JPH05164737A - Capillary electrophoretic method and apparatus capable of performing on-line pretreatment - Google Patents

Capillary electrophoretic method and apparatus capable of performing on-line pretreatment

Info

Publication number
JPH05164737A
JPH05164737A JP3354833A JP35483391A JPH05164737A JP H05164737 A JPH05164737 A JP H05164737A JP 3354833 A JP3354833 A JP 3354833A JP 35483391 A JP35483391 A JP 35483391A JP H05164737 A JPH05164737 A JP H05164737A
Authority
JP
Japan
Prior art keywords
capillary
injection
drain
separation
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3354833A
Other languages
Japanese (ja)
Other versions
JP3063344B2 (en
Inventor
Ikue Morita
幾江 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3354833A priority Critical patent/JP3063344B2/en
Publication of JPH05164737A publication Critical patent/JPH05164737A/en
Application granted granted Critical
Publication of JP3063344B2 publication Critical patent/JP3063344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To concentrate an objective component by directly injecting an actual specimen containing protein by capillary electrophoresis to analyze the same. CONSTITUTION:A microporous column 8 packed with a functional packing agent 10 is provided on the injection side of a three-way branched capillary. High voltage is applied to the capillary on its drain side while the injection end of the capillary is immersed in a specimen solution to generate electroosmotic flow from the column 8 to a drain and an unnecessary component is discharged to the drain and a component to be analyzed is distributed to the column 8. Next, the injection end is immersed in a buffer solution and high voltage is applied to a separation capillary 2 to execute capillary electrophoretic separation and the component to be analyzed is detected by a detector 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛋白質、核酸などの生体
高分子、薬物、光学異性体その他イオン性低分子量化合
物などの迅速な高分離分析に利用されるキャピラリ電気
泳動方法と、そのキャピラリ電気泳動方法を実施する電
気泳動装置に関するものである。
FIELD OF THE INVENTION The present invention relates to a capillary electrophoresis method used for rapid and high resolution analysis of biopolymers such as proteins and nucleic acids, drugs, optical isomers and other ionic low molecular weight compounds, and its capillary electrophoresis. The present invention relates to an electrophoretic device for carrying out a migration method.

【0002】[0002]

【従来の技術】電気泳動の高性能装置化技術であるキャ
ピラリ電気泳動装置は、高分離で迅速な分析が可能であ
り、試料消費量が極微量ですむといった利点を備えてい
るため、生化学、薬品、食品等の分野で注目されてい
る。用いられるキャピラリは通常内径が50〜100μ
m、長さが20〜100cmの溶融石英製であり、外面
にポリイミドコーティングが施されている。キャピラリ
中には泳動バッファか重合したゲルが充填されている。
nlオーダーの試料がキャピラリの一端に注入された
後、キャピラリの両端間に30kV程度の高電圧が印加
されて試料成分が泳動させられ、分離されてキャピラリ
の他端付近で検出される。
2. Description of the Related Art Capillary electrophoresis, which is a high-performance electrophoretic technology, has the advantages of high resolution, rapid analysis, and extremely low sample consumption. , Is attracting attention in fields such as medicine and food. The capillary used usually has an inner diameter of 50 to 100 μ.
It is made of fused silica and has a length of 20 to 100 cm and a polyimide coating on its outer surface. The capillary is filled with a migration buffer or a polymerized gel.
After the nl-order sample is injected into one end of the capillary, a high voltage of about 30 kV is applied between both ends of the capillary to migrate the sample components, and the sample components are separated and detected near the other end of the capillary.

【0003】キャピラリ電気泳動は広く知られるように
なってきた分離分析手段ではあるが、今までのところ高
純度の標品の分析が大多数である。特に生体試料のよう
な複雑なマトリック中に存在する特定成分の分離分析は
困難である。血漿、血清、尿などの生体試料の直接注入
分析は、蛋白質のピークが目的成分の検出を妨害するだ
けでなく、キャピラリの溶融石英表面への吸着が起こる
と以後の分析にも致命的な影響を与える。そのような問
題を避けるために、ほとんどの生体試料は例えば溶媒抽
出などによるマルチステップの試料クリーンアップ操作
を厳格に行なう必要がある。
Capillary electrophoresis is a widely known method for separation and analysis, but so far, the majority of high-purity preparations have been analyzed. Particularly, it is difficult to separate and analyze a specific component existing in a complicated matrix such as a biological sample. Direct injection analysis of biological samples such as plasma, serum and urine not only interferes with the detection of the target component by the protein peak but also has a fatal effect on the subsequent analysis when adsorption on the fused silica surface of the capillary occurs. give. To avoid such problems, most biological samples require rigorous multi-step sample cleanup procedures, such as solvent extraction.

【0004】キャピラリ電気泳動を血漿中の薬物分析に
応用した例としては、中川等による報告がある(Chem.
Pharm. Bull., 36, 1622(1988); ibid, 37, 707(1988)
を参照)。その報告によれば、SDSミセルを加えると
蛋白質の移動が遅くなり、薬物のピークを分離すること
ができる。また、目的とする薬物のピークが検出された
後は、他の不要な成分の検出を待つことなく、キャピラ
リを洗浄して次の分析を行なうことができる。
An example of application of capillary electrophoresis to drug analysis in plasma is reported by Nakagawa et al. (Chem.
Pharm. Bull., 36 , 1622 (1988); ibid, 37 , 707 (1988)
See). According to the report, the addition of SDS micelles slows the migration of proteins and allows the separation of drug peaks. Further, after the peak of the target drug is detected, the capillary can be washed and the next analysis can be performed without waiting for the detection of other unnecessary components.

【0005】一方、内径が100μm以下のキャピラリ
の一部をそのまま検出セルとする分光検出器(Spectrop
hotometric Detector)は濃度感度が悪いという宿命を
もっているが、この問題を改善しようとする試みの1つ
が、試料ゾーンオンライン濃縮である。オンライン濃縮
方法として次のa,bの2種類がある。 (a)等速電気泳動的濃縮方法;例えばバックグラウン
ドの泳動バッファと比較して十分に希薄なサンプルを多
量に注入して等速電気泳動的に濃縮効果が期待できるこ
とはよく知られている。 (b)充填剤に目的成分をトラップ又は遅延させる方
法;キャピラリの一部に多孔性フリットでポリマービー
ズやCPG(コントロールポアガラス)ビーズなどの充
填剤を挾み込んだ区間を設けて、多成分系試料が通過す
る際、特定の目的成分だけをトラップ又は遅延させる濃
縮方法である。例えば抗体固定化ビーズを利用した例は
J. Liq. Chromatogr., 14(5),997-1015(1991)に述べら
れている。
On the other hand, a spectroscopic detector (Spectrop) in which a part of a capillary having an inner diameter of 100 μm or less is used as a detection cell as it is
Although the hotometric detector has a fate that the concentration sensitivity is poor, one of the attempts to improve this problem is the sample zone online concentration. There are the following two types of online concentration methods: a and b. (A) Isotachophoretic concentration method: For example, it is well known that a sufficiently dilute sample can be injected in a large amount as compared with a background migration buffer to expect a concentration effect by isotachophoresis. (B) A method of trapping or delaying the target component in the filler; a section in which the filler such as polymer beads or CPG (control pore glass) beads is sandwiched by a porous frit is provided in a part of the capillary to provide a multi-component. It is a concentration method in which only a specific target component is trapped or delayed when a system sample passes through. For example, using antibody-immobilized beads
J. Liq. Chromatogr., 14 (5), 997-1015 (1991).

【0006】[0006]

【発明が解決しようとする課題】分離キャピラリに不要
成分、特に問題の起こりやすい高分子不純物を導入する
のは好ましくなく、キャピラリ電気泳動法を生体試料中
の薬物量のモニタリングのような臨床的な利用法として
確立するためにも不要成分の導入は避けなければならな
い。オンライン濃縮に関しては、等速電気泳動的な濃縮
方法は、用いるバッファのpHによっては試料の溶媒ピ
ークが妨害をする。キャピラリの一部に目的成分をトラ
ップ又は遅延させる充填剤を挾み込む方法では、結局分
離カラムに不要な成分も導入されるため、充分な洗浄が
必要となる。本発明は実試料を直接注入して分析すると
ともに、目的成分の濃縮効果も合わせもつキャピラリ電
気泳動方法とその方法に用いる電気泳動装置を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION It is not preferable to introduce unnecessary components, particularly high-molecular-weight impurities that tend to cause problems, to separation capillaries, and capillary electrophoresis is used for clinical applications such as monitoring of drug amount in biological samples. In order to establish it as a usage method, it is necessary to avoid introducing unnecessary components. For on-line concentration, isotachophoretic concentration methods interfere with the solvent peak of the sample depending on the pH of the buffer used. In the method in which a packing material that traps or delays the target component is sandwiched in a part of the capillary, unnecessary components are eventually introduced into the separation column, and thus sufficient washing is required. An object of the present invention is to provide a capillary electrophoresis method which directly injects and analyzes an actual sample and also has an effect of concentrating a target component, and an electrophoresis apparatus used for the method.

【0007】[0007]

【課題を解決するための手段】本発明のキャピラリ電気
泳動方法では、キャピラリを注入用キャピラリ、分離用
キャピラリ及びドレイン用キャピラリに分岐した三方分
岐型とし、注入用キャピラリには不要成分を溶出し分析
対象成分を保持する前処理用充填剤を充填し、注入用キ
ャピラリ端を試料溶液に浸し、注入用キャピラリ端とド
レイン用キャピラリ端の間に高電圧を印加して不要成分
をドレインへ廃棄した後、注入用キャピラリ端をバッフ
ァ液に浸し、注入用キャピラリ端と分離用キャピラリ端
の間に高電圧を印加して前記前処理用充填剤に保持され
ていた分析対象成分を分離分析する。
In the capillary electrophoresis method of the present invention, the capillaries are of a three-way branch type in which the capillaries for injection, the separation capillaries and the drain capillaries are branched, and unnecessary components are eluted and analyzed in the injection capillaries. After filling the pretreatment filler that holds the target component, immersing the injection capillary end in the sample solution, applying a high voltage between the injection capillary end and the drain capillary end, and discarding unnecessary components to the drain The end of the injection capillary is immersed in a buffer solution, and a high voltage is applied between the end of the injection capillary and the end of the separation capillary to separate and analyze the components to be analyzed held in the pretreatment filler.

【0008】このキャピラリ電気泳動方法を実現するた
めに、本発明のキャピラリ電気泳動装置は、注入用キャ
ピラリ、分離用キャピラリ及びドレイン用キャピラリに
分岐し、注入用キャピラリには不要成分を溶出し分析対
象成分を保持する前処理用充填剤を充填した三方分岐型
キャピラリと、注入用キャピラリ端とドレイン用キャピ
ラリ端の間、及び注入用キャピラリ端と分離用キャピラ
リ端の間にそれぞれ独立して高電圧を印加できる電源装
置とを備えている。
In order to realize this capillary electrophoresis method, the capillary electrophoresis apparatus of the present invention is branched into injection capillaries, separation capillaries and drain capillaries, and unnecessary components are eluted in the injection capillaries to be analyzed. A three-way branched capillary filled with a pretreatment filler that retains the components, a high voltage is independently applied between the injection capillary end and the drain capillary end, and between the injection capillary end and the separation capillary end. And a power supply device that can be applied.

【0009】前処理用充填剤に用いる機能性充填剤の例
としては次のa〜dのようなものがある。 (a)蛋白質コートODS(Protein-coated ODS);
これは、ODSシリカ表面に蛋白質(例えばBSA)を
非可逆的に吸着させたものである。穴の表面は通常のO
DSである(Chromatographia, 19, 466(1984); Anal.
Biochem., 151, 358(1985)を参照)。 (b)ISRP(Internal Surfice Reversed Phase) (c)SHP(Shielded Hydrophobic Phase) これらの充填剤は、いずれもサイズ排除メカニズムで蛋
白質が分配結合相と接触するのを防ぐために考えられた
直接注入用カラム充填剤であり、逆相液体クロマトグラ
フィの要領で溶出させる。 (d)抗体固定化カラム これは、免疫反応により抗原だけを特異的に結合させ
る。逆に抗原を固定化させて抗体を特異的に結合させる
ものもある。結合した抗原又は抗体はpHを変えて溶離
させる(J. Chromatogr., 544, 13(1991),Chromatogra
phia,27,574(1989)を参照)。また、注入端に透析膜を
入れたキャピラリの作成を試みることにより、高分子物
質と低分子物質が共存する多成分系の試料から、低分子
物質のみを試料として導入でき、注入と同時に除蛋白と
いった前処理を行なう機能をもたせることができる。
Examples of the functional fillers used as the pretreatment fillers include the following a to d. (A) Protein-coated ODS;
This is a protein (for example, BSA) irreversibly adsorbed on the surface of ODS silica. The surface of the hole is normal O
DS (Chromatographia, 19 , 466 (1984); Anal.
Biochem., 151 , 358 (1985)). (B) ISRP (Internal Surfice Reversed Phase) (c) SHP (Shielded Hydrophobic Phase) All of these packing materials are columns for direct injection, which are designed to prevent proteins from contacting the partitioning and binding phase by a size exclusion mechanism. It is a packing material and is eluted as in reverse phase liquid chromatography. (D) Antibody-immobilized column This specifically binds only the antigen by the immune reaction. On the contrary, there is also one in which an antigen is immobilized and an antibody is specifically bound. The bound antigen or antibody is eluted by changing pH (J. Chromatogr., 544 , 13 (1991), Chromatogra.
phia, 27 , 574 (1989)). In addition, by attempting to create a capillary with a dialysis membrane at the injection end, it is possible to introduce only low-molecular substances as a sample from a multi-component system sample in which high-molecular substances and low-molecular substances coexist, and deproteinize simultaneously with injection. It is possible to have a function of performing preprocessing such as.

【0010】[0010]

【作用】三方分岐型キャピラリの注入用キャピラリ端に
対しドレイン用キャピラリ端と分離用キャピラリ端をそ
れぞれ別の泳動バッファに浸し、電極を介して注入端と
の間に2ブロックの回路を構成する。注入端からドレイ
ン用キャピラリ端への流路と注入端から分離用キャピラ
リ端への流路の2つの流路の切換えは、各ブロックの電
圧印加のオンオフによって行なう。まず、注入端を試料
溶液に浸し、ドレイン用キャピラリ側に高電圧を印加
し、分離用キャピラリ側を電気的に浮かせた状態にする
と、注入端からドレイン方向へ電気浸透流が発生し、前
処理用充填剤部分を試料が通過する。前処理用充填剤に
保持されない物質やその間に要した溶媒は分離用キャピ
ラリには入らずにドレイン側へ流れて廃棄される。この
前処理の後、注入端を浸すのを試料溶液からバッファ液
に替え、分離用キャピラリ側に高電圧を印加し、ドレイ
ン用キャピラリ側を電気的に浮かせた状態とする。これ
により、前処理用充填剤に保持されていた成分が分離用
キャピラリ側を電気泳動して検出される。
With respect to the injection capillary end of the three-way branch type capillary, the drain capillary end and the separation capillary end are respectively immersed in different migration buffers, and two blocks of circuits are formed between the injection end and the injection end via the electrodes. Switching of two flow paths, that is, a flow path from the injection end to the drain capillary end and a flow path from the injection end to the separation capillary end is performed by turning on and off the voltage application of each block. First, when the injection end is immersed in the sample solution, a high voltage is applied to the drain capillary side, and the separation capillary side is electrically floated, an electroosmotic flow occurs from the injection end to the drain direction, and the pretreatment is performed. The sample passes through the filler portion. The substances that are not retained by the pretreatment filler and the solvent required between them do not enter the separation capillary and flow to the drain side and are discarded. After this pretreatment, the sample solution is changed to a buffer solution by immersing the injection end, a high voltage is applied to the separation capillary side, and the drain capillary side is electrically floated. As a result, the components retained in the pretreatment filler are detected by performing electrophoresis on the separation capillary side.

【0011】前処理用充填剤として、例えば蛋白質コー
トODS、ISRP、SHPなど低分子量化合物を分配
させ、蛋白質を高回収率で溶出させるものを用いると、
生体液中に薬物、代謝物、ペプチドなどを含む試料を直
接注入して分析することができる。すなわち、ドレイン
側への泳動により電気浸透流で前処理用充填剤を通過し
た不要の物質や溶媒などはドレイン側へ移動し、次いで
分離用キャピラリ側の電気泳動により前処理用充填剤に
保持された目的物質のみを溶出させ、電気泳動により分
離させることができる。このとき、濃縮効果も同時に期
待できる。
As the pretreatment filler, for example, one which distributes a low molecular weight compound such as protein coat ODS, ISRP or SHP and elutes the protein at a high recovery rate is used.
A sample containing a drug, a metabolite, a peptide, etc. can be directly injected into a biological fluid for analysis. That is, unnecessary substances and solvents that have passed through the pretreatment filler in the electroosmotic flow due to migration to the drain side move to the drain side, and are then retained in the pretreatment filler by electrophoresis on the separation capillary side. Only the target substance can be eluted and separated by electrophoresis. At this time, a concentration effect can be expected at the same time.

【0012】[0012]

【実施例】図1は一実施例の装置構成を概略的に表わし
たものである。キャピラリは分離用キャピラリ2、ドレ
イン用キャピラリ4及び注入用キャピラリ6が分岐位置
Aで分岐した三方分岐型キャピラリである。注入用キャ
ピラリ6の一部は充填剤が詰められたマイクロボアカラ
ム8となっている。マイクロボアカラム8は蛋白質コー
トODSなどの機能性充填剤が目的に応じて充填された
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows the apparatus configuration of one embodiment. The capillary is a three-way branch type capillary in which the separation capillary 2, the drain capillary 4 and the injection capillary 6 are branched at the branch position A. A part of the injection capillary 6 is a microbore column 8 packed with a packing material. The microbore column 8 is filled with a functional filler such as a protein coat ODS according to the purpose.

【0013】注入用キャピラリ6の端部は試料溶液又は
バッファ液に浸す。16はバッファ液の入ったバッファ
溶液を示している。分離用キャピラリ2の端部を検出側
バッファ容器18中のバッファ液に浸し、ドレイン用キ
ャピラリ4の端部をドレイン側バッファ容器20のバッ
ファ液に浸す。注入用キャピラリ端の試料溶液及びバッ
ファ液には電極26が浸され、分離用キャピラリ端のバ
ッファ液には電極28が浸され、注入用キャピラリ端の
バッファ液には電極32が浸される。分析用検出器22
は分離用キャピラリ2の端部に設けられており、検出器
22の信号は記録計24へ出力されて記録される。
The end of the injection capillary 6 is immersed in the sample solution or buffer solution. Reference numeral 16 represents a buffer solution containing a buffer solution. The end of the separation capillary 2 is dipped in the buffer solution in the detection side buffer container 18, and the end of the drain capillary 4 is dipped in the buffer solution in the drain side buffer container 20. The electrode 26 is immersed in the sample solution and the buffer solution at the end of the injection capillary, the electrode 28 is immersed in the buffer solution at the end of the separation capillary, and the electrode 32 is immersed in the buffer solution at the end of the injection capillary. Analytical detector 22
Is provided at the end of the separation capillary 2, and the signal of the detector 22 is output to the recorder 24 and recorded.

【0014】注入用キャピラリ端の電極26と分離用キ
ャピラリ端の電極28の間(Aブロック)には電源30
によって高電圧が印加され、注入用キャピラリ端の電極
26とドレイン用キャピラリ端の電極32の間(Bブロ
ック)には電源34によって高電圧が印加される。電源
30,34にはそれぞれスイッチが設けられ、Aブロッ
クとBブロックで互いに独立して高電圧を印加できるよ
うになっている。31,35はそれぞれ各ブロックの電
流計である。
A power supply 30 is provided between the electrode 26 at the end of the injection capillary and the electrode 28 at the end of the separation capillary (A block).
A high voltage is applied by the power supply 34 between the electrode 26 at the end of the injection capillary and the electrode 32 at the end of the drain capillary (B block). Each of the power supplies 30 and 34 is provided with a switch so that a high voltage can be independently applied to the A block and the B block. Reference numerals 31 and 35 are ammeters of the respective blocks.

【0015】図2にマイクロボアカラム8の一例を示
す。マイクロボアカラム8は内径が約100μmの溶融
石英キャピラリ中に、多孔性シリカゲルベースやCPG
ガラスビーズなどの充填剤10を2つの多孔性ガラスフ
リット12,14によって封入させたものである。この
ようなマイクロボアカラムは、硼珪酸ガラスビーズをキ
ャピラリ端にドライパックし焼結した後、そこへ機能性
充填剤をドライパック又はスラリーパックし、最後に焼
結ガラスでプラグすることにより、製作することができ
る。
FIG. 2 shows an example of the microbore column 8. The microbore column 8 has a porous silica gel base or CPG in a fused silica capillary with an inner diameter of about 100 μm.
A filler 10 such as glass beads is enclosed by two porous glass frits 12 and 14. Such a microbore column is manufactured by dry-packing borosilicate glass beads on the end of the capillary and sintering, then dry-packing or slurry-packing the functional filler therein, and finally plugging with sintered glass. can do.

【0016】図1の実施例の動作について説明する。注
入用キャピラリ6の端部を試料溶液に浸し、分離用キャ
ピラリ2の端部を検出側バッファ液に浸し、ドレイン用
キャピラリ4の端部をドレイン側バッファ液に浸す。B
ブロックの電源34でドレイン側に高電圧を印加し(例
えば10kV以下で数分間)、Aブロック側は電源を入
れない。このとき、Bブロックの高電圧に対するグラウ
ンドと、分離用キャピラリ2の端部の電位がともにグラ
ウンドになっている場合には、分離用キャピラリ2にも
電気回路が生じてしまうので、電源30のスイッチを切
って検出側バッファ液を電気的に浮いた状態にする。こ
れにより、電気浸透流はマイクロボアカラム8からドレ
インに向けて流れることになり、充填剤に応じた液体ク
ロマトグラフィーモードの分離が行なわれる。例えば、
マイクロボアカラム8に蛋白質コーティングODSカラ
ムを用いると、血清試料の導入により血清蛋白質は高回
収率でドレインへ廃棄され、血清中の薬物などは細孔内
のODSシリカに分配される。
The operation of the embodiment shown in FIG. 1 will be described. The end of the injection capillary 6 is dipped in the sample solution, the end of the separation capillary 2 is dipped in the detection side buffer solution, and the end of the drain capillary 4 is dipped in the drain side buffer solution. B
A high voltage is applied to the drain side of the block power supply 34 (for example, 10 kV or less for several minutes), and the A block side is not turned on. At this time, when the ground for the high voltage of the B block and the potential of the end of the separation capillary 2 are both ground, an electric circuit is generated in the separation capillary 2 as well, so that the switch of the power supply 30 is switched. To disconnect the detection side buffer solution so that it floats electrically. As a result, the electroosmotic flow flows from the microbore column 8 toward the drain, and liquid chromatography mode separation according to the packing material is performed. For example,
When a protein-coated ODS column is used as the microbore column 8, a serum sample is introduced into the drain at a high recovery rate by the introduction of the serum sample, and the drug in the serum is distributed to the ODS silica in the pores.

【0017】次いで、注入用キャピラリ端の試料容器を
有機溶剤、例えば70%程度のアセトニトリル、を含む
溶離用バッファ容器に替え、試料注入時とは逆にAブロ
ックの電源30で高電圧を印加し(例えば10kV以下
で10秒程度)、Bブロックの電源34を切ることによ
って分離用キャピラリ2方向へ目的成分を溶離させる。
次に、Aブロックの電源30で高電圧を印加し(例えば
20kV)、キャピラリ電気泳動分離を実行する。Bブ
ロック側の電源を切るときもドレイン用キャピラリ端が
グラウンドに落ちていると溶離した成分がドレイン側に
も流れる恐れがあるので、電気的に浮かせる。これによ
り、血清中の薬物の総量が分離用キャピラリ2に導入さ
れ、注入試料に対し濃縮されたものがキャピラリ電気泳
動で分離され、検出器22で検出される。
Next, the sample container at the end of the injection capillary is replaced with an elution buffer container containing an organic solvent, for example, about 70% acetonitrile, and a high voltage is applied by the power source 30 of the A block, contrary to the case of sample injection. The target component is eluted toward the separation capillary 2 by turning off the power supply 34 of the B block (for example, for 10 seconds at 10 kV or less).
Next, a high voltage is applied (for example, 20 kV) from the power source 30 of the A block, and capillary electrophoresis separation is performed. Even when the power supply on the B block side is turned off, if the end of the drain capillary is dropped to the ground, the eluted component may flow to the drain side, so it is electrically floated. As a result, the total amount of the drug in serum is introduced into the separation capillary 2, and the concentrated sample with respect to the injected sample is separated by capillary electrophoresis and detected by the detector 22.

【0018】前処理用充填剤入りキャピラリカラムの濃
縮効果は、例えば50mMリン酸塩緩衝液(pH7.
0)を泳動バッファとして、蛋白質コートODS入りキ
ャピラリを用いたとき、薬物(例えばプロプラノロー
ル)は少なくとも100倍の濃縮が可能であり、ピーク
面積(高さ)は注入時間/濃度に比例し、良好な直線性
を示した。また濃縮ゲルを付けることによる分離能の低
下は10%以下であった。三方分岐型キャピラリを用い
てプロプラノロールを添加した血清試料を直接注入し、
洗浄及び分離過程を各々のキャピラリ(ドレイン用と分
離用)で紫外検出(280nm)すると、電気浸透流に
よる洗浄過程ではドレイン用キャピラリにのみ夾雑・不
要成分(主として血清蛋白質)が溶離され、分離過程で
は分離用キャピラリのみに目的薬物のプロプラノロール
を定量的に検出した。
The concentration effect of the capillary column containing the pretreatment filler is, for example, 50 mM phosphate buffer (pH 7.
When a capillary containing protein-coated ODS is used as the migration buffer (0), the drug (eg, propranolol) can be concentrated at least 100 times, and the peak area (height) is proportional to the injection time / concentration, It showed linearity. Further, the decrease in the resolution due to the application of the concentrated gel was 10% or less. Direct injection of serum sample added with propranolol using a three-way branched capillary,
When UV detection (280 nm) is applied to each of the capillaries (drain and separation) in the washing and separating processes, the impurities and unnecessary components (mainly serum proteins) are eluted only in the drain capillaries during the washing process by electroosmotic flow, and the separating process Then, the target drug propranolol was quantitatively detected only in the separation capillary.

【0019】図1においては、AブロックとBブロック
に独立して高電圧を印加するために、それぞれのブロッ
クに電源30,34を設けているが、1台の電源を用
い、高電圧リレーによりいずれかのブロックに振り分け
て電圧を印加できるようにしてもよい。
In FIG. 1, in order to apply a high voltage independently to the A block and the B block, power supplies 30 and 34 are provided in each block, but one power supply is used and a high voltage relay is used. The voltage may be applied to any one of the blocks.

【0020】[0020]

【発明の効果】本発明では、液体クロマトグラフィー前
処理カラムとキャピラリ電気泳動を電気浸透流でオンラ
イン化したので、分離能を低下させることなく、異なる
分離モードを組み合わせることができる。しかも、直接
導入した上で不要成分を分離用キャピラリに入る前に系
外に除去することにより、目的成分のピークと重なるこ
となく、また分離用キャピラリに悪影響を残すことなく
分析が可能になる。目的成分を前処理カラムにトラップ
するので、目的成分が注入試料から濃縮される効果もあ
る。分離目的に応じて種々の機能性充填剤を使い分ける
と、適用範囲が拡大する。試料直接注入高速液体クロマ
トグラフィー分析に本発明を適用して分析の迅速化を図
るとともに、蛋白結合型薬物の遊離型、結合型の量の分
別分析を行なうなどの応用ができる。
INDUSTRIAL APPLICABILITY In the present invention, since the liquid chromatography pretreatment column and the capillary electrophoresis are brought online by electroosmotic flow, different separation modes can be combined without lowering the resolution. Moreover, by directly introducing and removing unnecessary components from the system before entering the separation capillary, analysis can be performed without overlapping the peak of the target component and leaving no adverse effect on the separation capillary. Since the target component is trapped in the pretreatment column, the target component is also concentrated from the injected sample. The range of application is expanded by properly using various functional fillers according to the purpose of separation. The present invention can be applied to direct injection high-performance liquid chromatographic analysis of a sample to speed up the analysis, and can also be applied to the fractional analysis of the amount of the free form or the bound form of a protein-bound drug.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an apparatus of an embodiment.

【図2】同実施例における前処理用マイクロボアカラム
を拡大して示す断面図である。
FIG. 2 is an enlarged sectional view showing a pretreatment microbore column in the same Example.

【符号の説明】[Explanation of symbols]

2 分離用キャピラリ 4 ドレイン用キャピラリ 8 前処理用マイクロボアカラム 10 機能性充填剤 16 バッファ容器 18 検出側バッファ容器 20 ドレイン側バッファ容器 22 検出器 26,28,32 電極 30,34 電源 2 Capillary for separation 4 Capillary for drain 8 Microbore column for pretreatment 10 Functional packing material 16 Buffer container 18 Detection side buffer container 20 Drain side buffer container 22 Detector 26, 28, 32 Electrode 30, 34 Power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 30/14 A 8506−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 30/14 A 8506-2J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 キャピラリを注入用キャピラリ、分離用
キャピラリ及びドレイン用キャピラリに分岐した三方分
岐型とし、注入用キャピラリには不要成分を溶出し分析
対象成分を保持する前処理用充填剤を充填し、注入用キ
ャピラリ端を試料溶液に浸し、注入用キャピラリ端とド
レイン用キャピラリ端の間に高電圧を印加して不要成分
をドレインへ廃棄した後、注入用キャピラリ端をバッフ
ァ液に浸し、注入用キャピラリ端と分離用キャピラリ端
の間に高電圧を印加して前記前処理用充填剤に保持され
ていた分析対象成分を分離分析するキャピラリ電気泳動
方法。
1. A three-way branch type in which a capillary is branched into an injection capillary, a separation capillary, and a drain capillary, and the injection capillary is filled with a pretreatment filler that elutes unnecessary components and holds components to be analyzed. , The end of the injection capillary is immersed in the sample solution, a high voltage is applied between the end of the injection capillary and the end of the drain capillary to discard unnecessary components to the drain, and then the end of the injection capillary is immersed in a buffer solution for injection. A capillary electrophoresis method in which a high voltage is applied between a capillary end and a separation capillary end to separate and analyze a component to be analyzed held in the pretreatment filler.
【請求項2】 注入用キャピラリ、分離用キャピラリ及
びドレイン用キャピラリに分岐し、注入用キャピラリに
は不要成分を溶出し分析対象成分を保持する前処理用充
填剤を充填した三方分岐型キャピラリと、注入用キャピ
ラリ端とドレイン用キャピラリ端の間、及び注入用キャ
ピラリ端と分離用キャピラリ端の間にそれぞれ独立して
高電圧を印加できる電源装置とを備えたキャピラリ電気
泳動装置。
2. A three-way branched capillary which is branched into an injection capillary, a separation capillary and a drain capillary, and the injection capillary is filled with a pretreatment filler that elutes unnecessary components and retains components to be analyzed. A capillary electrophoresis apparatus comprising: a power supply device capable of independently applying a high voltage between an end of an injection capillary and an end of a drain capillary and between an end of an injection capillary and an end of a separation capillary.
JP3354833A 1991-12-18 1991-12-18 Capillary electrophoresis method and apparatus capable of online pretreatment Expired - Fee Related JP3063344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3354833A JP3063344B2 (en) 1991-12-18 1991-12-18 Capillary electrophoresis method and apparatus capable of online pretreatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3354833A JP3063344B2 (en) 1991-12-18 1991-12-18 Capillary electrophoresis method and apparatus capable of online pretreatment

Publications (2)

Publication Number Publication Date
JPH05164737A true JPH05164737A (en) 1993-06-29
JP3063344B2 JP3063344B2 (en) 2000-07-12

Family

ID=18440214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3354833A Expired - Fee Related JP3063344B2 (en) 1991-12-18 1991-12-18 Capillary electrophoresis method and apparatus capable of online pretreatment

Country Status (1)

Country Link
JP (1) JP3063344B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004909A1 (en) * 1996-07-30 1998-02-05 Aclara Biosciences, Inc. Integrated microfluidic devices
US6344326B1 (en) 1996-07-30 2002-02-05 Aclara Bio Sciences, Inc. Microfluidic method for nucleic acid purification and processing
JP2021130763A (en) * 2020-02-19 2021-09-09 信越化学工業株式会社 Material for forming organic film, method for forming pattern, and polymer
WO2021260951A1 (en) * 2020-06-26 2021-12-30 株式会社日立ハイテク Electrophoresis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004909A1 (en) * 1996-07-30 1998-02-05 Aclara Biosciences, Inc. Integrated microfluidic devices
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US6007690A (en) * 1996-07-30 1999-12-28 Aclara Biosciences, Inc. Integrated microfluidic devices
US6344326B1 (en) 1996-07-30 2002-02-05 Aclara Bio Sciences, Inc. Microfluidic method for nucleic acid purification and processing
AU744264B2 (en) * 1996-07-30 2002-02-21 Aclara Biosciences, Inc. Integrated microfluidic devices
JP2021130763A (en) * 2020-02-19 2021-09-09 信越化学工業株式会社 Material for forming organic film, method for forming pattern, and polymer
WO2021260951A1 (en) * 2020-06-26 2021-12-30 株式会社日立ハイテク Electrophoresis device
GB2610753A (en) * 2020-06-26 2023-03-15 Hitachi High Tech Corp Electrophoresis device

Also Published As

Publication number Publication date
JP3063344B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
Stroink et al. On‐line sample preconcentration in capillary electrophoresis, focused on the determination of proteins and peptides
Tomlinson et al. Preconcentration and microreaction technology on-line with capillary electrophoresis
US5800692A (en) Preseparation processor for use in capillary electrophoresis
Ali et al. Hyphenation in sample preparation: advancement from the micro to the nano world
Staub et al. Intact protein analysis in the biopharmaceutical field
Strausbauch et al. Mechanism of peptide separations by solid phase extraction capillary electrophoresis at low pH
Puig et al. Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications
Stroink et al. On-line multidimensional liquid chromatography and capillary electrophoresis systems for peptides and proteins
US5453382A (en) Electrochromatographic preconcentration method
Kennedy et al. Fast analytical-scale separations by capillary electrophoresis and liquid chromatography
US20020146349A1 (en) Automated capillary liquid chromatography small volume analysis system
JP4527619B2 (en) Preconcentration interface for connecting liquid chromatography to capillary electrophoresis
Sekhon An overview of capillary electrophoresis: pharmaceutical, biopharmaceutical and biotechnology applications
Benavente et al. Lowering the concentration limits of detection by on-line solid-phase extraction–capillary electrophoresis–electrospray mass spectrometry
WO2000049396A1 (en) Electrokinetic concentration of charged molecules
Yang et al. Two-dimensional capillary electrophoresis involving capillary isoelectric focusing and capillary zone electrophoresis
JP3477918B2 (en) Capillary electrophoresis chip
Tempels et al. Design and applications of coupled SPE‐CE
Saavedra et al. Chromatography-based on-and in-line pre-concentration methods in capillary electrophoresis
EP0617048A1 (en) Method of capillary isoelectric focusing of proteins and peptides with fraction collection for post-run analysis
Stroink et al. On‐line coupling of size‐exclusion chromatography and capillary zone electrophoresis via a reversed‐phase C18 trapping column for the determination of peptides in biological samples
JP3063344B2 (en) Capillary electrophoresis method and apparatus capable of online pretreatment
Moore Jr et al. [18] Two-dimensional liquid chromatography—capillary electrophoresis techniques for analysis of proteins and peptides
Tempels et al. On-line coupling of size exclusion chromatography and capillary electrophoresis via solid-phase extraction and a Tee-split interface
Theodoridis et al. Automated sample treatment by flow techniques prior to liquid-phase separations

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees