thereof
US7018729B2 (en) Energy gradient ion beam deposition of carbon overcoats on rigid disk media for magnetic recordings
CN101303860A (en) Magnetic recording/reproducing head, magnetic recording medium, and method for manufacturing them
Goohpattader et al. Probing the role of C+ ion energy, thickness and graded structure on the functional and microstructural characteristics of ultrathin carbon films (< 2 nm)
Samad et al. Overcoat free magnetic media for lower magnetic spacing and improved tribological properties for higher areal densities
Yeo Ultrathin carbon-based overcoats for extremely high density magnetic recording
Rismani et al. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings
US6613422B1 (en) Nitrogen -implanted, high carbon density overcoats for recording media
JP2013182640A (en) Magnetic recording medium and method of manufacturing the same, and magnetic memory using the same
US5500296A (en) Magnetic recording medium, process for producing magnetic recording medium, apparatus for producing magnetic recording medium, and magnetic recording apparatus
JPH05166174A (en) Magnetic recording medium
JP2865791B2 (en) Magnetic recording media
US20040161578A1 (en) Dual-layer protective overcoat system for disk recording media
Djalali et al. Study of the stability of metal particle data recording tapes
JPH04102225A (en) Magnetic recording medium and production thereof
WO2015122847A1 (en) An improved magnetic recording medium
JPH03105721A (en) Magnetic recording medium, its production and production machine of magnetic recording medium
JP2014099235A (en) Magnetic recording medium and hard amorphous carbon film for magnetic head containing ultra small amount of hydrogen
JPS57152517A (en) Magnetic recording medium
JPH0684169A (en) Magnetic recording medium and its manufacture and magnetic disk device
Zhang et al. Nanoscale protection for CoCrPt thin film magnetic recording media
JPS58194133A (en) Magnetic recording medium
JPS58222441A (en) Magnetic recording medium
REUBEN ULTRATHIN CARBON-BASED OVERCOATS FOR EXTREMELY HIGH DENSITY MAGNETIC RECORDING