JPH05164989A - Method for uniforming light quantity distribution in shape measurement - Google Patents

Method for uniforming light quantity distribution in shape measurement

Info

Publication number
JPH05164989A
JPH05164989A JP35138591A JP35138591A JPH05164989A JP H05164989 A JPH05164989 A JP H05164989A JP 35138591 A JP35138591 A JP 35138591A JP 35138591 A JP35138591 A JP 35138591A JP H05164989 A JPH05164989 A JP H05164989A
Authority
JP
Japan
Prior art keywords
light
reflected
measured
bit
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35138591A
Other languages
Japanese (ja)
Other versions
JP3195813B2 (en
Inventor
Yuji Tachikake
雄二 太刀掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippei Toyama Corp
Original Assignee
Nippei Toyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippei Toyama Corp filed Critical Nippei Toyama Corp
Priority to JP35138591A priority Critical patent/JP3195813B2/en
Publication of JPH05164989A publication Critical patent/JPH05164989A/en
Application granted granted Critical
Publication of JP3195813B2 publication Critical patent/JP3195813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To stabilize measured values by interposing many translucent reflecting films between a surface to be measured where the light from a light source is made incident and a photodetecting element for for detecting reflected light from the surface to be measured. CONSTITUTION:A incident light 3 such as laser light from a light source 2 in a measuring instrument 1 is reflected by the object surface of a body 4 to be measured to become reflected light 5, which is reflected by a mirror 6 in the measuring instrument 1 and strikes on the photodetection surface of a photodetecting element 7. In this process, the incident light 3 causes speckle interference on the surface of the body 4 to be measured to become reflected light 5 having an intensity irregularity of light corresponding to surface roughness. Then this reflected light 5 when reflected by the mirror 6 is reflected, bit by bit, by the reflecting surfaces of many translucent reflecting films which are thick enough to make the phase of the reflected light 5 constant. In this case, the incident light 5 is reflected, bit by bit, by the laminated translucent reflecting films to become luminous flux having width determined by the number of the reflecting films, so groups of light beams of the reflected light 5 from the surface to be measured is put one over another, bit by bit, to make intensity differences uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光などを用いて
形状計測を行う過程で、光の光量分布を均一化する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for making a light quantity distribution of light uniform in a process of measuring a shape using a laser beam or the like.

【0002】[0002]

【従来の技術】光量分布の均一化方法として、従来から
拡散板を入れる方式や受光素子の出力を電気的に処理す
る方法が利用されている。前者の拡散板を入れる方式で
は、光の減衰や過大な散乱などで光学的特性が悪化する
傾向にある。また、後者の受光素子の出力を電気的に処
理する方法では、受光素子の各セルの出力を積分するた
め、光の強度の高い位置がずれて、認識されるという問
題がある。また、受光素子の出力をA/D変換した後、
平滑する方法も考えられるが、計算時間が長く、リアル
タイムの計測には不向きであるなどの問題がある。
2. Description of the Related Art Conventionally, a method of inserting a diffusion plate or a method of electrically processing the output of a light receiving element has been used as a method of making the light quantity distribution uniform. In the former method in which a diffuser plate is inserted, optical characteristics tend to deteriorate due to light attenuation or excessive scattering. Further, in the latter method of electrically processing the output of the light receiving element, since the output of each cell of the light receiving element is integrated, there is a problem that the position of high light intensity is deviated and recognized. Also, after A / D converting the output of the light receiving element,
Although a smoothing method can be considered, there is a problem that the calculation time is long and it is not suitable for real-time measurement.

【0003】[0003]

【発明の目的】本発明の目的は、例えばレーザ光を用い
た形状計測に際し、スペックル干渉などによる反射光の
微視的な強度むらを簡便な方法で均一化し、測定値の安
定化を図る手段を提供することである。
The object of the present invention is to stabilize the measured values by making uniform the microscopic intensity unevenness of the reflected light due to speckle interference in the shape measurement using a laser beam, for example, by a simple method. To provide the means.

【0004】[0004]

【発明の解決手段】上記目的の下に、本発明は、光源か
らの入射光を反射する被測定面と反射光検出用の受光素
子との間に反射光の位相を一定とする厚さの多数の半透
明反射膜を介在させることにより、受光素子に入射する
光の強度分布を均一化し、測定値の正確性を高めるよう
にしている。
In view of the above object, the present invention has a thickness that makes the phase of reflected light constant between a surface to be measured which reflects incident light from a light source and a light receiving element for detecting reflected light. By interposing a large number of semitransparent reflective films, the intensity distribution of the light incident on the light receiving element is made uniform, and the accuracy of the measured value is improved.

【0005】[0005]

【実施例】図1は、測定システムの全体を示している。
測定器1の内部の光源2から出たレーザ光などの入射光
3は、被測定物4の測定面で反射し、反射光5となって
測定器1の内部のミラー6で反射し、受光素子7の受光
面に入る。この過程で、入射光3は、通常、被測定物4
の被測定面でスペックル干渉を起こし、面粗度に対応す
る光の強度むらを有する反射光5となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an overall measuring system.
Incident light 3 such as laser light emitted from the light source 2 inside the measuring instrument 1 is reflected by the measurement surface of the DUT 4 and becomes reflected light 5 which is reflected by the mirror 6 inside the measuring instrument 1 and received. It enters the light receiving surface of the element 7. In this process, the incident light 3 is usually the object to be measured 4
The speckle interference occurs on the surface to be measured and the reflected light 5 has unevenness of light intensity corresponding to the surface roughness.

【0006】そして、この反射光5は、ミラー6で反射
される過程で、多数の反射面8で少しずつ反射される。
図2は、反射面8の構成を示している。入射光5は、積
層された複数の半透明反射膜81、82、83、84、
85で少しずつ反射されることにより、反射膜81、8
2、83、84、85の数で決定される幅の光束となる
ので、被測定面からの反射光5の光線群が少しずつ重な
って強弱差が均一化され、強度差が減少する。
The reflected light 5 is gradually reflected by a large number of reflecting surfaces 8 in the process of being reflected by the mirror 6.
FIG. 2 shows the structure of the reflecting surface 8. Incident light 5 is generated by a plurality of laminated semi-transparent reflective films 81, 82, 83, 84,
By being reflected little by little at 85, the reflection films 81, 8
Since the light flux has a width determined by the number of 2, 83, 84, and 85, the light ray groups of the reflected light 5 from the surface to be measured are gradually overlapped to make the intensity difference uniform and reduce the intensity difference.

【0007】図3は、受光素子7の出力波形の例を示し
ている。一般の出力波形は、ミラー6の反射面8を経て
いないため、鋭い鋸刃状の形状となっているが、本発明
のように、ミラー6の反射面8で反射させると、受光素
子7の出力波形は、鋭い山や谷がなくなり、滑らかな波
形となる。
FIG. 3 shows an example of the output waveform of the light receiving element 7. Since a general output waveform does not pass through the reflecting surface 8 of the mirror 6, it has a sharp saw-tooth shape, but when reflected by the reflecting surface 8 of the mirror 6 as in the present invention, the light receiving element 7 has a The output waveform is smooth without sharp peaks and valleys.

【0008】[0008]

【他の実施例】上記実施例は1つのミラー6で複数の半
透明反射膜81、82、83、84、85を積層状態で
形成しているが、単一の透明反射膜からなるミラー6を
複数組み合わせることによって、複数の半透明反射膜8
1、82、83、84、85を形成するようにしてもよ
い。また、反射方向を反射光5の進む直角2方向に分割
することにより、エリアセンサーに適応することも可能
となる。
Other Embodiments In the above embodiment, a plurality of semitransparent reflective films 81, 82, 83, 84 and 85 are formed in a laminated state with one mirror 6, but the mirror 6 composed of a single transparent reflective film. By combining a plurality of semi-transparent reflective films 8
1, 82, 83, 84, 85 may be formed. Also, by dividing the reflection direction into two directions at right angles where the reflected light 5 travels, it becomes possible to adapt to an area sensor.

【0009】[0009]

【発明の効果】本発明では、次の特有の効果が得られ
る。光学部品としてのミラーの半透明反射膜形成のみで
対処するため、小型軽量化が可能となる。光学的な処理
が中心であり、電気的な処理が伴わないため、データ処
理が簡素化される。光路の途中で拡散板など光の減衰や
過大な散乱を起こす光学要素が存在しないため、受光素
子への受光量が低下せず、また光学的特性も悪化しない
ため、光学的な測定精度が高められる。レーザ光に限ら
ず、通常の光学的測定にも利用できるため、広い計測測
定分野で応用が可能となる。
According to the present invention, the following unique effects can be obtained. Since only the semitransparent reflection film of the mirror as the optical component is formed, the size and weight can be reduced. Since the optical processing is the main and no electrical processing is involved, the data processing is simplified. Since there is no optical element such as a diffusing plate that attenuates light or excessively scatters in the middle of the optical path, the amount of light received by the light receiving element does not decrease, and the optical characteristics do not deteriorate. To be Since it can be used not only for laser light but also for ordinary optical measurement, it can be applied in a wide range of measurement and measurement fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定システムの概略的な平面図である。FIG. 1 is a schematic plan view of a measurement system.

【図2】ミラーの半透明反射膜の構造および反射光の反
射状況の説明図である。
FIG. 2 is an explanatory diagram of a structure of a semitransparent reflection film of a mirror and a reflection state of reflected light.

【図3】反射光の波形の説明図である。FIG. 3 is an explanatory diagram of a waveform of reflected light.

【符号の説明】[Explanation of symbols]

1 測定器 2 光源 3 入射光 4 被測定物 5 反射光 6 ミラー 7 受光素子 8 反射面 81、82、83、84、85 半透明反射膜 1 Measuring instrument 2 Light source 3 Incident light 4 Object to be measured 5 Reflected light 6 Mirror 7 Light receiving element 8 Reflective surface 81, 82, 83, 84, 85 Semi-transparent reflective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源からの入射光を反射する被測定面
と、被測定面からの反射光検出用の受光素子との間に、
反射光の位相がほぼ一定となる厚さの多数の半透明反射
膜を介在させることにより、受光素子に入射する反射光
の強度分布を均一化することを特徴とする形状計測にお
ける光量分布均一化方法。
1. A measuring surface that reflects incident light from a light source and a light receiving element for detecting reflected light from the measuring surface,
Uniformity of the light intensity distribution in shape measurement characterized by uniforming the intensity distribution of the reflected light incident on the light receiving element by interposing a number of semitransparent reflective films with a thickness that makes the reflected light phase almost constant Method.
JP35138591A 1991-12-13 1991-12-13 Light distribution uniform method for shape measurement Expired - Fee Related JP3195813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35138591A JP3195813B2 (en) 1991-12-13 1991-12-13 Light distribution uniform method for shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35138591A JP3195813B2 (en) 1991-12-13 1991-12-13 Light distribution uniform method for shape measurement

Publications (2)

Publication Number Publication Date
JPH05164989A true JPH05164989A (en) 1993-06-29
JP3195813B2 JP3195813B2 (en) 2001-08-06

Family

ID=18416936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35138591A Expired - Fee Related JP3195813B2 (en) 1991-12-13 1991-12-13 Light distribution uniform method for shape measurement

Country Status (1)

Country Link
JP (1) JP3195813B2 (en)

Also Published As

Publication number Publication date
JP3195813B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US4726685A (en) Optical measuring device for detecting surface characteristics of object
JPS6379004A (en) Light probe for measuring shape
JPS63241336A (en) Particle size measuring apparatus
US4425041A (en) Measuring apparatus
JPS6228707A (en) Apparatus having telecentric objective mirror f-theta corrected for non-contact measurement
JPH05164989A (en) Method for uniforming light quantity distribution in shape measurement
JPS59188931A (en) Height measuring apparatus for wafer
KR100994253B1 (en) Method of x-ray reflectance measurement
JP3495797B2 (en) Optical constant measuring method and device
US4236821A (en) Method and apparatus for testing optical retrodirective prisms
JP3041205B2 (en) Reference plate for interferometer
US7508522B2 (en) Reflected light measuring apparatus and reflected light measuring method
JP3220252B2 (en) EO probe
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JPS6052744A (en) Measuring device of spectral transmittance
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP2890699B2 (en) Non-contact orientation meter
JPH03231103A (en) Optical measuring method for coated thin film of transparent plate
JPS57182604A (en) Interference measuring device
JP3540054B2 (en) Straightness interferometer
JPH02186304A (en) Optical instructing device
JPH04151542A (en) Spherical surface mirror and floating-particulate counting device
JPS5710406A (en) Measuring method for convex surface
EP0509848A2 (en) Measuring the cross-sectional distribution of the refractive index of an optical waveguide
JPS60123802A (en) Beam reflector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees