JPH05164425A - Absorption type cold water or hot water machine - Google Patents

Absorption type cold water or hot water machine

Info

Publication number
JPH05164425A
JPH05164425A JP35161791A JP35161791A JPH05164425A JP H05164425 A JPH05164425 A JP H05164425A JP 35161791 A JP35161791 A JP 35161791A JP 35161791 A JP35161791 A JP 35161791A JP H05164425 A JPH05164425 A JP H05164425A
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
low temperature
low
absorption chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35161791A
Other languages
Japanese (ja)
Other versions
JP3027646B2 (en
Inventor
Tomihisa Ouchi
富久 大内
Akira Nishiguchi
章 西口
Hiroshi Kushima
大資 久島
Tatsuro Fujii
達郎 藤居
Takeshi Nakao
剛 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03351617A priority Critical patent/JP3027646B2/en
Publication of JPH05164425A publication Critical patent/JPH05164425A/en
Application granted granted Critical
Publication of JP3027646B2 publication Critical patent/JP3027646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a small-sized low temperature regenerator and assure an efficient operating state even under a low temperature state by a method wherein a part of rich resolution got from the low temperature regenerator is sucked and the sucked rich solution is added to dilute solution supplied to the low temperature regenerator. CONSTITUTION:In an absorption type cold water or hot water machine in which dilute solution sent from an absorption device 5 is regenerated into rich solution through evaporation of refrigerant vapor at a high temperature regenerator 1 and a low temperature regenerator 2, a part of rich solution got from the low temperature regenerator 2 is sucked and the sucked rich solution is added to the dilute solution supplied to the low temperature regenerator 2. The part of the rich solution is added to the dilute solution and an amount of solution supplied to the low temperature regenerator 2 is adjusted to be increased, thereby the most suitable control over a heat exchanging performance in the low temperature regenerator 2 is enabled. In addition, the heat exchanging efficiency can be improved due to an increasing of an amount of supplied solution and a temperature difference between a pressure balanced temperature and a refrigerant vapor balanced temperature at an outlet of rich solution of the low temperature regenerator can be made low. That is, the temperature difference can be controlled through an adjustment of the amount of dispersed liquid and then a pressure of the high temperature regenerator 1 can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水を冷媒とし、例えば臭
化リチウムなどの塩類溶液を吸収剤とする吸収冷温水機
に係り、特にその低温再生器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater using water as a refrigerant and a salt solution such as lithium bromide as an absorbent, and more particularly to improvement of a low-temperature regenerator.

【0002】[0002]

【従来の技術】吸収冷温水機はその従来例が図7に示さ
れているように、灯油や都市ガス燃料の燃焼熱などの外
部熱源で加熱される高温再生器1、低温再生器2、凝縮
器3、蒸発器4、吸収器5、高温溶液熱交換器6、低温
溶液熱交換器7、溶液ポンプ8、冷媒ポンプ9等を動作
的に配管で接続して構成されている。
2. Description of the Related Art As shown in FIG. 7, a conventional absorption chiller-heater is a high temperature regenerator 1, a low temperature regenerator 2, which is heated by an external heat source such as combustion heat of kerosene or city gas fuel. The condenser 3, the evaporator 4, the absorber 5, the high temperature solution heat exchanger 6, the low temperature solution heat exchanger 7, the solution pump 8 and the refrigerant pump 9 are operatively connected by piping.

【0003】そして、冷房時には、冷却塔CTで冷却し
た冷却水CWを冷却水ポンプ10で吸収器5及び凝縮器
3に通水すると共に、蒸発器4に冷水4aを通水させ、
この冷水4aを、室内のエアハンドリングユニットに冷
温水配管を介して循環させて冷房を行う。具体時には、
高温再生器1で加熱された希溶液は、冷媒蒸気を発生し
て濃縮され、また低温再生器2の希溶液は、高温再生器
1で発生した冷媒蒸気で加熱されて冷媒蒸気を発生して
濃縮される。
During cooling, the cooling water CW cooled by the cooling tower CT is passed by the cooling water pump 10 to the absorber 5 and the condenser 3, and the evaporator 4 is caused to pass the cold water 4a.
This cold water 4a is circulated through an indoor air handling unit via a hot / cold water pipe for cooling. Specifically,
The dilute solution heated in the high temperature regenerator 1 generates refrigerant vapor and is concentrated, and the dilute solution in the low temperature regenerator 2 is heated by the refrigerant vapor generated in the high temperature regenerator 1 to generate refrigerant vapor. Concentrated.

【0004】高温再生器1で発生し低温再生器2の熱源
として利用された冷媒蒸気及び低温再生器2で発生した
冷媒蒸気は、それぞれ凝縮器3において冷却水CWによ
り冷却されて液冷媒となる。そして、この液冷媒は、液
冷媒導管17を経由して蒸発器4に送られる。
The refrigerant vapor generated in the high temperature regenerator 1 and used as the heat source of the low temperature regenerator 2 and the refrigerant vapor generated in the low temperature regenerator 2 are cooled by the cooling water CW in the condenser 3 to become liquid refrigerant. .. Then, this liquid refrigerant is sent to the evaporator 4 via the liquid refrigerant conduit 17.

【0005】蒸発器4における液冷媒は、冷媒ポンプ9
によって熱交換器上に散布されて冷水4aから熱を奪い
蒸発帰化した後、吸収器5に導かれる。一方、高温再生
器1で生成した濃溶液は、高温溶液熱交換器6を経て低
温再生器2で生成の濃溶液と混合した後、低温溶液熱交
換器7を経由し、圧力差とヘッド差により吸収器5に導
かれ、溶液スプレィポンプ18により熱交換器上に散布
される。吸収器5の熱交換器上に散布された濃溶液は、
冷却水CWで冷却されつつ蒸発器4からの冷媒蒸気を吸
収して希溶液となり、この希溶液は、溶液ポンプ8によ
り高温再生器1、低温再生器2それぞれに送られる。以
上のように吸収冷房サイクルが構成されている。
The liquid refrigerant in the evaporator 4 is the refrigerant pump 9
After being sprayed on the heat exchanger by the heat exchanger, the heat is taken from the cold water 4a to be vaporized and naturalized, and then guided to the absorber 5. On the other hand, the concentrated solution produced in the high temperature regenerator 1 is mixed with the concentrated solution produced in the low temperature regenerator 2 via the high temperature solution heat exchanger 6 and then passed through the low temperature solution heat exchanger 7 to detect the pressure difference and the head difference. Is guided to the absorber 5 and is sprayed onto the heat exchanger by the solution spray pump 18. The concentrated solution sprinkled on the heat exchanger of the absorber 5 is
While being cooled by the cooling water CW, the refrigerant vapor from the evaporator 4 is absorbed to form a dilute solution, and the dilute solution is sent to the high temperature regenerator 1 and the low temperature regenerator 2 by the solution pump 8. The absorption cooling cycle is configured as described above.

【0006】暖房時には、冷媒ポンプ9が停止され、冷
暖切り換え弁12が開放される。高温再生器1で発生し
た冷媒蒸気は、低温再生器2の伝熱管ヘッダ部より分岐
した暖房蒸気導管16及び冷暖切り換え弁12を経由し
た後に2分される。そして、一方は気泡ポンプ13を経
由して吸収器5に導かれる。また、他方は、バイパス管
14を経由して蒸発器4に導かれ、蒸発器4の伝熱管内
を流れ温水4bと熱交換して凝縮液化する。この液冷媒
は暖房液冷媒導管15を経由して気泡ポンプ13に導か
れ、前記高温再生器1からの冷媒蒸気による気泡ポンプ
作用により吸収器5に送られる。以上のように暖房サイ
クルが構成されていた。
During heating, the refrigerant pump 9 is stopped and the cooling / heating switching valve 12 is opened. The refrigerant vapor generated in the high temperature regenerator 1 is divided into two after passing through the heating vapor conduit 16 branched from the heat transfer pipe header portion of the low temperature regenerator 2 and the cooling / heating switching valve 12. Then, one is guided to the absorber 5 via the bubble pump 13. The other is guided to the evaporator 4 via the bypass pipe 14, flows in the heat transfer pipe of the evaporator 4 and exchanges heat with the hot water 4b to be condensed and liquefied. This liquid refrigerant is guided to the bubble pump 13 via the heating liquid refrigerant conduit 15, and is sent to the absorber 5 by the bubble pump action of the refrigerant vapor from the high temperature regenerator 1. The heating cycle was configured as described above.

【0007】ここに低温再生器2は、水平に配された伝
熱管群の管内に高温再生器1で発生の冷媒蒸気が導か
れ、管外には溶液散布装置Sにより低温熱交換器7を経
由した希溶液が散布される散布式低温再生器である。こ
の種のものは特開昭52−38661号に開示されてい
る。また、特開昭52−150852号に開示されてい
るような、水平管外に溶液を満たし一端から希溶液を入
れて他端から濃溶液を取り出す満液式再生器、また両者
を組み合わせた半満液式低温再生器などの熱交換方式も
提案されている。
Here, in the low temperature regenerator 2, the refrigerant vapor generated in the high temperature regenerator 1 is introduced into the tubes of the heat transfer tube group arranged horizontally, and the low temperature heat exchanger 7 is provided outside the tubes by the solution spraying device S. It is a spray type low temperature regenerator in which the diluted solution that has passed through is sprayed. This type is disclosed in JP-A-52-38661. Further, as disclosed in JP-A No. 52-150852, a liquid-filled regenerator which fills a solution outside a horizontal tube with a dilute solution from one end and a concentrated solution from the other end, or a semi-regenerator in which both are combined. A heat exchange system such as a liquid-filled low temperature regenerator has also been proposed.

【0008】ところで、低温再生器の熱交換性能をコン
トロールするについては、例えば特公昭46−1869
7号に開示されているように、加熱媒体の供給量を調
節する方法、満液式では溶液液面を低下させて伝熱面
積を減少させる方法がある。
By the way, for controlling the heat exchange performance of the low temperature regenerator, for example, Japanese Patent Publication No. 46-1869.
As disclosed in No. 7, there is a method of adjusting the supply amount of the heating medium and a method of reducing the heat transfer area by lowering the liquid surface of the solution in the full type.

【0009】しかし、高温再生器よりの冷媒蒸気に加熱
媒体を求める散布式低温再生器については、加熱媒体が
高温再生器に従属するので加熱媒体の供給量調節法を用
いることができないし、また伝熱管部に液面がないので
液面制御法も用いることができない。つまり、加熱媒体
従属形の散布式低温再生器にいては、その熱交換性能を
有効に制御する方法がなかった。
However, in the case of the spray type low temperature regenerator which requires the heating medium in the refrigerant vapor from the high temperature regenerator, the heating medium is subordinate to the high temperature regenerator, and therefore the method for adjusting the supply amount of the heating medium cannot be used. Since there is no liquid level in the heat transfer tube, the liquid level control method cannot be used. That is, in the spray medium low temperature regenerator dependent on the heating medium, there was no method for effectively controlling the heat exchange performance.

【0010】[0010]

【発明が解決しようとする課題】しかるに、加熱源であ
る高温再生器の発生冷媒蒸気と低温再生器内溶液との熱
交換温度差はわずかではあるが、広い運転範囲において
吸収冷温水機の高性能化を図るためには、該熱交換温度
差を最適に制御すること、即ち、低温再生器の熱交換性
能の制御が必要である。
However, although the difference in heat exchange temperature between the refrigerant vapor generated in the high-temperature regenerator, which is a heating source, and the solution in the low-temperature regenerator is small, the absorption chiller-heater has a high temperature in a wide operating range. In order to improve performance, it is necessary to optimally control the heat exchange temperature difference, that is, control of the heat exchange performance of the low temperature regenerator.

【0011】従って、本発明の目的は、吸収冷温水機に
おける低温再生器について熱交換性能の最適制御を実現
することにある。
Therefore, an object of the present invention is to realize optimum control of heat exchange performance for a low temperature regenerator in an absorption chiller-heater.

【0012】また、本発明の他の目的は、低温再生器の
性能をより向上させることにある。
Another object of the present invention is to further improve the performance of the low temperature regenerator.

【0013】[0013]

【課題を解決するための手段及び作用】前記の目的を達
成するためにこの発明では、低温再生器からの濃溶液の
一部を吸引し、この吸引された濃溶液を低温再生器へ供
給される希溶液に加えるようにしているもので、このよ
うに濃溶液の一部を希溶液に加え、低温再生器に供給す
る溶液量を増大調整することにより、低温再生器におけ
る熱交換性能の最適制御を可能としているものである。
このような制御は以下の如き知見に基づくものである。
In order to achieve the above object, according to the present invention, a part of the concentrated solution from the low temperature regenerator is sucked and the sucked concentrated solution is supplied to the low temperature regenerator. The heat exchange performance in the low temperature regenerator is optimized by adding a portion of the concentrated solution to the dilute solution and increasing the amount of solution supplied to the low temperature regenerator. It is possible to control.
Such control is based on the following knowledge.

【0014】8段1列、単位長さ80mmの水平伝熱管
群を有する散布式低温再生器について熱物質移動実験を
行い、散布液量即ち単位幅当りの液膜流出量T(kg/
ms)と、次式で定義した熱伝達率h0(kW/m2K)
の関係を調べた。ここに、Qは交換熱量(kW)、A0
は管外伝熱面積(m2)、TLGoは低温再生器濃溶液出
口冷媒蒸気平衡温度(°C)、TLGiは低温再生器希
溶液入口冷媒蒸気平衡温度(°C)、THGsは高温再
生器冷媒蒸気圧力平衡温度(°C)である。従って、
(数1)は熱移動だけでなく物質移動も評価した式であ
る。実験の結果、図8に示すように、低温再生器の伝熱
性能は液膜流量の約1/2乗に比例することが分かっ
た。また、観察の結果、希溶液の液の流下で濃溶液が希
溶液に置き換えられることにより熱交換が促進されるこ
とが分かった。
A heat mass transfer experiment was conducted on a spray type low temperature regenerator having a horizontal heat transfer tube group of 8 rows and 1 row and a unit length of 80 mm, and the spray liquid amount, that is, the liquid film outflow amount per unit width T (kg /
ms) and the heat transfer coefficient h 0 (kW / m 2 K) defined by the following equation.
I investigated the relationship. Here, Q is the heat exchange amount (kW), A 0
Is the external heat transfer area (m 2 ), TLG o is the low temperature regenerator concentrated solution outlet refrigerant vapor equilibrium temperature (° C), TLG i is the low temperature regenerator dilute solution inlet refrigerant vapor equilibrium temperature (° C), and THG s is the high temperature. Regenerator refrigerant vapor pressure equilibrium temperature (° C). Therefore,
(Equation 1) is an equation that evaluates not only heat transfer but also mass transfer. As a result of the experiment, as shown in FIG. 8, it was found that the heat transfer performance of the low-temperature regenerator is proportional to about 1/2 power of the liquid film flow rate. Further, as a result of observation, it was found that heat exchange was promoted by replacing the concentrated solution with the diluted solution under the flow of the diluted solution.

【0015】このように液膜流量つまり溶液供給量の増
加により熱交換性能が向上するということは、液膜流量
を増加させてやることにより、高温再生器の圧力平衡温
度と低温再生器濃溶液出口冷媒蒸気平衡温度との温度差
を小さくできる。即ち、散布液量調節により該温度差を
コントロールでき、従って高温再生器の圧力をコントロ
ールできるということである。
Thus, the fact that the heat exchange performance is improved by increasing the liquid film flow rate, that is, the solution supply amount means that the pressure equilibrium temperature of the high temperature regenerator and the low temperature regenerator concentrated solution are increased by increasing the liquid film flow rate. The temperature difference from the outlet refrigerant vapor equilibrium temperature can be reduced. That is, the temperature difference can be controlled by adjusting the amount of spray liquid, and thus the pressure of the high temperature regenerator can be controlled.

【0016】低温再生器からの濃溶液を吸引するための
機構としてはエゼクタを用いるのが好ましい。このよう
なエゼクタは、吸収器からの希溶液を噴出状態で供給す
る駆動液供給管と、低温再生器からの濃溶液を吸引する
液吸引管と、濃溶液を希溶液に混合させて送り出す吐出
部とを備えてなる。
An ejector is preferably used as a mechanism for sucking the concentrated solution from the low temperature regenerator. Such an ejector includes a driving liquid supply pipe for supplying the dilute solution from the absorber in a jet state, a liquid suction pipe for sucking the concentrated solution from the low temperature regenerator, and a discharge for mixing the concentrated solution with the dilute solution and delivering it. And a section.

【0017】このようなエゼクタを用いるについては、
低温再生器の下部に接続され、低温再生器から濃溶液を
送り出す液流出管に液供給管を接続するようにすること
もできるし、また液流出管と並列させて液吸引管を低温
再生器の下部に直接接続させることもできる。
Regarding the use of such an ejector,
It is possible to connect the liquid supply pipe to the liquid outflow pipe that is connected to the lower part of the low temperature regenerator and sends the concentrated solution from the low temperature regenerator, or the liquid suction pipe in parallel with the liquid outflow pipe. It can also be connected directly to the bottom of the.

【0018】濃溶液の吸引量の調節手段としては、液供
給管に流量制御弁を設けることができる。また、液吸引
管を液流出管と並列に設ける構造については、液流出管
が接続された部分と液流出管が接続された部分とに低温
再生器の下部を仕切ることが可能な仕切り板を吸引量の
調節手段とすることができる。
As a means for adjusting the suction amount of the concentrated solution, a flow rate control valve can be provided in the liquid supply pipe. Further, regarding the structure in which the liquid suction pipe is provided in parallel with the liquid outflow pipe, a partition plate capable of partitioning the lower part of the low temperature regenerator into a part to which the liquid outflow pipe is connected and a part to which the liquid outflow pipe is connected is provided. It can be used as a means for adjusting the suction amount.

【0019】これらの調節手段は運転状態における種々
の情報に基づいて制御することもできるし、また温度に
基づく形状記憶素材の特性を利用しての制御も可能であ
る。
These adjusting means can be controlled on the basis of various information in the operating state, or can be controlled by utilizing the characteristics of the shape memory material based on the temperature.

【0020】また、この発明では、低温再生器の性能向
上のため、特に溶液散布における液膜形成の質的向上の
ために溶液散布装置の改良を図っている。即ち、この発
明による溶液散布装置は、低温再生器へ希溶液を供給す
る液導入管に接続される分配ダクトと、この分配ダクト
に溶液流下用の流路となる隙間を長さ方向で形成するよ
うにして接続された液滴分散板とからなる散布ユニット
を一つ又は二つ以上組み合せて形成されている。
Further, in the present invention, the solution spraying device is improved in order to improve the performance of the low temperature regenerator, particularly to improve the quality of the liquid film formation in the solution spraying. That is, in the solution spraying device according to the present invention, a distribution duct connected to the liquid introducing pipe for supplying the dilute solution to the low temperature regenerator and a gap serving as a flow path for the solution flow are formed in the distribution duct in the length direction. It is formed by one or a combination of two or more spraying units consisting of the droplet dispersion plates connected in this way.

【0021】この溶液散布装置における散布ユニット
は、分配ダクトに供給された溶液を、液滴分散板との間
に隙間として形成の長さ方向に延びる流路から液滴分散
板上面に沿って流下させるもので、この液滴分散板上面
に沿った流下により、非常に均一でしかも膜切れ等のな
い流下液膜を形成できる。
In the solution spraying device of this solution spraying device, the solution supplied to the distribution duct flows down along the upper surface of the droplet dispersion plate from the flow path extending in the lengthwise direction as a gap between the solution and the droplet dispersion plate. By means of the flow along the upper surface of the droplet dispersion plate, it is possible to form a falling liquid film which is extremely uniform and has no film breakage.

【0022】このように均一性が高く安定した液膜によ
り溶液の散布を行うことは、前記の液膜流量の調節によ
る低温再生器における熱交換性能の制御にとってその有
効性のより確実な確保という点からも極めて好都合であ
る。
Dispersing the solution with a highly uniform and stable liquid film in this way is more reliable for ensuring the effectiveness of the heat exchange performance control in the low temperature regenerator by adjusting the liquid film flow rate. It is extremely convenient from the point of view.

【0023】液滴分散板により形成される液膜をより均
一に流下させるについては、液滴分散板のすそ部に適宜
の間隔で複数の切欠き部を形成し、この切欠き部によ
り、溶液が液滴分散板の長さ方向に流れるのを防止する
ようにする。
In order to make the liquid film formed by the droplet dispersion plate flow more uniformly, a plurality of notches are formed at appropriate intervals in the skirt of the droplet dispersion plate, and the notches form the solution. Are prevented from flowing in the length direction of the droplet dispersion plate.

【0024】更に、この発明では、低温再生器中におい
て散布された希溶液から発生する溶液ミストを効率よく
除去することにより低温再生器の性能向上を図ってい
る。即ち、この発明は、低温再生器と凝縮器との間に設
けられる仕切り構造体を工夫しているもので、そのよう
な仕切り構造体は、低温再生器の上部からその先端が低
温再生器の中間部より下方に至るように垂設された上部
仕切り板と、この上部仕切り板の先端部に先端部が重な
る高さで低温再生器の下部から立設された下部仕切り板
とを、両者の先端部の重なり部分において低温再生器側
から凝縮器側へ通じる通路が形成されるように組み合わ
せてなっている。
Further, in the present invention, the performance of the low temperature regenerator is improved by efficiently removing the solution mist generated from the dilute solution sprayed in the low temperature regenerator. That is, the present invention devises a partition structure provided between the low-temperature regenerator and the condenser, and such a partition structure has a low-temperature regenerator from the top to the tip of the low-temperature regenerator. An upper partition plate vertically extending from the middle part to the lower part and a lower partition plate erected from the lower part of the low temperature regenerator at a height where the tip part overlaps the tip part of this upper partition plate, A combination is formed so that a passage leading from the low temperature regenerator side to the condenser side is formed in the overlapping portion of the tip portions.

【0025】このような仕切り構造体によると、上方か
ら散布される希溶液の流下方向と並流する流れを冷媒蒸
気に与えることができる。そして、これにより希溶液の
ミストを下方に流下させ、効率よく捕捉・除去すること
ができる。また、上・下2枚の仕切り板だけの組み合せ
という極めて簡単な構造であるため、凝縮器側へ流れる
冷媒蒸気の流動圧力損失を、例えば従来のエリミネータ
に比べ大きく軽減でき、希溶液の再生効率の向上を図れ
る。
According to such a partition structure, it is possible to give the refrigerant vapor a flow that flows in parallel with the downward direction of the diluted solution sprayed from above. As a result, the mist of the dilute solution can be made to flow downward, and can be efficiently captured and removed. In addition, the extremely simple structure of combining only the upper and lower partition plates allows the flow pressure loss of the refrigerant vapor flowing to the condenser side to be greatly reduced compared to, for example, the conventional eliminator, and the regeneration efficiency of the dilute solution. Can be improved.

【0026】[0026]

【実施例】以下に本発明の実施例を説明する。本発明に
より吸収冷温水機の一実施例は、図1に示すように、従
来の吸収冷温水機と同様に、高温再生器1、低温再生器
2、凝縮器3、蒸発器4、吸収器5、高温溶液熱交換器
6、低温溶液熱交換器7、溶液ポンプ8、冷媒ポンプ
9、冷却塔CT、エリミネータ11、冷暖房切り換え弁
12、気泡ポンプ13、バイパス管14、暖房冷媒導管
15、暖房蒸気導管16、液冷媒導管17、溶液スプレ
ィポンプ18、希溶液導入管19等を備えると共に、図
2及び図3に示すような溶液散布装置20を備え、更に
エゼクタ25を備えている。
EXAMPLES Examples of the present invention will be described below. One embodiment of the absorption chiller-heater according to the present invention is, as shown in FIG. 1, similar to the conventional absorption chiller-heater, a high temperature regenerator 1, a low temperature regenerator 2, a condenser 3, an evaporator 4 and an absorber. 5, high temperature solution heat exchanger 6, low temperature solution heat exchanger 7, solution pump 8, refrigerant pump 9, cooling tower CT, eliminator 11, cooling / heating switching valve 12, bubble pump 13, bypass pipe 14, heating refrigerant conduit 15, heating A vapor conduit 16, a liquid refrigerant conduit 17, a solution spray pump 18, a dilute solution introducing pipe 19 and the like are provided, a solution spraying device 20 as shown in FIGS. 2 and 3, and an ejector 25.

【0027】エゼクタ25は、低温再生器2から濃溶液
流出管29を介して低温溶液熱交換器7に送られる濃溶
液の一部を吸引し、これを低温再生器2へ供給される希
溶液に加えてやるためのものである。具体的には、吸収
器5の溶液ポンプ8で昇圧された希溶液をノズル状の駆
動液供給管26により吐出部28へ向けて噴出させるこ
とにより、濃溶液流出管29へ接続の液吸引管27を介
して濃溶液を吸引し、これを希溶液に混合させて吐出部
28から希溶液導入管へ向けて送り出すようになってい
る。
The ejector 25 sucks a part of the concentrated solution sent from the low temperature regenerator 2 to the low temperature solution heat exchanger 7 via the concentrated solution outflow pipe 29, and supplies this to the dilute solution supplied to the low temperature regenerator 2. In addition to that. Specifically, the dilute solution whose pressure is increased by the solution pump 8 of the absorber 5 is ejected toward the discharge portion 28 by the nozzle-shaped drive liquid supply pipe 26, and thus the liquid suction pipe connected to the concentrated solution outflow pipe 29. The concentrated solution is sucked through 27, mixed with the diluted solution, and sent out from the discharge part 28 toward the diluted solution introducing pipe.

【0028】溶液散布装置20は、2個の散布ユニット
20uにて形成されており、各散布ユニット20uは、
液導入管19に接続の分岐ヘッダ19aに接続される分
配ダクト管21と、該分配ダクト管21に嵌め込み機構
部22により嵌め込まれた液滴分散板23とから構成さ
れている。ここに、嵌め込み機構部22は分配ダクト管
21の中央部に形成された一定間隔の凹みであり、液滴
分散板23にも同様な凹みが形成されている。嵌め込み
機構部22のない区間が長さ方向に延びる隙間22aを
形成しており、ここが溶液が分配ダクト管21より液滴
分散板23上に流出する流路となると共に、伝熱管軸方
向への溶液の均一分配のオリフィスの作用をする。そし
て、該隙間22aから流出した液は、L字型に曲がった
液滴分散板24の上面で急速に流路を拡大することによ
り液滴分散板23の上面を静かに流れ、液滴の飛沫発生
が防止される。更に、前記液滴分散板23のすそ部24
には切欠き部24cが設けられて、液滴分散板23の上
を流れる溶液が伝熱管軸方向へ流れて1箇所から大量に
流下することが防止されている。更に重ねて、散布溶液
の温度が高く、機内圧力よりも高い蒸気圧力の加熱状態
にある場合でも、前記液滴分散板23の上を流れる間に
自己蒸発を起こすので、液滴の飛沫発生の原因となる沸
騰が防止される。これらにより、伝熱管上には広い液流
量範囲に渡って均一な液膜が形成される。
The solution spraying device 20 is composed of two spraying units 20u, and each spraying unit 20u is
It is composed of a distribution duct pipe 21 connected to a branch header 19a connected to the liquid introduction pipe 19, and a droplet dispersion plate 23 fitted into the distribution duct pipe 21 by a fitting mechanism portion 22. Here, the fitting mechanism portion 22 is a recess at a constant interval formed in the central portion of the distribution duct pipe 21, and the liquid dispersion plate 23 is also formed with a similar recess. A section without the fitting mechanism section 22 forms a gap 22a extending in the lengthwise direction, which serves as a flow path for the solution to flow from the distribution duct tube 21 onto the droplet dispersion plate 23, and in the axial direction of the heat transfer tube. Acts as an orifice for uniform distribution of the solution. Then, the liquid flowing out from the gap 22a flows gently on the upper surface of the droplet dispersion plate 23 by rapidly expanding the flow path on the upper surface of the droplet dispersion plate 24 bent in an L shape, and the droplets are splashed. Occurrence is prevented. Further, the skirt portion 24 of the droplet dispersion plate 23
A cutout portion 24c is provided in this to prevent the solution flowing on the droplet dispersion plate 23 from flowing in the axial direction of the heat transfer tube and flowing down in large quantities from one location. Further, even if the temperature of the spray solution is high and the vapor pressure is higher than the pressure inside the machine, self-evaporation occurs while flowing over the droplet dispersion plate 23, so that droplets of droplets are generated. The boiling that causes it is prevented. As a result, a uniform liquid film is formed on the heat transfer tube over a wide liquid flow rate range.

【0029】このような吸収冷温水機の動作は以下の通
りである。低温再生器2の伝熱管群2a上に溶液散布装
置20より散布された希溶液は、伝熱管外を液膜を形成
して流下し、その間、伝熱管内に導かれた高温再生器1
で発生の冷媒蒸気の凝縮潜熱により加熱されて冷媒蒸気
を発生して濃縮される。低温再生器2で生成した濃溶液
は、流出管29を介して低温溶液熱交換器7に送られる
が、その一部がエゼクタ25により前記の如くして分岐
・吸引され、低温再生器2への希溶液に混合される。
The operation of such an absorption chiller-heater is as follows. The dilute solution sprayed from the solution spraying device 20 on the heat transfer tube group 2a of the low temperature regenerator 2 forms a liquid film outside the heat transfer tube and flows down, during which the high temperature regenerator 1 is introduced into the heat transfer tube.
The refrigerant is heated by the latent heat of condensation of the refrigerant vapor generated in the above to generate the refrigerant vapor and is condensed. The concentrated solution generated in the low temperature regenerator 2 is sent to the low temperature solution heat exchanger 7 through the outflow pipe 29, and a part of the concentrated solution is branched and sucked by the ejector 25 as described above to the low temperature regenerator 2. Is mixed with a dilute solution of.

【0030】この結果、低温再生器2に通常の場合の循
環希溶液よりも多量の溶液が散布されることになり、前
述のような理由により高い熱伝達率が得られる。従っ
て、この熱伝達率の向上分に応じて低温再生器の伝熱面
積を小さくすることが可能となり、省資源化を図ること
もできる。
As a result, the low temperature regenerator 2 is sprayed with a larger amount of solution than the circulating dilute solution in the usual case, and a high heat transfer coefficient is obtained for the reasons described above. Therefore, the heat transfer area of the low-temperature regenerator can be reduced according to the increase in the heat transfer coefficient, and resource saving can be achieved.

【0031】凝縮器3では、低温再生器2の冷媒蒸気及
び高温再生器1から低温再生器2を経由した冷媒蒸気が
冷却水CWで冷却されつつ凝縮されて液冷媒化され、液
冷媒導管17を経由して蒸発器4に送られる。蒸発器4
の液冷媒は、冷媒ポンプ9によって熱交換器上に散布さ
れて冷水4aから熱を奪うことにより蒸発気化して吸収
器5に導かれる。一方、高温再生器1で生成した濃溶液
は、高温溶液熱交換器6を経て低温再生器2で生成の濃
溶液と混合して低温溶液熱交換器7を経由し、圧力差と
ヘッド差により吸収器5に導かれ、溶液スプレィポンプ
18により熱交換器上に散布される。吸収器5の熱交換
器上に散布された濃溶液は、冷却水CWで冷却されつつ
蒸発器4からの冷媒蒸気を吸収して希溶液を生成し、溶
液ポンプ8により高温再生器1、低温再生器2それぞれ
に送られる。以上のように吸収冷房サイクルが構成され
ている。
In the condenser 3, the refrigerant vapor of the low-temperature regenerator 2 and the refrigerant vapor from the high-temperature regenerator 1 passing through the low-temperature regenerator 2 are condensed while being cooled by the cooling water CW to be a liquid refrigerant, and the liquid refrigerant conduit 17 Is sent to the evaporator 4 via. Evaporator 4
The liquid refrigerant is sprayed on the heat exchanger by the refrigerant pump 9 and removes heat from the cold water 4a to be evaporated and vaporized and guided to the absorber 5. On the other hand, the concentrated solution produced in the high temperature regenerator 1 is mixed with the concentrated solution produced in the low temperature regenerator 2 via the high temperature solution heat exchanger 6 and passes through the low temperature solution heat exchanger 7 to generate a pressure difference and a head difference. It is guided to the absorber 5 and sprayed onto the heat exchanger by the solution spray pump 18. The concentrated solution sprayed on the heat exchanger of the absorber 5 absorbs the refrigerant vapor from the evaporator 4 while being cooled by the cooling water CW to generate a dilute solution, and the solution pump 8 cools the high temperature regenerator 1 and the low temperature solution. It is sent to each of the regenerators 2. The absorption cooling cycle is configured as described above.

【0032】以上のような構成のサイクルでは高温再生
器1の圧力が高くなると、高温再生器循環量調節オリフ
ィス40の差圧が大きくなるために高温再生器1の溶液
循環液量が増大する。この結果、低温熱交換器7を通過
する液量も増大し、低温熱交換器7圧力損失が大きくな
る。ところが、低温熱交換器の濃溶液流出端には溶液ス
プレィポンプ18が配置されており、ほぼ一定のサクシ
ョンヘッドを必要としている。従って、前記低温熱交換
器7の圧損の増大は低温再生器2と低温熱交換器7とを
連絡する濃溶液流出管29内に形成されている液面の上
昇をもたらす。これにより、液吸引管27に流入する溶
液量は濃溶液導管29内に形成されている液面が高い方
が大きいことから、高温再生器1の圧力が高いほど低温
再生器2の散布液量が増加して高い熱伝達率が得られる
という、サイクルを安全に運転する上で非常に好都合な
自己制御の働きが実現されることになる。なお、低温再
生器2の圧力が低いとやはり濃溶液導管29内に形成さ
れている液面が上昇するため、低温再生器2の液膜流量
が増大して高い熱伝達率が得られ、省エネルギーが図れ
る。
In the cycle having the above construction, when the pressure of the high temperature regenerator 1 becomes high, the differential pressure of the high temperature regenerator circulation amount adjusting orifice 40 becomes large, so that the amount of solution circulating liquid in the high temperature regenerator 1 increases. As a result, the amount of liquid passing through the low temperature heat exchanger 7 also increases, and the pressure loss of the low temperature heat exchanger 7 increases. However, the solution spray pump 18 is arranged at the outflow end of the concentrated solution of the low temperature heat exchanger, which requires a substantially constant suction head. Therefore, the increase in the pressure loss of the low temperature heat exchanger 7 causes the rise of the liquid level formed in the concentrated solution outflow pipe 29 which connects the low temperature regenerator 2 and the low temperature heat exchanger 7. As a result, the amount of solution flowing into the liquid suction pipe 27 is larger when the liquid level formed in the concentrated solution conduit 29 is higher. Therefore, the higher the pressure of the high temperature regenerator 1, the amount of sprayed liquid of the low temperature regenerator 2. Will be achieved to provide a high heat transfer coefficient, which is a very convenient self-control function for safe operation of the cycle. When the pressure of the low temperature regenerator 2 is low, the liquid level formed in the concentrated solution conduit 29 also rises, so that the liquid film flow rate of the low temperature regenerator 2 increases and a high heat transfer coefficient is obtained, thus saving energy. Can be achieved.

【0033】暖房時には、冷媒ポンプ9が停止され、冷
暖切り換え弁12が開放される。高温再生器1で発生し
た冷媒蒸気は低温再生器2の伝熱管ヘッダ部より分岐し
た分岐管16及び冷暖切り換え弁12を経由して蒸発器
4の冷媒液面より十分下方に降ろされてから2分され
る。そして、一方は気泡ポンプ13を経由して吸収器5
に導かれる。また、他方はバイパス管14を経由して蒸
発器4に導かれ蒸発器4の伝熱管内を流れる温水4bと
熱交換して凝縮液化する。この液冷媒は暖房液冷媒導管
15を経由して前記気泡ポンプ13に導かれ、前記高温
再生器1からの冷媒蒸気による気泡ポンプ作用により吸
収器5に送られる。吸収器5の溶液は溶液ポンプ8によ
り送られて低温熱交換器7を経由した後に2分され、一
方はエゼクタ25を経由して低温再生器2に送られ、他
方は更に高温熱交換器6を経由して流量制御弁を経由し
て高温再生器1に送られる。低温再生器2では伝熱管上
に溶液が散布されるが特に冷媒蒸気の発生はなく、従っ
て凝縮器3による凝縮も行われない。また、溶液スプレ
ィポンプ18は停止されており、熱い濃溶液は、吸収器
5の伝熱管への散布もなく、バイパス管41を経由して
吸収器5に戻される。
During heating, the refrigerant pump 9 is stopped and the cooling / heating switching valve 12 is opened. After the refrigerant vapor generated in the high temperature regenerator 1 is sufficiently lowered below the refrigerant liquid level in the evaporator 4 via the branch pipe 16 branched from the heat transfer pipe header portion of the low temperature regenerator 2 and the cooling / heating switching valve 12, 2 Be divided. Then, one of them passes through the bubble pump 13 and the absorber 5
Be led to. The other one is guided to the evaporator 4 via the bypass pipe 14 and exchanges heat with the hot water 4b flowing in the heat transfer pipe of the evaporator 4 to be condensed and liquefied. This liquid refrigerant is guided to the bubble pump 13 via the heating liquid refrigerant conduit 15, and is sent to the absorber 5 by the bubble pump action of the refrigerant vapor from the high temperature regenerator 1. The solution in the absorber 5 is sent by the solution pump 8 and passed through the low temperature heat exchanger 7 and then halved. One is sent to the low temperature regenerator 2 via the ejector 25, and the other is further heated to the high temperature heat exchanger 6. Is sent to the high temperature regenerator 1 via the flow control valve. In the low temperature regenerator 2, the solution is sprinkled on the heat transfer tubes, but no refrigerant vapor is generated, so that the condenser 3 does not perform condensation. Further, the solution spray pump 18 is stopped, and the hot concentrated solution is returned to the absorber 5 via the bypass pipe 41 without being sprayed to the heat transfer pipe of the absorber 5.

【0034】以上説明したように、本実施例の高温再生
器1と低温再生器2とにパラレルに希溶液を供給して戻
すいわゆるパラレルフローの吸収冷房サイクルでは、高
温再生器1内圧力の変動が低温再生器2の液膜流量を自
己制御性のある方向に自動的にコントロールする伝熱量
制御がなされ、低温再生器2の高性能化及び小型化を図
ることができる。
As explained above, in the so-called parallel flow absorption cooling cycle in which the dilute solution is fed back to the high temperature regenerator 1 and the low temperature regenerator 2 in this embodiment, the pressure inside the high temperature regenerator 1 fluctuates. The heat transfer amount control for automatically controlling the liquid film flow rate of the low temperature regenerator 2 in a self-controllable direction is performed, and the high performance and downsizing of the low temperature regenerator 2 can be achieved.

【0035】図4に示すのは本発明の他の実施例で、こ
の実施例が前記の実施例と異なる点は、液吸引管27を
低温再生器2の下部に直接接続すると共に、この液吸引
管27を接続の低温再生器の下部Aと濃溶液流出管29
を接続の低温再生器の下部Bとを仕切れるように仕切り
板31を設けたことである。
FIG. 4 shows another embodiment of the present invention. The difference between this embodiment and the above-mentioned embodiment is that the liquid suction pipe 27 is directly connected to the lower portion of the low temperature regenerator 2 and Lower part A of the low temperature regenerator connected with the suction pipe 27 and the concentrated solution outflow pipe 29
That is, the partition plate 31 is provided so as to partition the lower part B of the connected low temperature regenerator.

【0036】即ち、仕切り板31により下部Aと下部B
とを仕切ると下部A側に濃溶液が溜り、液吸引管27に
流入する濃溶液量が増大する。他方、この仕切りをやめ
ると、仕切りがある場合に較べ液吸引管27に流入する
濃溶液量が減少する。従って、これらの選択により、低
温再生器2における液膜流量を変化させ、熱伝達率のコ
ントロールできる。
That is, the lower plate A and the lower plate B are separated by the partition plate 31.
When the and are partitioned, the concentrated solution accumulates on the lower side A, and the amount of the concentrated solution flowing into the liquid suction pipe 27 increases. On the other hand, when this partition is stopped, the amount of concentrated solution flowing into the liquid suction pipe 27 is reduced as compared with the case where the partition is provided. Therefore, by selecting these, the liquid film flow rate in the low temperature regenerator 2 can be changed and the heat transfer coefficient can be controlled.

【0037】仕切り板31の支点32には、例えば約8
0°Cで形状復帰する形状記憶合金を使用することがで
きる。この場合、低温時は仕切り板31は回転して低温
再生器下部の仕切りを止めるので低温再生器2の液膜流
量が少なく、従って熱伝達率が低いために高温再生器1
の圧力が比較的高くなる。このような運転条件は、冷却
水温度が低い場合であり、通常の場合だと高温再生器1
の器内圧力が低くなって溶液循環量が減少し、その結
果、希溶液と濃溶液との濃度差が拡大し、その限界は高
温再生器1で生成される濃溶液の結晶化である。ところ
が、本発明の場合には、前記の如く低温再生器2におけ
る液膜流量の制御が可能であり、この制御により熱伝達
率を低下させて高温再生器1の圧力を高くし、溶液循環
量の減少を防止することができる。即ち、より低温の冷
却水温度でも濃溶液の結晶化を招くことなく運転が可能
となる。
At the fulcrum 32 of the partition plate 31, for example, about 8
Shape memory alloys that regain their shape at 0 ° C can be used. In this case, when the temperature is low, the partition plate 31 rotates to stop the partition at the lower part of the low temperature regenerator, so that the liquid film flow rate of the low temperature regenerator 2 is small and therefore the heat transfer coefficient is low, so that the high temperature regenerator 1 is
The pressure becomes relatively high. Such an operating condition is when the cooling water temperature is low, and in the normal case, the high temperature regenerator 1 is used.
The internal pressure of the reactor decreases and the amount of solution circulation decreases, resulting in an increase in the concentration difference between the dilute solution and the concentrated solution, the limit of which is the crystallization of the concentrated solution produced in the high temperature regenerator 1. However, in the case of the present invention, it is possible to control the liquid film flow rate in the low temperature regenerator 2 as described above, and by this control, the heat transfer coefficient is reduced to increase the pressure in the high temperature regenerator 1 and the solution circulation amount. Can be prevented. That is, the operation can be performed even at a lower cooling water temperature without causing crystallization of the concentrated solution.

【0038】図5に示すのは本発明の更なる他の実施例
で、この実施例の特徴は、濃溶液導管29が分岐してエ
ゼクタ25とを連絡する液吸引管27に流量制御弁35
を設置した点、また、図1におけるエリミネータ11を
廃止して低温再生器2の上部から途中まで仕切る上部仕
切り板33及び凝縮器3側を下方から途中まで仕切る下
部仕切り板34を配置した点である。流量制御弁35
は、時間あるいはサイクルの状態量、例えば低温再生器
2の溶液温度、高温再生器1の圧力、温度、冷却水温度
等を検知して制御することができる。また、タイマーに
より機械起動時には、流量制御弁35を閉じて低温再生
器における熱伝達率を低下させ高温再生器1の圧力を高
くすることにより高温再生器1の溶液循環を良くし、器
内に滞留している濃溶液を早期に吸収器5に散布させて
冷房能力を速く発揮させることも可能となる。もちろ
ん、冷房能力を最大限に発揮したい場合は該制御弁35
を開放して低温再生器2の液膜流量を増大させて高い熱
伝達率によって高効率の運転とすることもできる。
FIG. 5 shows still another embodiment of the present invention. The feature of this embodiment is that a flow control valve 35 is provided in a liquid suction pipe 27 in which a concentrated solution conduit 29 branches to communicate with an ejector 25.
In addition, the eliminator 11 in FIG. 1 is abolished, and the upper partition plate 33 that partitions the low temperature regenerator 2 from the upper part to the middle and the lower partition plate 34 that partitions the condenser 3 side from the lower part to the middle are disposed. is there. Flow control valve 35
Can detect and control the state quantity of time or cycle, for example, the solution temperature of the low temperature regenerator 2, the pressure and temperature of the high temperature regenerator 1, the cooling water temperature and the like. Further, when the machine is started by a timer, the flow rate control valve 35 is closed to reduce the heat transfer coefficient in the low temperature regenerator and increase the pressure in the high temperature regenerator 1 to improve the solution circulation in the high temperature regenerator 1 and It is also possible to spray the accumulated concentrated solution on the absorber 5 early so that the cooling capacity can be exerted quickly. Of course, when it is desired to maximize the cooling capacity, the control valve 35
It is also possible to increase the liquid film flow rate of the low temperature regenerator 2 by opening the air conditioner to achieve high efficiency operation due to the high heat transfer coefficient.

【0039】エリミネータに代えて上下一対の上部仕切
り板33、下部仕切り板34を設けたことにより、低温
再生器2で発生する冷媒蒸気を上方から散布の溶液と共
に一先ず下方に向かわせることができる。即ち、溶液の
流下方向と並流する冷媒蒸気の流れを形成することがで
きる。この結果、伝熱管上でわずかに発生する溶液ミス
トは、下向きの流れが与えられ落下し易くなる。そし
て、下方では冷媒蒸気のみが反転して上方に向かい、上
部仕切り板33と下部仕切り板34とが互いの先端部を
重ならせる部に形成される通路を通って凝縮器3側へ送
られ、溶液ミストは、下部に溜っている濃溶液や側面の
下部仕切り板34への衝突により捕捉されて低温再生器
2内にとどまるので、効率良く除去されることになる。
By providing a pair of upper and lower partition plates 33 and 34 instead of the eliminator, the refrigerant vapor generated in the low temperature regenerator 2 can be directed downward from the top together with the spray solution. That is, it is possible to form a flow of the refrigerant vapor that flows in parallel with the flow direction of the solution. As a result, the solution mist slightly generated on the heat transfer tube is given a downward flow and easily drops. Then, only the refrigerant vapor is inverted and goes upward in the lower part, and is sent to the condenser 3 side through a passage formed in a portion where the upper partition plate 33 and the lower partition plate 34 overlap each other at their tip ends. The solution mist is captured by collision of the concentrated solution accumulated in the lower part or the side lower partition plate 34 and remains in the low temperature regenerator 2, so that the solution mist is efficiently removed.

【0040】また、上部仕切り板33、及び下部仕切り
板34による仕切り構造は、低温再生器2から凝縮器3
へ流れる冷媒蒸気の流動圧力損失を軽減させるので、低
温再生器2及び凝縮器3の高性能化にも寄与することに
なる。
Further, the partition structure of the upper partition plate 33 and the lower partition plate 34 has a low temperature regenerator 2 to a condenser 3
Since the flow pressure loss of the refrigerant vapor flowing to is reduced, it contributes to the high performance of the low temperature regenerator 2 and the condenser 3.

【0041】更に、本発明の他の実施例を図6に示す。
この実施例は、図1に示した実施例とは溶液のフロー及
び暖房サイクルにおいて異なっている。
Further, another embodiment of the present invention is shown in FIG.
This example differs from the example shown in FIG. 1 in the solution flow and heating cycle.

【0042】先ず、溶液の流れについては、吸収器5の
希溶液は低温熱交換器7、エゼクタ25を経由して全量
低温再生器2に送られる。低温再生器2の濃溶液の一部
は濃溶液流出導管29aを経て補助循環ポンプ36によ
り高温熱交換器6及び制御弁を経由して高温再生器1に
送られる。高温再生器1の濃溶液は高温熱交換器6、オ
リフィス40を経て前記低温再生器2の残りの濃溶液と
濃溶液流出導管29bで混合され、低温熱交換器7を経
由して溶液スプレィポンプ18により吸収器5に散布さ
れる。本実施例では、低温再生器2に散布される溶液量
が多く高い熱伝達率が得られる。また、本実施例ではエ
ゼクタ25の液吸引管27は流量制御弁35を介して濃
溶液流出導管29bに接続されており、図5の実施例に
おけると同様の効果が得られる。なお、本実施例のフロ
ーについても、図4あるいは図2の実施例における配管
構成を適用可能である。
First, regarding the flow of the solution, the entire amount of the dilute solution in the absorber 5 is sent to the low temperature regenerator 2 via the low temperature heat exchanger 7 and the ejector 25. A part of the concentrated solution in the low temperature regenerator 2 is sent to the high temperature regenerator 1 via the high temperature heat exchanger 6 and the control valve by the auxiliary circulation pump 36 via the concentrated solution outflow conduit 29a. The concentrated solution in the high temperature regenerator 1 is mixed with the remaining concentrated solution in the low temperature regenerator 2 through the high temperature heat exchanger 6 and the orifice 40 in the concentrated solution outflow conduit 29b, and is passed through the low temperature heat exchanger 7 to the solution spray pump. It is sprayed on the absorber 5 by 18. In this embodiment, a large amount of solution is sprayed on the low temperature regenerator 2 and a high heat transfer coefficient can be obtained. Further, in this embodiment, the liquid suction pipe 27 of the ejector 25 is connected to the concentrated solution outflow conduit 29b via the flow rate control valve 35, and the same effect as in the embodiment of FIG. 5 can be obtained. Note that the piping configuration in the embodiment of FIG. 4 or 2 can also be applied to the flow of this embodiment.

【0043】本実施例の暖房サイクルでは暖房時にも冷
媒ポンプ9が運転されており、蒸発器4の液冷媒は、ブ
ロー弁42の開放により吸収器5に送られる。また、高
温再生器1の発生冷媒蒸気は、冷暖房切り換え弁12の
開放により暖房蒸気導管16を経て蒸気発生器4に導か
れる。また、吸収器5の希溶液は、溶液ポンプ8により
低温再生器2に送られ、更に溶液補助ポンプ36により
高温再生器1に送られる。高温再生器1の濃溶液の循環
は冷房時に同様である。
In the heating cycle of this embodiment, the refrigerant pump 9 is operated even during heating, and the liquid refrigerant in the evaporator 4 is sent to the absorber 5 by opening the blow valve 42. Further, the refrigerant vapor generated from the high temperature regenerator 1 is guided to the steam generator 4 through the heating vapor conduit 16 by opening the cooling / heating switching valve 12. The dilute solution in the absorber 5 is sent to the low temperature regenerator 2 by the solution pump 8 and further to the high temperature regenerator 1 by the solution auxiliary pump 36. The circulation of the concentrated solution in the high temperature regenerator 1 is the same during cooling.

【0044】このような暖房サイクルは、必要に応じて
図1の実施例にも適用できる。更に、前記した各実施例
で示される本発明をその他のサイクルフローや多重効用
サイクルにも適用することは当業者にとって容易なこと
である。
Such a heating cycle can be applied to the embodiment of FIG. 1 if necessary. Further, it is easy for those skilled in the art to apply the present invention shown in each of the above-mentioned embodiments to other cycle flows and multiple-effect cycles.

【0045】[0045]

【発明の効果】本発明は、以上説明したようなものなの
で以下のような効果がある。 (1),低温再生器の濃溶液の一部を吸引して加えた溶
液を低温再生器内に散布するようにして、溶液散布量を
調節することにより熱交換性能の向上及びその制御を可
能としているので、低温再生器の小型化を図ることがで
き、また高温再生器内の圧力を作動時の温度環境に応じ
て調整することが可能となり、より低温の状態下でも効
率のよい作動状態を確保できる。
Since the present invention is as described above, it has the following effects. (1) It is possible to improve the heat exchange performance and control it by adjusting the amount of solution sprayed by spraying the solution added by sucking a part of the concentrated solution of the low temperature regenerator into the low temperature regenerator. Therefore, it is possible to reduce the size of the low-temperature regenerator and adjust the pressure inside the high-temperature regenerator according to the temperature environment during operation, resulting in an efficient operating condition even at lower temperatures. Can be secured.

【0046】(2),溶液の分配を受ける分配ダクト
と、この分配ダクトから溶液を均一な液膜で流下させる
液滴散布板とからなる散布ユニットを用いて溶液散布装
置を形成するようにしているので均一性が高く安定した
液膜による散布が行え、より効率のよい再生処理を行え
るし、また液量調節による熱交換性制御の実効性を上げ
ることができる。
(2) A solution spraying device is formed by using a spraying unit consisting of a distribution duct for receiving the distribution of the solution and a droplet spraying plate for allowing the solution to flow down from the distribution duct with a uniform liquid film. Since it is possible to perform spraying with a highly uniform and stable liquid film, it is possible to perform more efficient regeneration treatment, and it is possible to improve the effectiveness of heat exchange control by adjusting the liquid amount.

【0047】(3),低温再生器と凝縮器との間の仕切
り構造体を上部及び下部の2枚の仕切り板の組み合せに
より形成し、冷媒蒸気に溶液の流下方向と、並流する流
れを与えるようにし、これにより凝縮器へ送られる冷媒
蒸気への溶液ミストの混入を有効に防止するようにして
いるので、冷媒蒸気の通路を低圧損化でき、希溶液の再
生効率を向上させることができる。
(3) The partition structure between the low temperature regenerator and the condenser is formed by combining the upper and lower partition plates, and the refrigerant vapor is allowed to flow in the direction in which the solution flows downward and in parallel. As a result, it is possible to effectively prevent the mixture of the solution mist in the refrigerant vapor sent to the condenser, so that the passage of the refrigerant vapor can be reduced in pressure and the regeneration efficiency of the dilute solution can be improved. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸収冷温水機のシステ
ムフロー図である。
FIG. 1 is a system flow diagram of an absorption chiller-heater showing an embodiment of the present invention.

【図2】低温再生器回りの配管系統図である。FIG. 2 is a piping system diagram around a low temperature regenerator.

【図3】溶液散布装置の断面斜視図である。FIG. 3 is a cross-sectional perspective view of a solution spraying device.

【図4】本発明の他の実施例を示す吸収冷温水機の低温
再生器のシステムフロー図である。
FIG. 4 is a system flow diagram of a low temperature regenerator of an absorption chiller-heater showing another embodiment of the present invention.

【図5】本発明の更に他の実施例を示す吸収冷温水機の
低温再生器のシステムフロー図である。
FIG. 5 is a system flow diagram of a low-temperature regenerator of an absorption chiller-heater showing still another embodiment of the present invention.

【図6】本発明の更にまた他の実施例を示す吸収冷温水
機のシステムフロー図である。
FIG. 6 is a system flow diagram of an absorption chiller-heater according to still another embodiment of the present invention.

【図7】従来技術の吸収冷温水機のシステムフロー図で
ある。
FIG. 7 is a system flow diagram of a conventional absorption chiller-heater.

【図8】低温再生器の液膜流量と水平管外蒸発熱伝達率
の実験データの一例を示すグラフ図である。
FIG. 8 is a graph showing an example of experimental data of liquid film flow rate and horizontal extra-tube evaporation heat transfer coefficient of the low temperature regenerator.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 高温溶液熱交換器 7 低温溶液熱交換器 8 溶液ポンプ 9 冷媒ポンプ CT 冷却塔 CW 冷却水 11 エリミネータ 4a 冷水 4b 温水 12 冷暖切り換え弁 13 気泡ポンプ 14 バイパス管 15 暖房液冷媒導管 16 暖房蒸気導管 17 液冷媒導管 18 溶液スプレィポンプ 19 希溶液導入管 19a 液ヘッダ 20 散布装置 21 液分配ダクト管 22 はめ合わせ構造部 22a 隙間流路 23 液滴分散板 24 切欠き部 25 エゼクタ 26 エゼクタの駆動液導入管 27 エゼクタの液吸引管 28 エゼクタの液吐出管 29 低温再生器の濃溶液導管 30 流量制御機構 31 仕切り板 32 仕切り板の支点 33 低温再生器側の板 34 凝縮器側の板 35 流量制御弁 36 補助循環ポンプ 40 高温再生器濃溶液流量調節オリフィス 41 溶液バイパス管 42 冷媒ブロー弁 1 High-temperature regenerator 2 Low-temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 High-temperature solution heat exchanger 7 Low-temperature solution heat exchanger 8 Solution pump 9 Refrigerant pump CT Cooling tower CW Cooling water 11 Eliminator 4a Cold water 4b Hot water 12 Cold / warm switching Valve 13 Bubble pump 14 Bypass pipe 15 Heating liquid refrigerant conduit 16 Heating vapor conduit 17 Liquid refrigerant conduit 18 Solution spray pump 19 Dilute solution introducing pipe 19a Liquid header 20 Spraying device 21 Liquid distribution duct pipe 22 Fitting structure part 22a Gap channel 23 Droplet dispersion plate 24 Notch portion 25 Ejector 26 Ejector driving liquid introduction pipe 27 Ejector liquid suction pipe 28 Ejector liquid discharge pipe 29 Low temperature regenerator concentrated solution pipe 30 Flow control mechanism 31 Partition plate 32 Partition plate fulcrum 33 Low temperature regenerator side plate 34 Condenser side plate 35 Flow control valve 36 Auxiliary circulation Amplifier 40 the high-temperature regenerator concentrated solution flow rate adjusting orifice 41 solution bypass pipe 42 refrigerant blow valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤居 達郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 中尾 剛 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuro Fujii 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Inventor Go Nakao 603 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Tsuchiura factory

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 吸収器から送られる希溶液を高温再生器
及び低温再生器それぞれにおいて冷媒蒸気の蒸発により
濃溶液へ再生させるようにしてなる吸収冷温水機におい
て、 低温再生器からの濃溶液の一部を吸引し、この吸引され
た濃溶液を低温再生器へ供給される希溶液に加えるよう
にしたことを特徴とする吸収冷温水機。
1. An absorption chiller-heater in which a dilute solution sent from an absorber is regenerated into a concentrated solution by evaporation of a refrigerant vapor in a high temperature regenerator and a low temperature regenerator, respectively. An absorption chiller-heater characterized in that a portion is sucked and the sucked concentrated solution is added to a dilute solution supplied to a low temperature regenerator.
【請求項2】 吸収器からの希溶液を噴出状態で供給す
る駆動液供給管と、低温再生器からの濃溶液を吸引する
液吸引管と、濃溶液を希溶液に混合させて送り出す吐出
部とを備えてなるエゼクタが濃溶液の吸引用として用い
られている請求項1に記載の吸収冷温水機。
2. A driving liquid supply pipe for supplying the diluted solution from the absorber in a jetted state, a liquid suction pipe for sucking the concentrated solution from the low temperature regenerator, and a discharge part for mixing the concentrated solution with the diluted solution and sending it out. 2. The absorption chiller-heater according to claim 1, wherein the ejector provided with is used for sucking a concentrated solution.
【請求項3】 低温再生器の下部に接続されて、低温再
生器から濃溶液を送り出す液流出管に液吸引管が接続さ
れている請求項2に記載の吸収冷温水機。
3. The absorption chiller-heater according to claim 2, wherein a liquid suction pipe is connected to a lower portion of the low-temperature regenerator and a liquid outflow pipe for feeding a concentrated solution from the low-temperature regenerator.
【請求項4】 低温再生器の下部に接続されて、低温再
生器から濃溶液を送り出す液流出管と並列させて液吸引
管が低温再生器の下部に直接接続されている請求項2に
記載の吸収冷温水機。
4. The liquid suction pipe, which is connected to a lower portion of the low temperature regenerator and is arranged in parallel with a liquid outflow pipe for feeding a concentrated solution from the low temperature regenerator, is directly connected to a lower portion of the low temperature regenerator. Absorption cold water heater.
【請求項5】 液吸引管に濃溶液吸引量調節用の流量制
御弁を設けた請求項3または4に記載の吸収冷温水機。
5. The absorption chiller-heater according to claim 3, wherein the liquid suction pipe is provided with a flow control valve for adjusting the suction amount of the concentrated solution.
【請求項6】 流量制御弁画像温度に基づく形状記憶素
材の特性により吸引量調節を行うものである請求項5に
記載の吸収冷温水機。
6. The absorption chiller-heater according to claim 5, wherein the suction amount is adjusted according to the characteristics of the shape memory material based on the temperature of the flow control valve image.
【請求項7】 液流出管が接続された部分と液吸引管が
接続された部分とに低温再生器の下部を仕切ることが可
能な仕切り板を設けた請求項4に記載の吸収冷温水機。
7. The absorption chiller-heater according to claim 4, wherein a partition plate capable of partitioning a lower portion of the low temperature regenerator is provided in a portion to which the liquid outflow pipe is connected and a portion to which the liquid suction pipe is connected. ..
【請求項8】 仕切り板の仕切り状態調節が温度に基づ
く形状記憶素材の特性により行われるものである請求項
7に記載の吸収冷温水機。
8. The absorption chiller-heater according to claim 7, wherein the partition state of the partition plate is adjusted by the characteristics of the shape-memory material based on temperature.
【請求項9】 吸収器からの希溶液を、上部に配された
溶液散布装置により散布しつつ濃溶液に再生する低温再
生器を備えた吸収冷温水機において、 溶液散布装置は、低温再生器へ希溶液を供給する液導入
管に接続される分配ダクトと、この分配ダクトに溶液流
下用の流路となる隙間を長さ方向で形成するようにして
接続された液滴分散板とからなる散布ユニットを一つ又
は二つ以上組み合せて形成されていることを特徴とする
吸収冷温水機。
9. In an absorption chiller-heater equipped with a low-temperature regenerator that regenerates a concentrated solution while spraying a dilute solution from an absorber with a solution-dispersing device disposed above, the solution-dispersing device is a low-temperature regenerator. It is composed of a distribution duct connected to a liquid introduction pipe for supplying a dilute solution, and a droplet dispersion plate connected to the distribution duct so as to form a gap serving as a flow path for solution flow in the length direction. An absorption chiller-heater characterized by being formed by one or a combination of two or more spraying units.
【請求項10】 液滴分散板のすそ部に適宜の間隔で切
欠き部が形成されている請求項9に記載の吸収冷温水
機。
10. The absorption chiller-heater according to claim 9, wherein notches are formed at appropriate intervals on the skirt of the droplet dispersion plate.
【請求項11】 低温再生器と凝縮器とが、低温再生器
中の冷媒蒸気だけを凝縮器へ送るようにした仕切り構造
体を介して並設されている吸収冷温水機において、 仕切り構造体は、低温再生器の上部から、その先端が低
温再生器の中間部より下方に至るように垂設された上部
仕切り板と、この上部仕切り板の先端部に先端部が重な
る高さで低温再生器の下部から立設された下部仕切り板
とを、両者の先端部の重なり部分において低温再生器側
から凝縮器側へ通じる通路が形成されるように組み合わ
せて形成されていることを特徴とする吸収冷温水機。
11. An absorption chiller-heater in which a low-temperature regenerator and a condenser are juxtaposed through a partition structure configured to send only refrigerant vapor in the low-temperature regenerator to the condenser. Is an upper partition plate that extends from the top of the low-temperature regenerator so that its tip goes below the middle part of the low-temperature regenerator, and low-temperature regeneration at a height where the tip overlaps the tip of this upper partition. It is characterized in that it is formed by combining a lower partition plate erected from the lower part of the vessel so that a passage communicating from the low temperature regenerator side to the condenser side is formed at the overlapping portion of the tips of both. Absorption chiller / heater.
【請求項12】 吸収器からの希溶液が高温再生器及び
低温再生器それぞれに並列状態で供給される請求項1〜
11何れかに記載の吸収冷温水機。
12. The dilute solution from the absorber is supplied in parallel to each of the high temperature regenerator and the low temperature regenerator.
11. The absorption chiller-heater according to any one of 11.
【請求項13】 吸収器からの希溶液が全量先ず低温再
生器に供給され、高温再生器には低温再生器を経由した
溶液が送られるようになっている請求項1〜11何れか
に記載の吸収冷温水機。
13. The method according to claim 1, wherein all of the dilute solution from the absorber is first supplied to the low temperature regenerator, and the solution via the low temperature regenerator is sent to the high temperature regenerator. Absorption cold water heater.
JP03351617A 1991-12-12 1991-12-12 Absorption chiller / heater Expired - Fee Related JP3027646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03351617A JP3027646B2 (en) 1991-12-12 1991-12-12 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03351617A JP3027646B2 (en) 1991-12-12 1991-12-12 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH05164425A true JPH05164425A (en) 1993-06-29
JP3027646B2 JP3027646B2 (en) 2000-04-04

Family

ID=18418476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03351617A Expired - Fee Related JP3027646B2 (en) 1991-12-12 1991-12-12 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3027646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018216A1 (en) * 2004-08-12 2006-02-23 Phönix Sonnenwärme AG Absorption-type refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018216A1 (en) * 2004-08-12 2006-02-23 Phönix Sonnenwärme AG Absorption-type refrigerating machine

Also Published As

Publication number Publication date
JP3027646B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
CA2809792C (en) Hybrid heat exchanger apparatus and methods of operating the same
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
JP2008516187A (en) Falling film evaporator
US6564572B1 (en) Absorption refrigerator
JPS6342291Y2 (en)
JPH0550668B2 (en)
JP2723454B2 (en) Absorption air conditioner
US3316727A (en) Absorption refrigeration systems
US5463880A (en) Absorption refrigerator
US3452551A (en) Multiple stage direct fired absorption refrigeration system
JPH05164425A (en) Absorption type cold water or hot water machine
CN1111696C (en) Absorption refrigerator
KR890004392B1 (en) Air cooled absorption refrigeration system
JP2627381B2 (en) Absorption refrigerator
US5806325A (en) Absorption type refrigerator
JP2568769B2 (en) Absorption refrigerator
KR890004393B1 (en) Air cooling type absorption cooler
US5704225A (en) Regenerator
JP2642553B2 (en) Absorption chiller / heater
JP2009236477A (en) Absorption chiller and heater
JPS6133483Y2 (en)
JP2001165528A (en) Absorbing type freezer
US3293873A (en) Refrigerant control for absorption refrigeration systems
JP2877420B2 (en) Absorption refrigerator
JP2001214754A (en) Humidification tower for high moisture gas turbine system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees