JPH05164613A - Fourier-transformation infrared spectroscopic measuring method - Google Patents

Fourier-transformation infrared spectroscopic measuring method

Info

Publication number
JPH05164613A
JPH05164613A JP33232691A JP33232691A JPH05164613A JP H05164613 A JPH05164613 A JP H05164613A JP 33232691 A JP33232691 A JP 33232691A JP 33232691 A JP33232691 A JP 33232691A JP H05164613 A JPH05164613 A JP H05164613A
Authority
JP
Japan
Prior art keywords
light
detector
transmitted
sample
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33232691A
Other languages
Japanese (ja)
Other versions
JP2797797B2 (en
Inventor
Yutaka Kitagawara
豊 北川原
Kazuhisa Takamizawa
和久 高見沢
Takuo Takenaka
卓夫 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP33232691A priority Critical patent/JP2797797B2/en
Publication of JPH05164613A publication Critical patent/JPH05164613A/en
Application granted granted Critical
Publication of JP2797797B2 publication Critical patent/JP2797797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure sensitivity highly reliably by using a highly sensitive photoconductive semiconductor detector at low temperature, and arranging a bandpass filter, which transmits the light in an infrared absorbing band noted in an incident light path. CONSTITUTION:The dispersed light from a continuous infrared light source 1 is made to pass through an aperture 2, made to be the parallel light with a collimator mirror 3, cast into a Michelson interferometer 4 and split into the reflected light and the transmitted light with a beam splitter 5. The lights are reflected from a fixed mirror 6 and a movable mirror 7, respectively, and the waves are combined and interfered with the beam splitter 5. The liquid are condensed at a concave mirror 8, transmitted through a band pass filter 9, transmitted through a sample 10 and detected with a MCT detector 12, which is cooled with liquid nitrogen by way of an aperture 11. Carbon gas and steam in a sample chamber are purged with nitrogen gas, and infrared absorption is eliminated. As the filter 9, the filter, whose transmitted wave-number region agrees with the wave-number region of the infrared absorbing band noted in the sample 10, is used. Thus, the light of only the wave-number region of the noted spectrum is transmitted at a high transmittance. The light of the unnecessary wave-number region is cut, and the high sensitivity property of the detector 12 can be utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外吸収帯域を有する
試料に対しフーリエ変換赤外分光測定を行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for performing Fourier transform infrared spectroscopic measurement on a sample having an infrared absorption band.

【0002】[0002]

【従来の技術】FT−IR(フーリエ変換赤外分光)装
置では一般に、赤外光検出器としてTGS(トリグリシ
ンサルフェイト)検出器が用いられている。TGS検出
器は、室温で利用でき、測定波長域が広く、しかも、検
出器の受光強度に対する出力信号が線形性を有するから
である。
2. Description of the Related Art In an FT-IR (Fourier transform infrared spectroscopy) apparatus, a TGS (triglycine sulfate) detector is generally used as an infrared light detector. This is because the TGS detector can be used at room temperature, has a wide measurement wavelength range, and has a linear output signal with respect to the received light intensity of the detector.

【0003】一方、赤外顕微鏡を光路中に介装したFT
−IR装置では、試料の微小部分からの微弱な赤外光を
用い、また、光路が長くなりかつ光路中に配置された多
数のミラーで反射されるので、光のロスによって検出光
強度がさらに微弱になってしまう。このような場合に
は、TGS検出器の感度では良好な低ノイズスペクトル
を得ることができないので、液体窒素温度77Kで使用
する高感度なMCT(水銀カドミテルライド)検出器が
用いられる(例えば、特開平2−102424号公
報)。このMCT検出器は光導伝型半導体検出器の一種
であり、液体窒素温度で使用される高感度な他の光導伝
型半導体検出器として、InAs、InSb、PbS、
PbSeなどの検出器があり、以下の説明では、このよ
うな検出器についても同様のことがいえる。
On the other hand, an FT equipped with an infrared microscope in the optical path
-In the IR device, weak infrared light from a minute portion of the sample is used, and since the optical path is long and is reflected by many mirrors arranged in the optical path, the detected light intensity is further increased by the loss of light. It becomes weak. In such a case, since a good low noise spectrum cannot be obtained with the sensitivity of the TGS detector, a highly sensitive MCT (mercury cadmite) detector used at a liquid nitrogen temperature of 77 K is used (for example, a special Kaihei 2-102424). This MCT detector is a kind of photoconductive semiconductor detector, and as other highly sensitive photoconductive semiconductor detectors used at liquid nitrogen temperature, InAs, InSb, PbS,
There are detectors such as PbSe, and the same applies to such detectors in the following description.

【0004】MCT検出器は、図6に示す如く、検出器
の受光強度(検出光強度)が小さい場合には検出光強度
に対する検出器出力信号強度の関係が線形であるが、検
出光強度が少し大きくなると、この関係が非線形にな
る。この非線形部分を用いてフーリエ分光を行うと、図
7(a)に示すようなバックグランドスペクトルが得ら
れる。このスペクトルは、試料を装着せずに試料室内を
窒素ガスでパージした状態で得たものであり、FT−I
R測定における装置感度の波長依存性を示している。こ
のMCT検出器は、波数450cm-1以下の光に対して
検出感度がゼロであるにもかかわらず、見かけ上、波数
域450cm-1〜0cm-1においても応答が0とはなっ
ておらず、ゴースト信号(折り返しスペクトル)が現れ
ていることがわかる。このゴースト信号は、図6の非線
形部分を用いたのが原因として出現したものであり、逆
に、ゴースト信号の程度を調べることによって、非線形
部分の利用の程度を調べることもできる。このようなゴ
ースト信号が出現する条件下でFT−IR測定を行って
も、信頼できる測定結果を得ることができない。
As shown in FIG. 6, when the received light intensity (detected light intensity) of the detector is small, the MCT detector has a linear relationship between the detected light intensity and the detector output signal intensity. At slightly larger values, this relationship becomes non-linear. When Fourier spectroscopy is performed using this non-linear portion, a background spectrum as shown in FIG. 7A is obtained. This spectrum was obtained in a state where the sample chamber was purged with nitrogen gas without mounting the sample, and FT-I
The wavelength dependence of the apparatus sensitivity in R measurement is shown. The MCT detector, although the detection sensitivity with wavenumber 450 cm -1 or less of the light is zero, apparently, not also become the responses 0 in wavenumber range 450cm -1 ~0cm -1 It can be seen that a ghost signal (folded spectrum) appears. This ghost signal appears as a result of using the non-linear portion in FIG. 6, and conversely, the degree of utilization of the non-linear portion can be examined by examining the degree of the ghost signal. Even if the FT-IR measurement is performed under the condition that such a ghost signal appears, a reliable measurement result cannot be obtained.

【0005】MCT検出器を用いてゴースト信号が出現
しないようにするには、検出光強度を減光しなければな
らない。例えば、図7(b)に示すような透過率6%程
度のメッシュフィルタによって減光すると、図7(c)
に示すようなバックグランドスペクトルが得られ、ゴー
スト信号の現れない測定を行うことができる。
In order to prevent the ghost signal from appearing by using the MCT detector, it is necessary to reduce the detected light intensity. For example, when light is reduced by a mesh filter having a transmittance of about 6% as shown in FIG.
The background spectrum as shown in (1) is obtained, and the measurement in which the ghost signal does not appear can be performed.

【0006】しかし、このように減光したのでは、全波
長域において一律に感度を低減させてしまい、MCT検
出器の高感度性は全く活かされないことになる。
However, if the light is dimmed in this way, the sensitivity is uniformly reduced in the entire wavelength range, and the high sensitivity of the MCT detector cannot be utilized at all.

【0007】一方、図8に示す如く、2mm厚のシリコ
ン単結晶は透過率が50%程度であり、比較的良く光を
透過させる。このシリコン単結晶を試料として、MCT
検出器を用いてFT−IR測定を通常の方法で行うと、
MCT検出器の受光強度の全波長での積分値は大きくな
り過ぎ、検出器信号は強い非線形部分を含んでしまう。
On the other hand, as shown in FIG. 8, a silicon single crystal having a thickness of 2 mm has a transmittance of about 50%, and relatively well transmits light. Using this silicon single crystal as a sample, MCT
When FT-IR measurement is carried out by a usual method using a detector,
The integrated value of the received light intensity of the MCT detector at all wavelengths becomes too large, and the detector signal includes a strong nonlinear portion.

【0008】すなわち、MCT検出器を用いて高感度測
定しようとすると、信号の線形性が失われて定量分析が
困難となり、逆に、この線形性を得ようとしてメッシュ
フィルタで減光すると、MCT検出器の高感度性を活か
すことができなくなる。
[0008] That is, when an attempt is made to perform high-sensitivity measurement using an MCT detector, the linearity of the signal is lost and quantitative analysis becomes difficult. It becomes impossible to take advantage of the high sensitivity of the detector.

【0009】このような理由で、半導体結晶のように赤
外光の透過率が平均的に高い試料に対しては、通常のF
T−IR測定において高感度なMCT検出器を用いるこ
とができず、スペクトルの定量性を無視して感度を向上
させる場合のみMCT検出器を用いていた。
For this reason, a normal F is applied to a sample such as a semiconductor crystal that has a high average transmittance of infrared light.
A highly sensitive MCT detector cannot be used in the T-IR measurement, and the MCT detector is used only when the sensitivity is improved by ignoring the quantitative property of the spectrum.

【0010】例えば、シリコン単結晶中の置換型炭素C
sの局在振動吸収は波数605cm -1付近にみられる
が、この置換型炭素Csの吸収は図8中aで示す強いフ
ォノン吸収バンドと重なり合ってしまう。この波数部分
を図9に拡大図示する。前述のように、シリコン単結晶
は赤外光を比較的良く透過するが、強いフォノン吸収の
起こる波数域630〜600cm-1においては、透過光
強度は極めて微弱となる。従って、波数605cm-1
ピークをもつ置換型炭素Csの検出には、高感度検出器
が望まれるが、透過光の全波長での積分強度が相当大き
いので、上述した検出感度の非線形性の問題が生じるた
め、高感度なMCT検出器を単純に利用することができ
ない。このため、通常のTGS検出器を用いて測定する
ことになり、置換型炭素Csの濃度検出下限は、AST
M designation :F123−81の規格
に従った場合、0.05ppma程度に留まっていた。
For example, substitutional carbon C in silicon single crystal
Localized vibration absorption of s is wavenumber 605cm -1Found in the vicinity
However, the absorption of this substitutional carbon Cs is strong as shown by a in FIG.
It overlaps with the nonon absorption band. This wave number part
Is enlarged and shown in FIG. As mentioned above, silicon single crystal
Transmits infrared light relatively well, but has strong phonon absorption
Wave number range 630-600 cm-1In the transmitted light
The strength is extremely weak. Therefore, wave number 605 cm-1To
High-sensitivity detector for detection of substitutional carbon Cs having a peak
Is desired, but the integrated intensity at all wavelengths of transmitted light is considerably large.
Therefore, the above-mentioned problem of non-linearity of the detection sensitivity arises.
Therefore, a highly sensitive MCT detector can be simply used.
Absent. Therefore, the measurement is performed using a normal TGS detector.
Therefore, the lower limit of detection of the concentration of substitutional carbon Cs is AST
M design: F123-81 standard
According to the above, it remained at about 0.05 ppma.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、この
ような問題点に鑑み、信頼性の高い高感度測定が可能な
フーリエ変換赤外分光測定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Fourier transform infrared spectroscopic measurement method capable of highly reliable and highly sensitive measurement in view of such problems.

【0012】[0012]

【課題を解決するための手段及びその作用】MCT検出
器の出力信号が検出光強度に対して線形性をもち、FT
−IR測定において高い定量性を保持するのは、図6に
示す如く検出光強度が比較的弱い場合であり、検出光強
度が微弱な、赤外顕微鏡を用いたFT−IR装置には、
高感度のMCT検出器が一般に用いられている。図8の
ような透過率スペクトルを示すシリコン単結晶のよう
に、赤外光に対する透過性が比較的良い試料の場合に
は、図6のa点付近からb点付近に移るように、何等か
の方法で検出光強度を低減する必要がある。
Means for Solving the Problems and Its Actions The output signal of the MCT detector has linearity with respect to the detected light intensity,
It is in the case where the detected light intensity is relatively weak as shown in FIG. 6 that high quantitativeness is maintained in the IR measurement, and the FT-IR device using the infrared microscope, which has a weak detected light intensity,
Highly sensitive MCT detectors are commonly used. In the case of a sample having a relatively good infrared light transmissivity, such as a silicon single crystal having a transmittance spectrum as shown in FIG. 8, it may be necessary to move from near point a to near point b in FIG. It is necessary to reduce the detected light intensity by the method of.

【0013】しかし、この低減をメッシュフィルタのよ
うな減光器で行うと、全波長領域において一律に感度が
低下してしまうので、MCT検出器使用のメリットが全
く失われてしまう。
However, if this reduction is performed by a dimmer such as a mesh filter, the sensitivity is uniformly lowered in the entire wavelength range, and the merit of using the MCT detector is completely lost.

【0014】一方、図2(a)のバックグランドスペク
トルを(c)のバックグランドスペクトルと比較した場
合、波数450cm-1以下のゴースト信号が消減してい
ることが注目される。このゴースト信号消減は、検出器
信号強度の線形性が確保されていることを意味する。
On the other hand, when the background spectrum of FIG. 2A is compared with the background spectrum of FIG. 2C, it is noted that the ghost signal with a wave number of 450 cm −1 or less is reduced. This ghost signal attenuation means that the linearity of the detector signal strength is ensured.

【0015】本発明では、赤外吸収帯域を有する試料に
対しフーリエ変換赤外分光測定を行うフーリエ変換赤外
分光測定方法において、低温にした高感度の光導伝型半
導体検出器を用い、着目する該赤外吸収帯域の光を透過
させるバンドパスフィルタを該光導伝型半導体検出器に
入射する光路中に配置する。
In the present invention, in a Fourier transform infrared spectroscopic measurement method for performing Fourier transform infrared spectroscopic measurement on a sample having an infrared absorption band, a high-sensitivity photoconductive semiconductor detector at low temperature is used and attention is paid to it. A bandpass filter that transmits light in the infrared absorption band is arranged in the optical path that is incident on the photoconductive semiconductor detector.

【0016】この試料は、例えば、微量の置換型炭素C
sを含むシリコン単結晶である。また、光導伝型半導体
検出器は、例えば、液体窒素で冷却されるMCT検出器
である。
This sample is, for example, a trace amount of substitutional carbon C.
It is a silicon single crystal containing s. The photoconductive semiconductor detector is, for example, an MCT detector cooled with liquid nitrogen.

【0017】本発明は、減光を図7(b)のように全波
長域で一律に行うのではなく、図2(b)のようなバン
ドパスフィルタを用いて、注目するスペクトルの波数域
のみの光を高い透過率で透過させ、その他の不要な波数
域の光をカットすることにより、検出光の全波長域での
積分強度を低減させて検出器感度の線形性を確保し、か
つ、注目している測定域での検出光強度を充分強くし
て、光導伝型半導体検出器の高感度性を充分に活かして
いる。
According to the present invention, the light is not uniformly extinguished over the entire wavelength range as shown in FIG. 7B, but a bandpass filter as shown in FIG. By transmitting only the light with a high transmittance and cutting the light in other unnecessary wave number ranges, the integrated intensity in the entire wavelength range of the detection light is reduced and the linearity of the detector sensitivity is secured, and , The detection light intensity in the measurement region of interest is made sufficiently strong, and the high sensitivity of the photoconductive semiconductor detector is fully utilized.

【0018】このように減光してフーリエ分光を行う
と、FT−IRの装置感度の波長依存性を示すバックグ
ランドスペクトルは、図2(c)に示す如くなる。メッ
シュフィルタで減光して得られる図7(c)のバックグ
ランドスペクトルとバンドパスフィルタで減光して得ら
れる図2(c)バックグランドスペクトルとを比較する
と、注目している波数域700〜300cm-1において
のみ高い感度を有し、さらに、その感度特性が非線形性
を持たないため、450cm-1以下のゴースト信号がま
ったく現れない。
When the spectrum is reduced and Fourier spectroscopy is performed in this way, the background spectrum showing the wavelength dependence of the device sensitivity of the FT-IR is as shown in FIG. 2 (c). Comparing the background spectrum of FIG. 7 (c) obtained by dimming with a mesh filter and the background spectrum of FIG. 2 (c) obtained by dimming with a bandpass filter, the focused wave number range 700- Since it has high sensitivity only at 300 cm −1 and its sensitivity characteristic does not have nonlinearity, no ghost signal below 450 cm −1 appears.

【0019】図2(a)、図2(c)及び図7(c)3
種のバックグランドスペクトルについて、700〜30
0cm-1の波数域でその特徴をまとめると、図2(a)
では高感度であるが感度の線形性が無く、図7(c)で
は感度の線形性があるものの感度が低く、図2(c)で
は高感度であり、かつ感度の線形性が確保されている。
2 (a), 2 (c) and 7 (c) 3
For the background spectrum of the species, 700-30
The characteristics are summarized in the wave number region of 0 cm −1 , as shown in Fig. 2 (a).
In Fig. 7 (c), the sensitivity is low, but the sensitivity is low. In Fig. 2 (c), the sensitivity is high and the linearity of the sensitivity is ensured. There is.

【0020】シリコン単結晶中の置換型炭素Csの局在
振動吸収は605cm-1に現れ、しかも図9に示すよう
なフォノンの強い吸収と重なり合ってしまう。したがっ
て、シリコン単結晶に含まれている微量の置換型炭素C
sをFT−IR測定によって検出しようとすると、強い
フォノン吸収の生ずる波数域630〜600cm-1では
透過光強度が微弱となる。このため、光導伝型半導体検
出器、例えばMCT検出器のような高感度検出器の利用
が望まれる。
The localized vibrational absorption of the substitutional carbon Cs in the silicon single crystal appears at 605 cm -1 , and overlaps with the strong absorption of phonons as shown in FIG. Therefore, a very small amount of substitutional carbon C contained in the silicon single crystal.
When s is to be detected by FT-IR measurement, the transmitted light intensity becomes weak in the wave number region 630 to 600 cm −1 where strong phonon absorption occurs. Therefore, it is desirable to use a photoconductive semiconductor detector, for example, a high-sensitivity detector such as an MCT detector.

【0021】シリコン単結晶中の置換型炭素Csの局在
振動吸収スペクトル測定には波数域700〜550cm
-1のみ必要であるから、図2(c)に示すように、波数
域700〜550cm-1で高感度化し、かつ、感度の線
形性を確保するように装置を構成するのがよい。図1に
示す配置で、図2(b)に示すような特性のバンドパス
フィルタを用いてFT−IR測定を行えば、図2(c)
に示すような装置感度のもとで試料の吸収スペクトルを
得ることが可能である。
The localized vibration absorption spectrum of substitutional carbon Cs in a silicon single crystal is measured in the wave number range of 700 to 550 cm.
Since only -1 is required, as shown in FIG. 2 (c), it is preferable to configure the device so as to have high sensitivity in the wave number range of 700 to 550 cm -1 , and to secure linearity of sensitivity. When the FT-IR measurement is performed using the bandpass filter having the characteristics shown in FIG. 2B in the arrangement shown in FIG.
It is possible to obtain the absorption spectrum of the sample under the sensitivity of the device as shown in.

【0022】[0022]

【実施例】【Example】

(1)FT−IR装置の光学系 図1は、FT−IR装置の光学系の原理成図である。 (1) Optical System of FT-IR Device FIG. 1 is a principle diagram of an optical system of the FT-IR device.

【0023】赤外連続光源1から放射された発散光は、
アパーチャ2を通ってコリメータ鏡3で平行化され、マ
イケルソン干渉計4に入射する。マイケルソン干渉計4
は、ビームスプリッタ5と、固定鏡6と、可動鏡7とを
備えており、可動鏡7はボイスコイル等で図示矢印方向
へ周期的に直線駆動される。ビームスプリッタ5に入射
した赤外光は、反射光と透過光に分割され、この反射光
は固定鏡6で反射されてビームスプリッタ5の方へ戻
り、透過光は可動鏡7で反射されてビームスプリッタ5
の方へ戻り、ビームスプリッタ5で合波干渉し、凹面鏡
8で集光され、バンドパスフィルタ9を透過し、試料室
内に配置された試料10を透過し、アパーチャ11を通
ってMCT検出器12で検出される。
The divergent light emitted from the infrared continuous light source 1 is
It is collimated by the collimator mirror 3 through the aperture 2 and enters the Michelson interferometer 4. Michelson interferometer 4
Includes a beam splitter 5, a fixed mirror 6, and a movable mirror 7. The movable mirror 7 is linearly driven periodically by a voice coil or the like in the direction of the arrow in the figure. The infrared light incident on the beam splitter 5 is split into reflected light and transmitted light, the reflected light is reflected by the fixed mirror 6 and returns to the beam splitter 5, and the transmitted light is reflected by the movable mirror 7 to be a beam. Splitter 5
To the beam splitter 5, the beams are mixed and interfered by the beam splitter 5, condensed by the concave mirror 8, transmitted through the bandpass filter 9, transmitted through the sample 10 arranged in the sample chamber, passed through the aperture 11, and passed through the aperture 11. Detected in.

【0024】このバンドパスフィルタ9は、その透過波
数域が、試料10の着目している赤外吸収帯の波数域と
一致しているものを使用する。試料室内は、炭酸ガスや
水蒸気による赤外吸収を無くするために、窒素ガスでパ
ージされる。また、MCT検出器12は、液体窒素で冷
却される。
As the bandpass filter 9, a filter in which the transmitted wave number range matches the wave number range of the infrared absorption band of the sample 10 of interest is used. The sample chamber is purged with nitrogen gas in order to eliminate infrared absorption due to carbon dioxide or water vapor. Further, the MCT detector 12 is cooled with liquid nitrogen.

【0025】なお、図1では、可動鏡7の移動距離を検
出する周知のレーザ干渉光学系を図示省略している。
A known laser interference optical system for detecting the moving distance of the movable mirror 7 is not shown in FIG.

【0026】MCT検出器12で検出されたインターフ
ェログラムは、デジタル変換された後フーリエ変換さ
れ、スペクトルが得られる。
The interferogram detected by the MCT detector 12 is digitally converted and then Fourier-transformed to obtain a spectrum.

【0027】以下、上記のようなFT−IR装置を用い
た実験例を説明する。この実験例は、本発明の効果を従
来法と比較して示すものである。
An experimental example using the above FT-IR apparatus will be described below. This experimental example shows the effect of the present invention in comparison with the conventional method.

【0028】(2)実験例1 図3は、波数域700〜540cm-1において、試料1
0を装着せずにFT−IR測定を行った場合の透過率ス
ペクトルを示す。理想的には透過率は100%となる
が、実際には装置性能の時間的安定性及びノイズの問題
により、100%ラインからずれている。このノイズは
装置性能に起因したノイズである。このノイズ幅が小さ
いほど、高感度測定に有利となる。
(2) Experimental Example 1 FIG. 3 shows sample 1 in the wave number range of 700 to 540 cm −1 .
The transmittance | permeability spectrum at the time of carrying out FT-IR measurement without mounting 0 is shown. Ideally, the transmittance is 100%, but in reality, it deviates from the 100% line due to the problem of temporal stability of device performance and noise. This noise is due to device performance. The smaller the noise width, the more advantageous for high sensitivity measurement.

【0029】図3(b)は、TGS検出器を用いた通常
のFT−IR装置により、測定分解能2cm-1で10分
間信号を積算して得た透過率スペクトルであり、ノイズ
幅は0.02%程度である。一方、図3(a)は、MC
T検出器12を用い、この検出器の前に図2(b)に示
すような特性のバンドパスフィルタを配置したFT−I
R装置により、測定分解能2cm-1で10分間信号を積
算して得た透過率スペクトルである。
FIG. 3 (b) is a transmittance spectrum obtained by integrating signals for 10 minutes with a measurement resolution of 2 cm −1 by a normal FT-IR apparatus using a TGS detector, and the noise width is 0. It is about 02%. On the other hand, FIG.
An FT-I in which a T detector 12 is used and a bandpass filter having the characteristic shown in FIG. 2B is arranged in front of this T detector.
It is a transmittance spectrum obtained by integrating signals with a measurement resolution of 2 cm −1 for 10 minutes using an R device.

【0030】図3(a)のノイズ幅は、0.005%程
度であって、図3(b)の1/4程度に減少しており、
明らかに高感度化のメリットが見られる。感度の線形性
は、図2(c)にゴースト信号が見られないことにより
確認できる。
The noise width in FIG. 3 (a) is about 0.005%, which is about 1/4 of that in FIG. 3 (b).
Clearly, the advantage of higher sensitivity can be seen. The linearity of the sensitivity can be confirmed by the fact that no ghost signal is seen in FIG.

【0031】(3)実験例2 図4は、厚さ2mmのFZ法シリコン単結晶中の置換型
炭素Csの室温での局在振動吸収スペクトルを、縦軸を
吸光度としてレファランス結晶との差スペクトルで示し
たものである。測定分解能は2cm-1である。
(3) Experimental Example 2 FIG. 4 shows the localized vibration absorption spectrum of the substitutional carbon Cs in a FZ method silicon single crystal having a thickness of 2 mm at room temperature, with the vertical axis being the absorbance and the difference spectrum from the reference crystal. It is shown in. The measurement resolution is 2 cm -1 .

【0032】図4(b)は、TGS検出器を用いた通常
のFT−IR装置により、10分間信号を積算して得た
吸光スペクトルであり、ノイズ幅は0.02%程度であ
る。一方、図4(a)は、MCT検出器12を用い、こ
の検出器の前に図2(b)に示すような特性のバンドパ
スフィルタを配置したFT−IR装置により、10分間
信号を積算して得た吸光度スペクトルである。
FIG. 4 (b) is an absorption spectrum obtained by integrating signals for 10 minutes by a normal FT-IR apparatus using a TGS detector, and the noise width is about 0.02%. On the other hand, in FIG. 4A, the MCT detector 12 is used, and the signal is integrated for 10 minutes by an FT-IR apparatus in which a bandpass filter having the characteristic shown in FIG. 2B is arranged in front of this detector. It is the absorbance spectrum obtained by.

【0033】本実験に用いたシリコン単結晶中の置換型
炭素Cs濃度は、ASTM : F123−81の濃度
算出法によると0.04ppmaとなり、濃度検出下限
値〜0.05ppma(ASTM : F123−8
1)とほぼ同等の濃度である。図4(b)では、ノイズ
によってスペクトル形状が崩れているのに対して、図4
(a)では、ノイズがより少なくスペクトル形状が良好
であることがわかる。
The substitutional carbon Cs concentration in the silicon single crystal used in this experiment was 0.04 ppma according to the concentration calculation method of ASTM: F123-81, which was the lower limit of concentration detection to 0.05 ppma (ASTM: F123-8).
It is almost the same concentration as 1). In FIG. 4B, the spectral shape is destroyed by noise, whereas in FIG.
In (a), it can be seen that there is less noise and the spectrum shape is good.

【0034】図4(a)の場合、吸収ピーク高さは、図
4(b)の場合(0.04ppma)の1/3程度まで
認識できる。したがって、本発明により、シリコン単結
晶中の炭素Cs不純物の検出下限はおよそ0.01pp
maまで改善されたことになる。
In the case of FIG. 4 (a), the absorption peak height can be recognized up to about 1/3 of that in the case of FIG. 4 (b) (0.04 ppma). Therefore, according to the present invention, the lower limit of detection of carbon Cs impurities in a silicon single crystal is about 0.01 pp.
It has been improved to ma.

【0035】(4)実験例3 図5は、上記実験例2と全く同様の測定を、置換型炭素
濃度0.04ppma程度、厚さ2mm程度のCZ法シ
リコン単結晶について実施した結果を示す。
(4) Experimental Example 3 FIG. 5 shows the result of performing the same measurement as in Experimental Example 2 on a CZ method silicon single crystal having a substitutional carbon concentration of about 0.04 ppma and a thickness of about 2 mm.

【0036】図5(b)では、ノイズによってスペクト
ル形状が崩れているのに対して、図5(a)では、ノイ
ズがより少なくスペクトル形状が良好であることがわか
る。
In FIG. 5 (b), it can be seen that the spectrum shape is destroyed by noise, whereas in FIG. 5 (a) there is less noise and the spectrum shape is good.

【0037】図5(a)の場合、吸収ピーク高さは、図
5(b)の場合(0.04ppma)の1/3程度まで
認識できる。したがって、本発明により、シリコン単結
晶中の炭素不純物の検出下限はおよそ0.01ppma
まで改善されたことになる。
In the case of FIG. 5A, the height of the absorption peak can be recognized up to about 1/3 of that in the case of FIG. 5B (0.04 ppma). Therefore, according to the present invention, the lower limit of detection of carbon impurities in a silicon single crystal is about 0.01 ppma.
It has been improved to.

【0038】[0038]

【発明の効果】本発明に係るフーリエ変換赤外分光測定
方法によれば、得られるスペクトルの定量分析性を低下
させることなく、感度およびスペクトルのSN比を向上
させることができ、SN比はTGS検出器を用いた場合
の4〜5倍程度向上するという優れた効果を奏し、微量
分析精度向上に寄与するところが大きい。
According to the Fourier transform infrared spectroscopy measuring method of the present invention, the sensitivity and the SN ratio of the spectrum can be improved without lowering the quantitative analysis property of the obtained spectrum, and the SN ratio is TGS. It has an excellent effect that it is improved about 4 to 5 times as much as when a detector is used, and largely contributes to improvement of microanalysis accuracy.

【0039】また、微量の置換型炭素を含むシリコン単
結晶に対するFT−IR測定では、TGS検出器を用い
た場合の検出下限が室温測定で0.05ppmaである
のに対し、本発明を適用した場合には、検出下限を室温
測定で0.01ppma程度にすることができるという
優れた効果を奏する。
Further, in the FT-IR measurement for a silicon single crystal containing a trace amount of substitutional carbon, the present invention was applied while the lower limit of detection when the TGS detector was used was 0.05 ppma at room temperature measurement. In this case, there is an excellent effect that the lower limit of detection can be set to about 0.01 ppma at room temperature measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 FT−IR装置の光学系の原理成図である。FIG. 1 is a principle diagram of an optical system of an FT-IR apparatus.

【図2】 FT−IR装置感度の波数依存性を示す図で
ある。
FIG. 2 is a diagram showing the wave number dependence of FT-IR device sensitivity.

【図3】 試料を装着してない状態での透過率スペクト
ル図である。
FIG. 3 is a transmittance spectrum diagram without a sample attached.

【図4】 FZ法で育成された厚さ2mmのシリコン単
結晶中の微量炭素の赤外吸収スペクトル図である。
FIG. 4 is an infrared absorption spectrum diagram of a trace amount of carbon in a 2 mm-thick silicon single crystal grown by the FZ method.

【図5】 CZ法で育成された厚さ2mm、炭素濃度
0.04ppmaのシリコン単結晶中の微量炭素の赤外
吸収スペクトル図である。
FIG. 5 is an infrared absorption spectrum diagram of a trace amount of carbon in a silicon single crystal grown by the CZ method and having a thickness of 2 mm and a carbon concentration of 0.04 ppma.

【図6】 TGS検出器及びMCT検出器の感度特性図
である。
FIG. 6 is a sensitivity characteristic diagram of a TGS detector and an MCT detector.

【図7】 従来のFT−IR装置感度の波数依存性を示
す図である。
FIG. 7 is a diagram showing the wave number dependence of sensitivity of a conventional FT-IR apparatus.

【図8】 FZ法で育成された厚さ2mmのシリコン単
結晶の透過率スペクトル図である。
FIG. 8 is a transmittance spectrum diagram of a 2 mm-thick silicon single crystal grown by the FZ method.

【図9】 図8中のa点付近の波数軸拡大図である。9 is an enlarged view of the wave number axis in the vicinity of point a in FIG.

【符号の説明】[Explanation of symbols]

1 赤外連続光源 4 マイケルソン干渉計 9 バンドパスフィルタ 12 MCT検出器 1 Infrared continuous light source 4 Michelson interferometer 9 Bandpass filter 12 MCT detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 赤外吸収帯域を有する試料に対しフーリ
エ変換赤外分光測定を行うフーリエ変換赤外分光測定方
法において、低温にした高感度の光導伝型半導体検出器
を用い、着目する該赤外吸収帯域の光を透過させるバン
ドパスフィルタを該光導伝型半導体検出器に入射する光
路中に配置したことを特徴とするフーリエ変換赤外分光
測定方法。
1. In a Fourier transform infrared spectroscopic measurement method for performing Fourier transform infrared spectroscopic measurement on a sample having an infrared absorption band, a high-sensitivity photoconductive semiconductor detector at low temperature is used and the red A Fourier transform infrared spectroscopic measurement method, characterized in that a bandpass filter for transmitting light in the outer absorption band is arranged in an optical path incident on the photoconductive semiconductor detector.
【請求項2】 前記試料は、微量の置換型炭素を含むシ
リコン単結晶であることを特徴とする請求項1記載のフ
ーリエ変換赤外分光測定方法。
2. The Fourier transform infrared spectroscopic measurement method according to claim 1, wherein the sample is a silicon single crystal containing a trace amount of substitutional carbon.
【請求項3】 前記光導伝型半導体検出器は、液体窒素
で冷却されるMCT検出器であることを特徴とする請求
項1又は2記載のフーリエ変換赤外分光測定方法。
3. The Fourier transform infrared spectroscopic measurement method according to claim 1, wherein the photoconductive semiconductor detector is an MCT detector cooled with liquid nitrogen.
JP33232691A 1991-12-16 1991-12-16 Fourier transform infrared spectroscopy Expired - Lifetime JP2797797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33232691A JP2797797B2 (en) 1991-12-16 1991-12-16 Fourier transform infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33232691A JP2797797B2 (en) 1991-12-16 1991-12-16 Fourier transform infrared spectroscopy

Publications (2)

Publication Number Publication Date
JPH05164613A true JPH05164613A (en) 1993-06-29
JP2797797B2 JP2797797B2 (en) 1998-09-17

Family

ID=18253713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33232691A Expired - Lifetime JP2797797B2 (en) 1991-12-16 1991-12-16 Fourier transform infrared spectroscopy

Country Status (1)

Country Link
JP (1) JP2797797B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266303A (en) * 2009-05-14 2010-11-25 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2011191246A (en) * 2010-03-16 2011-09-29 Fuji Electric Co Ltd Laser-type gas analyzer
JP2017026506A (en) * 2015-07-24 2017-02-02 株式会社堀場製作所 Output correction method of photodetector used for spectrum analyzer
JP2019002791A (en) * 2017-06-15 2019-01-10 株式会社堀場製作所 Calculation method for output correction computing equation of photodetector, and output correction method for photodetector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276652U (en) * 1985-11-01 1987-05-16
JPS6344131A (en) * 1986-08-12 1988-02-25 Shimadzu Corp Spectrophotometer
JPS6480908A (en) * 1987-09-22 1989-03-27 Nec Corp Spectral element
JPH01282434A (en) * 1988-05-07 1989-11-14 Japan Spectroscopic Co Fourier spectroscope
JPH0331727A (en) * 1989-06-29 1991-02-12 Shimadzu Corp Fourier transformation infrared spectrophotometer
JPH03158726A (en) * 1989-11-17 1991-07-08 Hitachi Ltd Time-resolution fourier transformation infrared spectral device
JPH03285127A (en) * 1990-04-02 1991-12-16 Horiba Ltd Fourier transform infrared analyser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276652U (en) * 1985-11-01 1987-05-16
JPS6344131A (en) * 1986-08-12 1988-02-25 Shimadzu Corp Spectrophotometer
JPS6480908A (en) * 1987-09-22 1989-03-27 Nec Corp Spectral element
JPH01282434A (en) * 1988-05-07 1989-11-14 Japan Spectroscopic Co Fourier spectroscope
JPH0331727A (en) * 1989-06-29 1991-02-12 Shimadzu Corp Fourier transformation infrared spectrophotometer
JPH03158726A (en) * 1989-11-17 1991-07-08 Hitachi Ltd Time-resolution fourier transformation infrared spectral device
JPH03285127A (en) * 1990-04-02 1991-12-16 Horiba Ltd Fourier transform infrared analyser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266303A (en) * 2009-05-14 2010-11-25 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2011191246A (en) * 2010-03-16 2011-09-29 Fuji Electric Co Ltd Laser-type gas analyzer
JP2017026506A (en) * 2015-07-24 2017-02-02 株式会社堀場製作所 Output correction method of photodetector used for spectrum analyzer
JP2019002791A (en) * 2017-06-15 2019-01-10 株式会社堀場製作所 Calculation method for output correction computing equation of photodetector, and output correction method for photodetector

Also Published As

Publication number Publication date
JP2797797B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
US6057923A (en) Optical path switching based differential absorption radiometry for substance detection
US6969857B2 (en) Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases
WO1990010203A1 (en) Air turbulence detection
US3091690A (en) Two path infrared gas analyzer having one enclosed path
Adams et al. Analytical optoacoustic spectrometry. Part IV. A double-beam optoacoustic spectrometer for use with solid and liquid samples in the ultraviolet, visible and near-infrared regions of the spectrum
JPH05164613A (en) Fourier-transformation infrared spectroscopic measuring method
Long et al. Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism
WO1994016311A1 (en) Gas analyser
US5055692A (en) System for measuring ambient pressure and temperature
JPH1183628A (en) Device for measuring optical characteristic of soil
Adams et al. Optoacoustic Spectrometry of Surfaces: Dielectric Coatings for Laser Mirrors
US5373358A (en) Excitation wavelength sweeping type raman spectroscopic apparatus
US4999010A (en) Dual beam optical nulling interferometric spectrometer
US3211051A (en) Optical measuring device for obtaining a first derivative of intensity with respect to wavelength
Schleisman et al. A Fourier transform near-infrared spectrometer for the determination of carbon, hydrogen, and sulfur in organic compounds by atomic emission from an atmospheric pressure argon inductively coupled plasma
JPS63308543A (en) Scattered light measuring apparatus
JPH0552654A (en) Excitation wave length sweep type raman spectroscope
Wadayama et al. A double-modulation method of observing infrared emission spectra of thin films on metal surfaces
Fuji et al. Background-free mid-infrared absorption spectroscopy using sub-cycle pulses
Fournier et al. CONTRAST IMPROVEMENT IN PHOTOACOUSTIC AND DIFFUSE LIGHT FOURIER TRANSFORM SPECTROSCOPY
Poteet et al. Ultrahigh Sensitivity Detection System for Far Infrared Spectrophotometers
JPS63277957A (en) Method and device for measuring optical absorptivity
Maltezos et al. Review of High Spectral Resolution Techniques for Measurements of the Aerosol Phase Function and Application in Extensive Air Shower Detector Atmospheric Monitoring
Robinson et al. Relation Between Laser Induced Infrared Fluorescence and Laser Absorption By Pollutant Gases