JPH05164677A - Measuring method of particle size distribution of particulate matter - Google Patents

Measuring method of particle size distribution of particulate matter

Info

Publication number
JPH05164677A
JPH05164677A JP3330499A JP33049991A JPH05164677A JP H05164677 A JPH05164677 A JP H05164677A JP 3330499 A JP3330499 A JP 3330499A JP 33049991 A JP33049991 A JP 33049991A JP H05164677 A JPH05164677 A JP H05164677A
Authority
JP
Japan
Prior art keywords
particle size
size distribution
surface shape
detected
granular object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3330499A
Other languages
Japanese (ja)
Inventor
Daisuke Onoda
大介 斧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3330499A priority Critical patent/JPH05164677A/en
Publication of JPH05164677A publication Critical patent/JPH05164677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain the correct particle size distribution of a particulate matter in a short time. CONSTITUTION:The surface of a particulate matter 1 is detected by a laser distance meter 3. The distance signal is transmitted to a processing part 4 to correct the surface shape. In the surface shape correcting part 4, a waveform signal is obtained based on the sequentially input distance signals, and the waveform signal is sent to a particle size extracting part 5. The waveform signal is subjected to a differentiation process and a threshold process in the extracting part 5, thereby to calculate the particle size distribution which is sent to a correcting/operating part 6. In th correcting/operating part 6, an inverse matrix vP<-1> of the probability vector of the particle size is obtained on the basis of tone data from a correcting data storing part 7, and the inverse matrix vP<-1> is multiplied by the value of the particle size distribution, thereby to correct the particle size distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉱石等のばら物からな
る粒状性物体の表面形状から、その粒状性物体の粒度分
布を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the particle size distribution of a granular object, which is composed of loose particles such as ores.

【0002】[0002]

【従来の技術】従来、鉱石等の粒状性物体を測定する方
法としては、篩を使用した方法が一般的である。この篩
を使用した方法は、例えば3mm,5mm,10mm,・・
・,30mm,50mmの篩目を有する篩を予め準備してお
き、搬送されてくる粒状性物体から試料をサンプリング
して、そのサンプリングした試料を篩目の最も小さい3
mmの篩から50mmの篩によって順次 篩い分け、篩い分
けられて分類された各試料の重量から、3mm以下,3〜
5mm,5〜10mm,・・・,50mm以上の夫々の原料の
重量比を求めることで、該粒状性物体の粒度分布として
いた。
2. Description of the Related Art Conventionally, a method using a sieve has been generally used as a method for measuring a granular object such as an ore. The method using this sieve is, for example, 3mm, 5mm, 10mm, ...
.Preparing a sieve having 30 mm and 50 mm sieve meshes in advance, sampling a sample from the granular material being conveyed, and sampling the sampled sample with the smallest sieve mesh size 3
3 mm or less, 3 to less than 3 mm from the weight of each sample classified by screening
The particle size distribution of the granular material was determined by obtaining the weight ratio of each raw material of 5 mm, 5 to 10 mm, ..., 50 mm or more.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の篩を使用した測定方法では、搬送されてくる鉱石を
サンプリング装置でサンプリングした後に、篩にて各粒
度毎の重量分布を夫々測定するために時間がかかり即時
性に欠けるという問題があった。なお、本出願人は、粒
状性物体の粒度分布のオンライン判定を特願平2−14
2585号において提案したが、その測定原理は良いも
のの粒度決定に当たり補正すべき点を見出し、その改良
を図ったのである。
However, in the above-mentioned conventional measuring method using a sieve, the weight of each particle size is measured by the sieve after sampling the transported ore with a sampling device. There was a problem that it took time and lacked immediacy. The applicant of the present invention has applied for Japanese Patent Application No. 2-14 for online determination of the particle size distribution of a granular object.
Although it was proposed in No. 2585, the measurement principle was good, but a point to be corrected when determining the grain size was found and an improvement was made.

【0004】本発明は、上記のような問題点に着目して
なされたもので、短い時間で粒状性物体の正確な粒度分
布を求めることを目的としている。
The present invention has been made in view of the above problems, and an object thereof is to obtain an accurate particle size distribution of a granular material in a short time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粒状性物体の粒度分布測定方法は、多数の
粒体から構成される粒状性物体の表面形状を測定し、そ
の表面形状に応じた波形信号に微分処理,及びスレッシ
ュホールド処理を実施して前記粒状性物体の粒度分布を
検出した後、その検出した粒度分布に、前記粒状性物体
を構成する各粒度が夫々,各階級の粒度として検出され
る確率をもとに統計処理を施して、前記粒度分布を補正
することを特徴としている。
In order to achieve the above object, the method for measuring the particle size distribution of a granular object according to the present invention measures the surface shape of a granular object composed of a large number of particles, and After performing the differential processing and the threshold processing on the waveform signal according to the shape to detect the particle size distribution of the granular object, each particle size forming the granular object is respectively detected in the detected particle size distribution. It is characterized in that the particle size distribution is corrected by performing statistical processing based on the probability of being detected as the particle size of the class.

【0006】[0006]

【作用】粒状性物体の表面形状をレーザ距離計等によっ
て測定し、その表面形状に応じた波形信号を微分処理及
びスレッシュホールド処理をすることで、該表面に顕れ
た各粒体によって形成される凹凸形状の凹部間のピッチ
を求め、その各ピッチを粒体の粒度と推定して測定対象
である粒状性物体の粒度分布を算出する。
Function: The surface shape of a granular object is measured by a laser distance meter or the like, and a waveform signal corresponding to the surface shape is subjected to differentiation processing and threshold processing to form each particle exposed on the surface. The pitch between the concavities and convexities of the concavo-convex shape is obtained, and each pitch is estimated as the particle size of the granular material to calculate the particle size distribution of the granular object to be measured.

【0007】しかしながら、表面形状を形成する凹凸の
状態からでは、図5に示されるように、同じ粒度の粒体
であっても、粒体同士の重なり具合によって実際の粒度
よりも小さい粒度として検出される場合がある。このた
め、前記方法で粒度Xに検出されたものの中には、実際
の粒度が、検出された粒度Xよりも大きいものが所定の
確率で混在している。
However, as shown in FIG. 5, even if the particles having the same particle size are detected as the particle size smaller than the actual particle size from the state of the unevenness forming the surface shape, due to the overlapping state of the particles. May be done. Therefore, among the particles detected as the particle size X by the above method, the actual particle size larger than the detected particle size X is mixed with a predetermined probability.

【0008】そこで、上記表面形状により算出した粒度
分布に各粒度の粒体が測定対象の各階級とみなされる確
率である粒度確率ベクトルを、測定した粒度分布に演算
して、実際よりも小さい粒度の階級として処理された粒
体を所定の大きさの粒度の階級とみなす補正をすること
で、前記測定した粒度分布を実際の粒度分布に収束させ
て、より実際の粒度分布に近い値に補正する。
Therefore, a particle size probability vector, which is the probability that particles of each particle size are regarded as each class of the measurement target in the particle size distribution calculated by the above surface shape, is calculated to the measured particle size distribution, and the particle size smaller than the actual particle size is calculated. By correcting the particles treated as the class of the particle size class of a predetermined size, the measured particle size distribution is converged to the actual particle size distribution and corrected to a value closer to the actual particle size distribution. To do.

【0009】次に、その補正の原理,及び上記粒度確率
ベクトルを説明する。例えば図4に示すような粒度Lの
粒体が、L1からL1+dL1と測定される確率を考え
てみる。このとき、どの測定ラインS(スレッシュホー
ルドされるライン)で検出されるかどうかの確率が同一
とすると、その粒体がL1〜L1+dL1の粒度と測定
される確率P(L1)は、下記式で表すことができる。
Next, the principle of the correction and the granularity probability vector will be described. For example, consider the probability that a particle having a grain size L as shown in FIG. 4 is measured as L1 to L1 + dL1. At this time, if the probability of which measurement line S (line to be thresholded) is detected is the same, the probability P (L1) that the particle is measured as the particle size of L1 to L1 + dL1 is calculated by the following formula. Can be represented.

【0010】但し、Lxは検出可能域の高さ量を示して
いる。 これをもとに、W個の同じ粒度Lの粒体からなる粒状性
物体の表面形状を条件を変えて繰り返し測定すると、前
記方法で検出する粒度分布Wsは、測定回数を増やすほ
ど下記式に示すような粒度分布に収束するような値で検
出される。 Ws(0〜L1 ) = P(0〜L1 ,L) ・W Ws(L1 〜L2 ) = P(L1 〜L2 ,L)・W Ws(L2 〜L3 ) = P(L2 〜L3 ,L)・W ・ ・ ・ Ws(Ln-1〜Ln)= P(Ln-1〜Ln,L)・W なお、上記粒度分布においては、粒度を0〜L1 ,L1
〜L2 ,L2 〜L3 ,・・・,Ln-1〜Lnのn個の階
級に分割している。また、Ws(X1 〜X2 )はX1
2 の階級の度数を表し、P(X1 ,X2 )は、上記
(1)式に基づいて粒度X2 の粒体が階級X1 と見なさ
れる確率を表している。
However, Lx represents the height amount of the detectable area. Based on this, when the surface shape of a granular object composed of W particles having the same particle size L is repeatedly measured under different conditions, the particle size distribution Ws detected by the above method is calculated by the following equation as the number of measurements increases. It is detected with a value that converges to the particle size distribution as shown. Ws (0~L 1) = P ( 0~L 1, L) · W Ws (L 1 ~L 2) = P (L 1 ~L 2, L) · W Ws (L 2 ~L 3) = P (L 2 to L 3 , L) · W ··· Ws (Ln −1 to Ln) = P (Ln −1 to Ln, L) · W In the above particle size distribution, the particle size is 0 to L 1 , L 1
~L 2, L 2 ~L 3, ···, are divided into n classes of Ln -1 Ln. Also, Ws (X 1 to X 2 ) is X 1 to
The frequency of the class of X 2 is represented, and P (X 1 , X 2 ) represents the probability that the particles of the grain size X 2 are regarded as the class X 1 based on the above formula (1).

【0011】また、他の各粒度の粒体においても上記と
同様な粒度分布が与えられる。すると、階級を前記と同
様のn個に分類し、0〜L1 の粒度がW(0〜L1
個,L1 〜L2 の粒度がW(L1 〜L2 )個,・・・,
Ln-1〜Lnの粒度がW(Ln-1〜Ln)個からなる粒
状性物体の粒度分布を測定した場合には、測定回数を増
やすほど、その粒状性物体の前記方法で測定される粒度
分布Wsは、次の式に近似した値で検出される。
Further, the same particle size distribution as above is given to the particles having other particle sizes. Then, the class is classified into n similar to the above, and the grain size of 0 to L 1 is W (0 to L 1 ).
, L 1 to L 2 have W (L 1 to L 2 ) granularity, ...
When the particle size distribution of a granular material having a particle size of Ln −1 to Ln consisting of W (Ln −1 to Ln) is measured, the particle size of the granular object measured by the above method increases as the number of measurements increases. The distribution Ws is detected with a value approximate to the following equation.

【0012】 Ws(0〜L1 )= P(0〜L1 ,0〜L1 )・W(0〜L1 ) +P(0〜L1 ,L1 〜L2 )・W(L1 〜L2 ) ・ ・ ・ +P(0〜L1 ,Ln-1〜Ln)・W(Ln-1〜Ln) Ws(L1 〜L2 )= P(L1 〜L2 ,0〜L1 )・W(0〜L1 ) +P(L1 〜L2 ,L1 〜L2 )・W(L1 〜L2 ) ・ ・ ・ +P(L1 〜L2 ,Ln-1〜Ln)・W(Ln-1〜Ln) ・ ・ ・ Ws(Ln-1〜Ln)= P(Ln-1〜Ln,0〜L1 )・W(0〜L1 ) +P(Ln-1〜Ln,L1 〜L2 )・W(L1 〜L2 ) ・ ・ ・ +P(Ln-1〜Ln,Ln-1〜Ln)・W(Ln-1〜Ln) 但し、上記式において、実際の粒度よりも大きな粒度と
して測定されることはないので、P(Ln-1〜Ln,L
1 〜L2 )等の値はゼロとなる。
[0012] Ws (0~L 1) = P ( 0~L 1, 0~L 1) · W (0~L 1) + P (0~L 1, L 1 ~L 2) · W (L 1 ~ L 2 ) ··· + P (0 to L 1 , Ln −1 to Ln) · W (Ln −1 to Ln) Ws (L 1 to L 2 ) = P (L 1 to L 2 , 0 to L 1 ).・ W (0 to L 1 ) + P (L 1 to L 2 , L 1 to L 2 ) ・ W (L 1 to L 2 ) ・ ・ + P (L 1 to L 2 , Ln -1 to Ln) ・ W (Ln -1 ~Ln) · · · Ws (Ln -1 ~Ln) = P (Ln -1 ~Ln, 0~L 1) · W (0~L 1) + P (Ln -1 ~Ln, L 1 〜L 2 ) ・ W (L 1 〜L 2 ) ・ ・ ・ + P (Ln −1 〜Ln, Ln −1 〜Ln) ・ W (Ln −1 〜Ln) However, in the above formula, it is more than the actual grain size. Since it is not measured as a large particle size, P (Ln −1 to Ln, L
Values such as 1 to L 2 ) are zero.

【0013】上記から分かるように、前記n個の階級に
分類される粒度の粒体からなる粒状性物体を測定する
と、測定回数を増やす程、下記の式に示される行列式に
近い値に収束して検出されるようになる。
As can be seen from the above, when a granular object composed of particles having a particle size classified into the n classes is measured, the more the number of times of measurement increases, the more it converges to a value close to the determinant shown in the following formula. Then it will be detected.

【0014】[0014]

【数1】 [Equation 1]

【0015】これを、V Ws= V P・V Wのように表
すとすると、V Pが前記粒度確率ベクトルを表し、ま
た、上記式から分かるようにV Pは正方行列であるので
必ず逆行列が存在して、V W=V -1V Wsと置き換
えることができる。この式から分かるように、実測した
粒度分布に前記粒度確率ベクトルV Pの逆行列V -1
演算することで、実測された粒度分布Wsは実際の粒度
分布Wに近づいた値に補正される。
If this is expressed as V Ws = V P · V W, then V P represents the granularity probability vector, and as can be seen from the above equation, V P is a square matrix, so it is always the inverse matrix. Exists and can be replaced with V W = V P −1 · V Ws. As can be seen from this equation, the actually measured particle size distribution Ws is corrected to a value close to the actual particle size distribution W by calculating the inverse matrix V P −1 of the particle size probability vector V P to the actually measured particle size distribution. It

【0016】上記粒度確率ベクトルを構成する階級に属
する粒体の粒度が夫々の階級として検出される確率は、
各粒体のモデルの形状を選定して該モデルの形状から理
論的に計算して求めるか、各階級の粒状性物体が夫々の
階級と見なされる確率を、前もって個々に実測して求め
ておく。
The probability that the particle sizes of the particles belonging to the classes forming the particle size probability vector are detected as the respective classes are
Select the shape of the model of each particle and calculate it theoretically from the shape of the model, or measure the probability that the granular objects of each class are considered to be the respective classes by individually measuring in advance. ..

【0017】[0017]

【実施例】本発明の実施例を図面に基づいて説明する。
なお、下記に説明する実施例では、測定対象の粒状性物
体は0〜50mmの粒度の粒体が混在して構成されている
ものとし、且つ0〜10,10〜20,20〜30,3
0〜40,40〜50の5個の階級に分類して粒度分布
を求める一例で説明する。
Embodiments of the present invention will be described with reference to the drawings.
In the examples described below, the granular object to be measured is assumed to be composed of a mixture of particles having a particle size of 0 to 50 mm, and 0 to 10, 10 to 20, 20 to 30, 3
An example will be described in which the particle size distribution is obtained by classifying into five classes of 0 to 40 and 40 to 50.

【0018】まず構成を説明すると、図1に示すよう
に、測定原料である粒状性物体1がベルトコンベヤ2の
上行ベルトに載せられて所定の位置まで搬送されてい
る。その上行ベルトが通過する途中の上方には受光軸を
下方に向けたレーザー距離計3が設置されて、コンベヤ
2で搬送されてくる粒状性物体1の表層部の凹凸を距離
の変化として測定している。
First, the structure will be described. As shown in FIG. 1, a granular material 1 as a raw material for measurement is placed on an ascending belt of a belt conveyor 2 and conveyed to a predetermined position. A laser range finder 3 with the light receiving axis facing downward is installed above the middle of the ascending belt passing, and the unevenness of the surface layer of the granular material 1 conveyed by the conveyor 2 is measured as a change in distance. ing.

【0019】そのレーザー距離計3は、表面形状処理部
4に接続され、その表面形状処理部4に対象とする粒状
性物体1表層部までの距離に対応する距離信号を供給す
る。その表面形状処理部4では、入力した距離信号を解
析して、測定対象の粒状性物体1の表面形状を算出可能
になっている。表面形状修正処理部4は、粒度抽出部5
に接続されていて、その算出した表面形状に応じた波形
信号を粒度抽出部5に供給可能になっている。その粒度
抽出部5は、微分回路,スレッシュホールド処理回路,
及び粒度分布算出回路を備えて、入力した波形信号を微
分演算した後、所定の測定ラインでスレッシュホールド
処理を施して各粒体の粒度を求め、求めた各粒度の個数
をもとに粒状性物体1の粒度分布を算出可能になってい
る。
The laser range finder 3 is connected to the surface shape processing unit 4 and supplies the surface shape processing unit 4 with a distance signal corresponding to the distance to the surface layer of the target granular object 1. The surface shape processing unit 4 can analyze the input distance signal and calculate the surface shape of the granular object 1 to be measured. The surface shape correction processing unit 4 includes a grain size extraction unit 5
, And a waveform signal corresponding to the calculated surface shape can be supplied to the particle size extraction unit 5. The granularity extraction unit 5 includes a differentiation circuit, a threshold processing circuit,
And a particle size distribution calculation circuit to differentiate the input waveform signal, then perform threshold processing on a predetermined measurement line to obtain the particle size of each particle, and determine the graininess based on the number of each particle size obtained. The particle size distribution of the object 1 can be calculated.

【0020】粒度抽出部5は、補正演算部6に接続され
ていて、該粒度抽出部5で算出した粒度分布の信号を該
補正演算部6に供給可能になっている。その補正演算部
6はまた補正データ格納部7と接続されていて該補正デ
ータ格納部7から目的の補正データを入力し、前記入力
した粒度分布と演算を行って粒度分布の補正するように
なっている。
The particle size extraction unit 5 is connected to the correction calculation unit 6 and can supply the signal of the particle size distribution calculated by the particle size extraction unit 5 to the correction calculation unit 6. The correction calculation unit 6 is also connected to the correction data storage unit 7 and inputs target correction data from the correction data storage unit 7 to perform calculation with the input particle size distribution to correct the particle size distribution. ing.

【0021】該補正データ収納部7内に格納されている
データは、各階級の粒体のサンプル1000個を複数回
測定してその階級の確率分布を夫々予め算出したもので
ある。例えば、粒度が40〜50mmのサンプル1000
個をレーザー距離計3で複数回測定して、その結果が、
例えば粒度40〜50mmの階級が500個,粒度30〜
40mmの階級が200個,粒度20〜30mmの階級が1
50個,粒度10〜20mmの階級が100個,粒度0〜
10mmの階級が50個と見なされる粒度分布に収束する
ようであれば、実際の粒度が40〜50mmの階級の粒体
は、40〜50,30〜40,20〜30,10〜2
0,0〜10の粒度の階級と見なされる確率は夫々50
%,20%,15%,10%,5%となり、この値を補
正データ格納部7に格納しておく。他の階級についても
同様にして各階級と見なされる確率を求めておき、該補
正データ格納部に格納しておく。
The data stored in the correction data storage unit 7 is obtained by measuring 1000 samples of particles of each class a plurality of times and calculating the probability distribution of each class in advance. For example, sample 1000 with a particle size of 40-50 mm
I measured the number of times with the laser rangefinder 3 several times, and the result was
For example, 500 classes with a particle size of 40 to 50 mm and a particle size of 30 to
200 in 40mm class, 1 in 20-30mm particle size class
50 pieces, 100 pieces with a grain size of 10 to 20 mm, grain size 0
If the size of 10 mm converges to a particle size distribution that is considered to be 50, the actual particle size is 40 to 50 mm, 40 to 50, 30 to 40, 20 to 30, 10 to 2
The probability of being regarded as a class with a granularity of 0.0 to 10 is 50 respectively.
%, 20%, 15%, 10%, 5%, and these values are stored in the correction data storage unit 7. Similarly, for other classes, the probabilities of being regarded as respective classes are obtained and stored in the correction data storage unit.

【0022】上記のような粒度分布を測定する装置にお
いては、ベルトコンベヤ2によって0〜50mmの粒径の
粒体が混在してなる粒状性物体1が搬送されてくる。そ
して、その搬送されてくる粒状性物体1の表層部の凹凸
に応じた距離がレーザー距離計3にて検出されて該距離
に応じた距離信号が表面形状修正処理部4に伝達され
る。
In the apparatus for measuring the particle size distribution as described above, the belt conveyor 2 conveys the granular object 1 in which the particles having the particle size of 0 to 50 mm are mixed. Then, the distance according to the unevenness of the surface layer portion of the conveyed granular object 1 is detected by the laser distance meter 3, and the distance signal according to the distance is transmitted to the surface shape correction processing unit 4.

【0023】表面形状修正処理部4においては、順次入
力する距離信号をもとに該粒状性物体1の表層部が形成
する凹凸形状を距離変化として認識し、該距離変化を波
形信号に変換する。例えば、図2(a)に示すように粒
状性物体の表面が形成されているとすると、図2(b)
に示すような表面形状の波形信号が算出される。算出さ
れた表面形状に応じた波形信号が粒度抽出部5に供給さ
れる。その粒度抽出部5においては、図3に示すよう
に、前記波形信号に対して(図3(a))微分処理を施
し、続いて、図3中の所定の測定ライン8でスレッシュ
ホールド処理を施して(図3(b))入力した凹部間の
ピッチを求め、その各ピッチを測定した粒状性物体の各
粒体の粒度と見なして(図3(c))各階級の粒度の個
数を算出し、もって対象とする粒状性物体1の粒度分布
を算出する。
In the surface shape correction processing unit 4, the uneven shape formed by the surface layer of the granular object 1 is recognized as a distance change based on the sequentially input distance signals, and the distance change is converted into a waveform signal. .. For example, if the surface of the granular object is formed as shown in FIG. 2A, then FIG.
A waveform signal having a surface shape as shown in is calculated. A waveform signal according to the calculated surface shape is supplied to the particle size extraction unit 5. In the granularity extraction unit 5, as shown in FIG. 3, the waveform signal is subjected to (FIG. 3 (a)) differentiating processing, and subsequently, threshold processing is performed on a predetermined measurement line 8 in FIG. (FIG. 3 (b)), the pitch between the input concave portions is obtained, and each pitch is regarded as the grain size of each grain of the granular object (FIG. 3 (c)), and the number of grain sizes of each class is calculated. Then, the particle size distribution of the target granular object 1 is calculated.

【0024】粒度抽出部5は、算出した粒度分布を補正
演算部6に供給する。その補正演算部6では、また、対
象とする階級の各確率を補正データ格納部7から入力し
て、作用で説明した粒度確率ベクトルV P及びその逆行
V -1を求め、その逆行列V -1を入力した粒度分布
の値に掛けて、該粒度分布を補正する。上記補正は、作
用でも説明したが、全てが同じ粒度で構成される粒状性
物体であっても粒体同士の重なり具合によっては、図5
に示すように、測定し算出したピッチが実際の粒度より
も小さい粒度として算出される。このため、表面形状か
ら検出した粒度の中には、その粒度よりも実際の粒度が
大きいものが所定の確率で混在している。これを、該粒
度確率ベクトルの逆行列V -1を演算することで補正
し、もって実際の粒度分布に収束するようにするもので
ある。
The particle size extraction unit 5 supplies the calculated particle size distribution to the correction calculation unit 6. In the correction calculation unit 6, each probability of the target class is input from the correction data storage unit 7, the granularity probability vector V P and its inverse matrix V P -1 described in the operation are obtained, and its inverse matrix is obtained. The input particle size distribution value is multiplied by V P -1 to correct the particle size distribution. Although the above-described correction has been described with respect to the operation, even if the granular objects are all formed of the same particle size, depending on the degree of overlap between the particles, the correction may be different from that shown in FIG.
As shown in, the measured and calculated pitch is calculated as a particle size smaller than the actual particle size. For this reason, among the particle sizes detected from the surface shape, those having an actual particle size larger than the particle size are mixed with a predetermined probability. This is corrected by calculating the inverse matrix V P -1 of the particle size probability vector so that it converges to the actual particle size distribution.

【0025】このように、本実施例の粒度分布の検出で
は、短い時間で従来よりも精度の良い粒度分布を検出可
能になる。そして、その粒度分布に基づいて、リアルタ
イムに粒状性物体を搬送するベルトコンベヤ2の速度を
変更したり、該ベルトコンベヤ2に粒状性物体1を供給
する図示しないホッパからの該粒状性物体1の粒度の比
率を修正したりことができる。
As described above, in the detection of the particle size distribution of this embodiment, it is possible to detect the particle size distribution with higher accuracy than the conventional one in a short time. Then, based on the particle size distribution, the speed of the belt conveyor 2 that conveys the granular object 1 is changed in real time, or the granular object 1 is fed from the hopper (not shown) that supplies the granular object 1 to the belt conveyor 2. You can modify the particle size ratio.

【0026】上記補正処理をすることで実際の粒度分布
に向けて実際に収束するかどうかを実際に測定し、補正
前の検出した粒度分布,補正後の粒度分布,及び実際の
粒度分布を求めると、図6に示すような結果が得られ
た。ここで、図6中,点線が実際の粒度分布,鎖線が補
正前の粒度分布,実線が補正後の粒度分布である。
By performing the above-mentioned correction processing, it is actually measured whether or not it actually converges toward the actual particle size distribution, and the detected particle size distribution before correction, the particle size distribution after correction, and the actual particle size distribution are obtained. Then, the results shown in FIG. 6 were obtained. Here, in FIG. 6, the dotted line is the actual particle size distribution, the chain line is the particle size distribution before correction, and the solid line is the particle size distribution after correction.

【0027】この図6から分かるように、小さい粒度と
誤認された粒体が所定の正しい粒度に補正されて、補正
後の粒度分布が実際の粒度分布側に収束し、実際の粒度
分布に近づいていることがわかる。なお、上記実施例に
おいて、補正データ格納部7には0〜50mmまでの粒度
に対応した確率値を格納しているが、0〜100mm等よ
り広い範囲の粒度に対応した値を格納しておいて、補正
データとして必要な粒度の確率値のみを補正演算部6に
供給可能にするようにしておいてもよい。また、補正デ
ータ格納部7に各粒度確率ベクトルを予め算出して格納
しておき、該粒度確率ベクトルのデータを補正演算部6
に供給可能にしてもよい。
As can be seen from FIG. 6, the particles erroneously recognized as having a small particle size are corrected to a predetermined correct particle size, and the corrected particle size distribution converges on the actual particle size distribution side, approaching the actual particle size distribution. You can see that In the above embodiment, the correction data storage unit 7 stores the probability value corresponding to the granularity of 0 to 50 mm, but stores the value corresponding to the granularity of a wider range such as 0 to 100 mm. However, only the probability value of the granularity required as the correction data may be supplied to the correction calculation unit 6. Further, each granularity probability vector is calculated and stored in the correction data storage unit 7 in advance, and the data of the granularity probability vector is calculated by the correction calculation unit 6
May be supplied to the customer.

【0028】また、前記実施例においては、対象とする
粒状性物体の粒度の範囲が既知のものとして説明してい
るが、粒度抽出部6で求めた粒度分布に存在する粒度の
範囲を補正データ格納部7に供給して、該粒度の範囲に
対応する階級の確率情報を該補正データ格納部7から補
正演算部6に伝達可能にしてもよい。
Further, in the above-mentioned embodiment, although the range of the particle size of the target granular object is known, the range of the particle size existing in the particle size distribution obtained by the particle size extracting unit 6 is corrected data. The probability information of the class corresponding to the range of the granularity may be supplied to the storage unit 7 and can be transmitted from the correction data storage unit 7 to the correction calculation unit 6.

【0029】[0029]

【発明の効果】以上説明してきたように、本発明の粒状
性物体の粒度分布測定方法では、検出した粒度分布に統
計処理をすることで、表面形状から検出された該粒状性
物体の粒度分布が、より実際の値に近づくと共に迅速に
検出可能になるという効果があり、これによって、検出
した粒度分布に基づく、原料ヤードの整粒,高炉粒度別
装入,若しくはベルレス原料装入等における粒度の制御
がより迅速に且つ正確に行えるようになるという効果が
ある。
As described above, in the method for measuring the particle size distribution of a granular object according to the present invention, the particle size distribution of the granular object detected from the surface shape is detected by statistically processing the detected particle size distribution. However, there is an effect that it can be detected more quickly as it gets closer to the actual value, and by this, the particle size in the yard of the raw material yard, the blast furnace particle size-based charging, or the bellless material charging based on the detected particle size distribution. There is an effect that the control can be performed more quickly and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の粒状性物体の粒度分布測
定装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a particle size distribution measuring apparatus for a granular object according to an embodiment of the present invention.

【図2】本発明に係る実施例の表面形状処理部での処理
状態を示す図である。
FIG. 2 is a diagram showing a processing state in a surface shape processing unit of an example according to the present invention.

【図3】本発明に係る実施例の粒度抽出部での処理状態
を示す図である。
FIG. 3 is a diagram showing a processing state in a particle size extraction unit according to the embodiment of the present invention.

【図4】粒体の検出される粒度の変化を示す図である。FIG. 4 is a diagram showing a change in the detected particle size of a particle.

【図5】粒体間の重なり状態の一例を示す側面図であ
る。
FIG. 5 is a side view showing an example of an overlapping state between particles.

【図6】本発明に係る実施例により測定した粒度分布を
示す図である。
FIG. 6 is a diagram showing a particle size distribution measured by an example according to the present invention.

【符号の説明】[Explanation of symbols]

1 粒状性物体 3 レーザー距離計 4 表面形状処理部 5 粒度抽出部 6 補正演算部 7 補正データ格納部 1 granular object 3 laser range finder 4 surface shape processing unit 5 particle size extraction unit 6 correction calculation unit 7 correction data storage unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多数の粒体から構成される粒状性物体の
表面形状を測定し、その表面形状に応じた波形信号に微
分処理,及びスレッシュホールド処理を実施して前記粒
状性物体の粒度分布を検出した後、その検出した粒度分
布に、前記粒状性物体を構成する各粒度が夫々,各階級
の粒度として検出される確率をもとに統計処理を施し
て、前記粒度分布を補正することを特徴とする粒状性物
体の粒度分布測定方法。
1. The particle size distribution of the granular object is obtained by measuring the surface shape of a granular object composed of a large number of particles and performing a differential process and a threshold process on a waveform signal according to the surface profile. And detecting the particle size distribution, and performing a statistical process on the detected particle size distribution based on the probability that each particle size forming the granular object is detected as the particle size of each class, and correcting the particle size distribution. A method for measuring the particle size distribution of a granular object characterized by.
JP3330499A 1991-12-13 1991-12-13 Measuring method of particle size distribution of particulate matter Pending JPH05164677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330499A JPH05164677A (en) 1991-12-13 1991-12-13 Measuring method of particle size distribution of particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330499A JPH05164677A (en) 1991-12-13 1991-12-13 Measuring method of particle size distribution of particulate matter

Publications (1)

Publication Number Publication Date
JPH05164677A true JPH05164677A (en) 1993-06-29

Family

ID=18233308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330499A Pending JPH05164677A (en) 1991-12-13 1991-12-13 Measuring method of particle size distribution of particulate matter

Country Status (1)

Country Link
JP (1) JPH05164677A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
JP2010066127A (en) * 2008-09-10 2010-03-25 Taiheiyo Cement Corp System and method for measuring particle size distribution of granular material
WO2018181942A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Raw material particle size distribution measuring device, particle size distribution measuring method, and void ratio measuring device
JP2019504277A (en) * 2015-12-22 2019-02-14 アルセロールミタル Method and system for determining the mass of raw material on a conveyor
JP6566180B1 (en) * 2018-04-03 2019-08-28 Jfeスチール株式会社 Particle size distribution measuring apparatus and particle size distribution measuring method
WO2019193971A1 (en) * 2018-04-03 2019-10-10 Jfeスチール株式会社 Particle size distribution measurement apparatus and particle size distribution measurement method
KR20210134016A (en) * 2019-04-05 2021-11-08 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring fractions
SE2050883A1 (en) * 2020-07-10 2022-01-11 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
WO2023046711A1 (en) * 2021-09-24 2023-03-30 Dieffenbacher GmbH Maschinen- und Anlagenbau Method and device for determining a parameter of a size distribution of a mixture, plant for manufacturing material boards, and computer programme product
WO2023053239A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Material estimation device, material estimation system, and material estimation method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
JP2010066127A (en) * 2008-09-10 2010-03-25 Taiheiyo Cement Corp System and method for measuring particle size distribution of granular material
JP2019504277A (en) * 2015-12-22 2019-02-14 アルセロールミタル Method and system for determining the mass of raw material on a conveyor
US10935318B2 (en) 2015-12-22 2021-03-02 Arcelormittal Method and system for determining the mass of feedstock on a conveyor
WO2018181942A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Raw material particle size distribution measuring device, particle size distribution measuring method, and void ratio measuring device
US11391662B2 (en) 2017-03-30 2022-07-19 Jfe Steel Corporation Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
US11187637B2 (en) 2018-04-03 2021-11-30 Jfe Steel Corporation Particle size distribution measurement apparatus and particle size distribution measurement method
JP6566180B1 (en) * 2018-04-03 2019-08-28 Jfeスチール株式会社 Particle size distribution measuring apparatus and particle size distribution measuring method
WO2019193971A1 (en) * 2018-04-03 2019-10-10 Jfeスチール株式会社 Particle size distribution measurement apparatus and particle size distribution measurement method
RU2750581C1 (en) * 2018-04-03 2021-06-29 ДжФЕ СТИЛ КОРПОРЕЙШН Device for measuring particle size distribution and method for measuring particle size distribution
KR20210134016A (en) * 2019-04-05 2021-11-08 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring fractions
EP3926056A4 (en) * 2019-04-05 2022-04-06 JFE Steel Corporation Powder rate measuring method and device
CN113646446A (en) * 2019-04-05 2021-11-12 杰富意钢铁株式会社 Powder rate measuring method and device
SE2050883A1 (en) * 2020-07-10 2022-01-11 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
WO2022010399A1 (en) * 2020-07-10 2022-01-13 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
SE2251592A1 (en) * 2020-07-10 2022-12-29 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
SE545201C2 (en) * 2020-07-10 2023-05-16 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
WO2023046711A1 (en) * 2021-09-24 2023-03-30 Dieffenbacher GmbH Maschinen- und Anlagenbau Method and device for determining a parameter of a size distribution of a mixture, plant for manufacturing material boards, and computer programme product
WO2023053239A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Material estimation device, material estimation system, and material estimation method

Similar Documents

Publication Publication Date Title
CN105699258B (en) A kind of fine aggregate on-line measuring device and method
EP3605064B1 (en) Raw material particle size distribution measuring device, particle size distribution measuring method, and void ratio measuring device
US11403747B2 (en) Fine ratio measuring device and fine ratio measuring system
JP3769012B2 (en) Grain automatic evaluation method and apparatus
JPH05164677A (en) Measuring method of particle size distribution of particulate matter
FI67043C (en) ADJUSTMENT OF THE CLASSIFICATION OF STYCLES AND BEARING SIGNS
JP3588108B2 (en) Method and apparatus for automatic evaluation of cereal grains and other granular products
JP2001337028A (en) Method and apparatus for measuring particle size distribution
JPS61107139A (en) Apparatus for measuring grade of grain of rice
Yang et al. Detection of size of manufactured sand particles based on digital image processing
US20040052402A1 (en) Quality assessment of product in bulk flow
CN110935646A (en) Full-automatic crab grading system based on image recognition
CN111507980B (en) Correction method for detecting particle size distribution of ore crushed and ground product by dynamic image method
KR102614845B1 (en) Fraction measurement method and device
JPH06167438A (en) Measuring equipment for particle size distribution of granular substance
JP2000314698A (en) Image processing particle size analyzer and method for setting binarized level
Laucka et al. Research of the equipment calibration methods for fertilizers particles distribution by size using image processing measurement method
Riyadi et al. Papaya fruit grading based on size using image analysis
CN108169323A (en) A kind of processing method of polymorphic structure workpiece eddy current signal
JPH03199960A (en) Crack detecting method
CN110749650B (en) Anchor rod anchoring compactness grade evaluation method based on support vector machine
SU1028387A1 (en) Apparatus for x=ray rado radiometric sorting of ores
JPH0733991B2 (en) Particle size distribution measurement method
RU2019823C1 (en) Device for measuring parameters of matter
CN112229741A (en) Method and system for measuring coal sample crushing energy based on image analysis