JPH05163935A - Exhaust emission control device for diesel engine and catalyst converter - Google Patents

Exhaust emission control device for diesel engine and catalyst converter

Info

Publication number
JPH05163935A
JPH05163935A JP33070291A JP33070291A JPH05163935A JP H05163935 A JPH05163935 A JP H05163935A JP 33070291 A JP33070291 A JP 33070291A JP 33070291 A JP33070291 A JP 33070291A JP H05163935 A JPH05163935 A JP H05163935A
Authority
JP
Japan
Prior art keywords
catalyst
secondary air
engine
exhaust gas
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33070291A
Other languages
Japanese (ja)
Inventor
Minoru Osuga
大須賀  稔
Mamoru Fujieda
藤枝  護
Takashige Oyama
宜茂 大山
Toshiji Nogi
利治 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33070291A priority Critical patent/JPH05163935A/en
Publication of JPH05163935A publication Critical patent/JPH05163935A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To enhance exhaust emission control by improving each efficiency of rapid heating and catalyst combustion of an exhaust emission purifying catalyst at low temperature operation of an engine. CONSTITUTION:A catalyst unit 6 comprising a catalyst 7 with a heater and a normal catalyst 8 is disposed on an exhaust pipe 5 of an engine 3. Secondary air is introduced upstream of the catalyst unit through an air introducing-in pipe 10 with a control valve 12 in operation at a low temperature. A microcomputer 13 estimates unburnt quantity of the secondary air on the basis of a fuel behavior model and engine condition detecting data, to calculate or data-retrieve a quantity of secondary air suitable for catalyst combustion on the basis of the unburnt quantity. The quantity of secondary air is controlled through the control valve 12. Otherwise, the quantity of secondary air is controlled to be increased or decreased per fine unit in such a manner as to maximize a deviation between a real secondary air-fuel ratio and a target secondary air-fuel ratio, both of which are detected by an air-fuel ratio sensor 11, and a temperature of the catalyst unit 6. Alternatively, the quantity of secondary air is controlled to be increased or decreased according to the opening or closing of the exhaust valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの排気浄化装置
に係り、特に低温始動、暖機運転等の低温運転時の排気
ガスの浄化技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust gas purification apparatus, and more particularly to a technology for purifying exhaust gas during low temperature operation such as cold start and warm-up operation.

【0002】[0002]

【従来の技術】従来より、エンジンの排気ガスを浄化す
るために排気管に触媒コンバータを配置している。触媒
は、エンジンの低温運転時には温度が低く充分に活性化
されていないため、何らかの対策を講じないと排気ガス
中の未燃成分が浄化されることなく排出される。
2. Description of the Related Art Conventionally, a catalytic converter is arranged in an exhaust pipe in order to purify engine exhaust gas. Since the catalyst has a low temperature and is not sufficiently activated during low temperature operation of the engine, unburned components in the exhaust gas are discharged without being purified unless some measures are taken.

【0003】そのため、例えば特開昭53−95417
号公報に開示の排気浄化装置では、機関の低温運転時に
電気ヒータで触媒を加熱して浄化効率を高めたり、特開
昭54−79319号に開示の装置では、主触媒のほか
に電気ヒータ付きの副触媒をもうけてヒータの加熱容量
の低減を図り、さらには排気管の空気を副触媒上流に空
気(吸気系の空気と区別するため2次空気とする)を導
入することで触媒燃焼を促進させ排気浄化効率を高める
技術が提案されている。
Therefore, for example, JP-A-53-95417 is used.
In the exhaust gas purification device disclosed in Japanese Patent Publication No. 54-79319, the catalyst is heated by an electric heater to improve the purification efficiency when the engine is operating at low temperature. In the device disclosed in JP-A-54-79319, an electric heater is provided in addition to the main catalyst. To reduce the heating capacity of the heater, and to introduce the air in the exhaust pipe to the upstream side of the sub-catalyst (the secondary air is used to distinguish it from the air in the intake system) for catalytic combustion. Techniques have been proposed for promoting and enhancing exhaust purification efficiency.

【0004】また、そのほかに特開昭59−96424
号公報に開示の装置では、排気管における三元触媒コン
バータの上流に2次空気を導入し、且つこの2次空気を
理論空燃比に対して一定周波数(1Hz〜2Hz)で周
期的に変動させている。この周期的変動を行う技術は、
三元触媒のウィンドウ(排気ガス中の有害成分HC,C
O,NOxを三元触媒を用いて同時に低減させようとす
る場合、その浄化効率が80%以上となる空燃比領域を
ウィンドウと称し、理論空燃比の浄化効率が最も大き
い)の幅を広げて浄化効率を高めようとするもので、特
に三元触媒が活性化に必要な温度に至った後に有効とさ
れる。
In addition to this, Japanese Patent Laid-Open No. 59-96424
In the device disclosed in the publication, secondary air is introduced upstream of the three-way catalytic converter in the exhaust pipe, and this secondary air is periodically fluctuated at a constant frequency (1 Hz to 2 Hz) with respect to the stoichiometric air-fuel ratio. ing. The technology to perform this periodic fluctuation is
Three-way catalyst window (hazardous components HC and C in exhaust gas
When trying to reduce O and NOx at the same time by using a three-way catalyst, the air-fuel ratio region where the purification efficiency is 80% or more is called a window, and the range of the theoretical air-fuel ratio purification efficiency is the largest). It is intended to improve the purification efficiency, and is effective especially after the temperature of the three-way catalyst reaches the temperature required for activation.

【0005】すなわち、三元触媒は酸素保持機能を有す
る。そのため、2次空気導入により空燃比〔ここでの空
燃比は、本来の空燃比と多少違った意味合いをもち、エ
ンジンの全空気量(吸入空気と2次空気との和)に対す
る供給燃料量の比をいい、これを本文中では本来の空燃
比と区別するため2次空燃比と称する)を周期的に変動
させ、2次空燃比が理論空燃比に対してリーン側にある
ときには三元触媒がNOxから酸素を奪い取ってNOx
を還元させるとともに奪い取った酸素を保持し、空燃比
が理論空燃比よりもリッチ側になると保持した酸素を放
出してCO,HCの酸化を行う。これを周期的に繰り返
すことで、基準空燃比が理論空燃比からずれたとしても
高い浄化効率を得、本来狭い幅であるウィンドウの幅を
少しでも広げようとするものである。
That is, the three-way catalyst has an oxygen retaining function. Therefore, by introducing secondary air, the air-fuel ratio (the air-fuel ratio here has a slightly different meaning from the original air-fuel ratio, and the amount of fuel supplied to the total air amount of the engine (the sum of intake air and secondary air) Ratio, which is referred to as the secondary air-fuel ratio in the text to distinguish it from the original air-fuel ratio), is changed periodically, and when the secondary air-fuel ratio is leaner than the theoretical air-fuel ratio, the three-way catalyst is used. Takes NOx from NOx and NOx
And retains the deprived oxygen. When the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to oxidize CO and HC. By repeating this cyclically, even if the reference air-fuel ratio deviates from the stoichiometric air-fuel ratio, high purification efficiency is obtained, and the width of the window, which is originally narrow, is widened as much as possible.

【0006】[0006]

【発明が解決しようとする課題】前述したように、従来
より種々の排気浄化装置が提案されている。このうち、
特に低温運転時には、電気ヒータにより副触媒を加熱す
ると共に、未燃成分の触媒燃焼を促進させるために2次
空気を導入する方式が有効と考えられるが、どの程度の
2次空気をどのような判断の基に導入すればよいかとい
った配慮がなされておらず、実効性を上げるには未解決
な問題が残されていた。
As described above, various exhaust gas purifying devices have been conventionally proposed. this house,
Especially at low temperature operation, it is considered effective to heat the auxiliary catalyst with an electric heater and introduce secondary air to promote catalytic combustion of unburned components. No consideration was given as to whether or not it should be introduced based on the judgment, and there was an unsolved problem to raise its effectiveness.

【0007】特に、低温運転時には、本来の空燃比もエ
ンジンの暖機の推移(換言すれば冷却水温の変化)に対
応させて変化させているので、それに合わせて触媒燃焼
を図るための最適な2次空気量も一様ではなく、この2
次空気量を適量制御することが望まれる。
In particular, during low temperature operation, the original air-fuel ratio is also changed in accordance with the engine warm-up transition (in other words, the change in cooling water temperature). The amount of secondary air is not uniform,
It is desirable to control the amount of secondary air appropriately.

【0008】本発明は以上の点に鑑みてなされ、その主
な目的は、エンジンの低温運転時の触媒の加熱容量を小
さくしつつ、その運転状況にあった2次空気量の最適制
御を図ることで触媒燃焼効率ひいては排気浄化効率をよ
り一層高め、且つ触媒の温度上昇の時間短縮を図って触
媒加熱源(電気ヒータ)の省エネルギーを図ることにあ
る。
The present invention has been made in view of the above points, and its main purpose is to optimize the secondary air amount according to the operating condition while reducing the heating capacity of the catalyst during low temperature operation of the engine. Therefore, the catalytic combustion efficiency and thus the exhaust gas purification efficiency are further enhanced, and the time required for the temperature rise of the catalyst is shortened to save the energy of the catalyst heating source (electric heater).

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、この種の触媒部として、通常の触媒とその
上流に配置されエンジンの低温運転時に電気加熱される
ヒータ付き触媒とで構成し、且つこの触媒部の上流に2
次空気を導入する手段を備えることを前提として、次の
ような2次空気量制御系を備える。
In order to achieve the above object, the present invention comprises, as a catalyst portion of this type, a normal catalyst and a catalyst with a heater arranged upstream thereof and electrically heated during low temperature operation of the engine. And 2 upstream of this catalytic part
Assuming that a means for introducing secondary air is provided, the following secondary air amount control system is provided.

【0010】一つは、排気管内に排出される低温運転時
の未燃燃料量を燃料挙動モデルと低温運転時に関する検
出データより推定して触媒燃焼に適した2次空気量を演
算又は予め記憶したデータマップより検索する手段を有
し、この演算又は検索結果を基に2次空気量を制御する
よう設定した(これを第1の課題解決手段とする)。
First, the amount of unburned fuel discharged into the exhaust pipe during low temperature operation is estimated from the fuel behavior model and the detection data regarding low temperature operation to calculate or prestore a secondary air amount suitable for catalytic combustion. It has a means for searching from the data map described above, and is set to control the secondary air amount based on the result of this calculation or search (this is the first means for solving problems).

【0011】一つは、エンジンの低温運転時における排
気管内の2次空燃比を空燃比センサにより検出して、実
2次空燃比と目標2次空燃比との偏差により触媒燃焼に
適した2次空気量を演算する手段を有し、この演算結果
を基に2次空気量を制御するよう設定した(これを第2
の課題解決手段とする)。
One is that the secondary air-fuel ratio in the exhaust pipe during low-temperature operation of the engine is detected by an air-fuel ratio sensor, and the deviation between the actual secondary air-fuel ratio and the target secondary air-fuel ratio makes it suitable for catalytic combustion. A means for calculating the secondary air amount is provided, and the secondary air amount is set based on the calculation result (this is set as the second
To solve the problem).

【0012】一つは、低温運転時のヒータ付き触媒又は
その近傍の温度を温度センサにより検出して、その温度
検出値が最大となるよう2次空気量を量子化された微小
単位で加減制御する手段を有して成る(これを第3の課
題解決手段とする)。
One is to detect the temperature of a catalyst with a heater or its vicinity during low temperature operation by a temperature sensor, and control the secondary air amount in small quantized units so as to maximize the temperature detection value. Means for doing so (this is a third means for solving problems).

【0013】一つは、低温運転時に供給すべき2次空気
量をエンジン運転状況に対応させて触媒燃焼に適した量
に制御する時に、排気弁の開閉を検知するセンサを用い
てその2次空気量を排気弁の開閉動作により変化する排
気流量に対応させて加減制御する手段を有して成る(こ
れを第4の課題解決手段とする)。
One is to use a sensor for detecting the opening and closing of an exhaust valve when controlling the amount of secondary air to be supplied during low temperature operation to an amount suitable for catalytic combustion in accordance with engine operating conditions. A means for controlling the amount of air in accordance with the flow rate of exhaust gas which changes according to the opening / closing operation of the exhaust valve is provided (this is referred to as a fourth problem solving means).

【0014】[0014]

【作用】[Action]

第1の課題解決手段の作用…噴射弁から噴射される燃料
の一部は吸気管壁に付着したり吸気弁に衝突して液膜
(液状燃料)を形成し、これが燃焼室内に流入し、エン
ジンの低温時にはその一部が排気行程時に未燃成分とし
て排出される。この一連の燃料挙動モデルを低温運転時
に関する検出データ(例えば、エンジンにおける冷却水
温、回転数、負荷等)と関連づけることで、低温時の未
燃燃料量を推定できる。
Operation of the first problem solving means: A part of the fuel injected from the injection valve adheres to the intake pipe wall or collides with the intake valve to form a liquid film (liquid fuel), which flows into the combustion chamber, When the engine is cold, part of it is discharged as an unburned component during the exhaust stroke. The unburned fuel amount at low temperature can be estimated by associating this series of fuel behavior models with detection data (for example, cooling water temperature in the engine, rotation speed, load, etc.) relating to low temperature operation.

【0015】そして、この推定された未燃燃料量に対し
て、その比率から電気加熱触媒(ヒータ付き触媒)の触
媒燃焼が最適となる2次空気量を演算により或いは予め
記憶したデータマップの検索により求めることができ
る。これにより2次空気量を制御すれば、空燃比が暖機
状況に合わせて変化する低温運転時の場合にもヒータ付
き触媒(ヒータ付き触媒は低温運転時に電気ヒータによ
り加熱された状態にある)の触媒燃焼効率を高める。そ
のため、触媒が所定の温度上昇に至る時間も短縮され
る。
Then, with respect to the estimated unburned fuel amount, the secondary air amount that makes the catalytic combustion of the electrically heated catalyst (catalyst with a heater) optimum is calculated from the ratio, or a data map stored in advance is searched. Can be obtained by By controlling the amount of secondary air by this, the catalyst with the heater is also in the low temperature operation in which the air-fuel ratio changes according to the warm-up condition (the catalyst with the heater is heated by the electric heater in the low temperature operation). Enhances catalytic combustion efficiency. Therefore, the time required for the catalyst to reach a predetermined temperature is also shortened.

【0016】第2の課題解決手段の作用…排気管内に導
入される2次空気量が最適であれば効率の良い触媒燃焼
が行われることは前述したが、この2次空気量が実際に
どの程度導入されているかは、空燃比センサを用いて2
次空燃比を検出すれば、知ることができる。そして、低
温時始動運転における触媒燃焼が最適となる目標2次空
燃比をエンジン運転に関するデータ(例えば、冷却水
温、回転数、負荷等)と関連させて設定しておけば、エ
ンジン運転の検出データから目標2次空燃比を導いて、
これと実2次空燃比との偏差が求められる。
The operation of the second means for solving the problems ... As described above, if the amount of secondary air introduced into the exhaust pipe is optimum, efficient catalytic combustion is performed. Whether it is introduced or not is determined by using the air-fuel ratio sensor.
It can be known by detecting the next air-fuel ratio. Then, if the target secondary air-fuel ratio at which the catalytic combustion in the low temperature starting operation is optimum is set in association with the data regarding the engine operation (for example, the cooling water temperature, the rotation speed, the load, etc.), the engine operation detection data can be obtained. From the target secondary air-fuel ratio,
The deviation between this and the actual secondary air-fuel ratio is obtained.

【0017】この偏差から目標2次空燃比に要する2次
空気補正量を算出でき、これに基づき2次空気制御を行
うことで、触媒燃焼効率を高める。
The secondary air correction amount required for the target secondary air-fuel ratio can be calculated from this deviation, and the secondary air control is performed based on this to increase the catalytic combustion efficiency.

【0018】第3の課題解決手段の作用…低温運転時に
おいて、電気加熱触媒は2次空燃比(換言すれば2次空
気量)が触媒燃焼を図るうえで最適なものであれば、そ
の時点における電気加熱触媒或いはその近傍の温度(以
下、触媒検出温度とする)は最大となるが、最適値から
外れるとその温度は低下してしまう。
Operation of the third means for solving the problem: In the low temperature operation, if the secondary air-fuel ratio (in other words, the amount of secondary air) of the electrically heated catalyst is optimum for achieving catalytic combustion, then that time The temperature of the electrically heated catalyst or its vicinity (hereinafter referred to as the catalyst detection temperature) is maximum, but when it deviates from the optimum value, the temperature decreases.

【0019】本課題解決手段では、この現象を利用し
て、2次空気量を量子化された微小単位で加減制御する
ことで、触媒検出温度が最大となる2次空気量(2次空
燃比)を試行探索する。例えば、2次空気量を微小単位
量で増加してその触媒検出温度が上昇した場合は、さら
に2次空気量を増加してみる。そこで触媒検出温度が低
下した場合には、その前の2次空気量が最大触媒検出温
度(最適触媒燃焼)に対応するものと決定するいわゆる
山登り方式で2次空気量を求める。
In this problem solving means, by utilizing this phenomenon, the secondary air amount is controlled by the quantized minute unit, and the secondary air amount (secondary air-fuel ratio) that maximizes the catalyst detection temperature is obtained. ) Trial search. For example, when the secondary air amount is increased by a minute unit and the catalyst detection temperature rises, the secondary air amount is further increased. Therefore, when the catalyst detection temperature is lowered, the secondary air amount is determined by a so-called hill climbing method in which it is determined that the preceding secondary air amount corresponds to the maximum catalyst detection temperature (optimal catalyst combustion).

【0020】このようにしても、低温時の触媒燃焼効率
を高める。
Even in this way, the catalytic combustion efficiency at low temperatures is enhanced.

【0021】第4の課題解決手段の作用…排気ガス量は
常に一様に排出されるものではなく、各気筒の排気弁の
開閉に応じて変化している。この変化する排気に対して
2次空気量を一定のまま供給していては、2次空燃比は
変化してしまい所望の値い制御することはできない。
Operation of Fourth Problem Solving Means ... The amount of exhaust gas is not always discharged uniformly, but changes depending on whether the exhaust valve of each cylinder is opened or closed. If the amount of secondary air is supplied to the changing exhaust gas at a constant level, the secondary air-fuel ratio will change and cannot be controlled to a desired value.

【0022】そこで本課題解決手段は、2次空気量を排
気弁の開閉動作により変化する排気流量に対応させて2
次空気量を変化するよう制御する。これにより2次空燃
比は常に触媒燃焼に最適な目標値に制御でき、排気浄化
効率を高めることができる。
Therefore, the means for solving the problem is to adjust the secondary air amount to the exhaust flow rate which changes according to the opening / closing operation of the exhaust valve.
Control to change the amount of secondary air. As a result, the secondary air-fuel ratio can always be controlled to the optimum target value for catalytic combustion, and exhaust purification efficiency can be improved.

【0023】[0023]

【実施例】本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0024】図1は本発明の第1実施例に係る説明図で
ある。
FIG. 1 is an explanatory diagram according to the first embodiment of the present invention.

【0025】図1において、エアフローメータ1で計量
された空気が吸気管の絞り弁2を通りエンジン3に吸入
される。燃料は噴射弁4で計量されてエンジン3に供給
される。
In FIG. 1, the air measured by the air flow meter 1 is sucked into the engine 3 through the throttle valve 2 of the intake pipe. The fuel is metered by the injection valve 4 and supplied to the engine 3.

【0026】燃焼後の排気ガスは排気管5に排出され、
この排気管5に副触媒コンバータ6と通常の主触媒コン
バータ9とが配置される。副触媒コンバータ6は主触媒
コンバータ9の上流に配置され、電気ヒータ付き触媒7
とその下流にある通常の触媒8とを一つのコンバータケ
ースに組み込んで成る。これらの触媒は例えば三元触媒
が用いられる。そのほか、酸化触媒,還元触媒等であっ
てもよい。低温運転時の場合には、触媒コンバータ7を
電気加熱して早めに活性化するよう設定してある。通常
の触媒8,9は、低温時には活性不良であり、エンジン
が暖機された後に機能を発揮する。触媒7に対する電気
加熱はその対処の一つである。
The exhaust gas after combustion is discharged to the exhaust pipe 5,
An auxiliary catalytic converter 6 and an ordinary main catalytic converter 9 are arranged in the exhaust pipe 5. The auxiliary catalytic converter 6 is arranged upstream of the main catalytic converter 9 and has a catalyst 7 with an electric heater.
And a normal catalyst 8 located downstream thereof are incorporated in one converter case. For example, a three-way catalyst is used as these catalysts. Besides, it may be an oxidation catalyst, a reduction catalyst or the like. In the low temperature operation, the catalytic converter 7 is set to be electrically heated and activated early. The ordinary catalysts 8 and 9 have poor activity at low temperatures and function after the engine is warmed up. Electric heating of the catalyst 7 is one of the countermeasures.

【0027】排気浄化装置は、上記副触媒コンバータ
6,主触媒コンバータ9の他に、制御弁12付きの2次
空気導入管10,空燃比センサ11,ヒータ回路14,
マイクロコンピュータ13等の2次空気量制御系で構成
される。
In addition to the auxiliary catalytic converter 6 and the main catalytic converter 9, the exhaust gas purification device includes a secondary air introducing pipe 10 with a control valve 12, an air-fuel ratio sensor 11, a heater circuit 14,
It is configured by a secondary air amount control system such as the microcomputer 13.

【0028】2次空気導入管10は排気管5における副
触媒コンバータ6の上流に空気(2次空気)を導き、空
燃比センサ11は副触媒コンバータ6上流の排気ガスか
ら空燃比を検出するよう配設される。2次空気導入管1
0の空気取入口15は排気管5近傍に位置してなるべく
暖かい空気を導入する配慮がなされている。
The secondary air introducing pipe 10 guides air (secondary air) upstream of the auxiliary catalytic converter 6 in the exhaust pipe 5, and the air-fuel ratio sensor 11 detects the air-fuel ratio from the exhaust gas upstream of the auxiliary catalytic converter 6. It is arranged. Secondary air inlet pipe 1
The 0 air intake port 15 is located near the exhaust pipe 5 and is designed to introduce as warm air as possible.

【0029】マイクロコンピュータ13は、エンジン制
御系に関する各種センサのデータを入力してエンジン制
御に必要な演算を行う他に、排気浄化系に必要なデータ
入力とその制御に必要な演算を行う機能を与えてある。
エアフローメータ1、空燃比センサ11の信号はマイク
ロコンピュータ13に入力される。また、噴射弁4、2
次空気量Qa2を制御する弁12及び触媒7のヒータ回
路14はマイクロコンピュータ13の制御信号で動作す
る。
The microcomputer 13 has a function of inputting data of various sensors related to the engine control system and performing calculations necessary for engine control, and also inputting data necessary for the exhaust gas purification system and calculations necessary for control thereof. I have been given.
The signals from the air flow meter 1 and the air-fuel ratio sensor 11 are input to the microcomputer 13. In addition, the injection valves 4, 2
The valve 12 for controlling the secondary air amount Qa 2 and the heater circuit 14 of the catalyst 7 operate by the control signal of the microcomputer 13.

【0030】本実施例では、低温運転時の副触媒コンバ
ータ6(特に電気ヒータ付き触媒7)の触媒燃焼効率を
高めるために、マイクロコンピュータ13が低温運転時
の状況に合った2次空気量を算出するが、この2次空気
量算出は、低温運転時の未燃燃料量を燃料挙動モデルと
低温運転時に関する冷却水温,回転数,負荷などより推
定し、この結果を基に2次空気量を算出する。
In this embodiment, in order to enhance the catalytic combustion efficiency of the auxiliary catalytic converter 6 (particularly the catalyst 7 with an electric heater) during low temperature operation, the microcomputer 13 sets the secondary air amount suitable for the condition during low temperature operation. This secondary air amount is calculated by estimating the unburned fuel amount during low temperature operation from the fuel behavior model and the cooling water temperature, rotation speed, load, etc. for low temperature operation, and based on this result, the secondary air amount To calculate.

【0031】図2に排気中に排出される未燃燃料量を推
定する燃料挙動モデルの概念を示す。図2の(a)は、
吸入行程中の燃料挙動モデルである。噴射弁4から噴射
される燃料のうち吸気管壁に付着する量をLmとし、飛
翔中の燃料量をSmとする。Lmは行程遅れをもって燃
焼室20内に流入する。また、Smの一部は吸気弁21
に衝突して液膜を形成する。吸気弁21に付着して燃焼
室20内に流入した燃料量をLc1,吸気弁21に衝突
して液膜になった分をLc2とする。燃焼行程を経て、
図2(b)に示すような排気行程となった場合、燃焼室
内に残った液膜量は、それぞれLc1´,Lc2´にな
る。排気行程では、このうちの一部が排気管中に排出さ
れる。この量をLeとする。これらのパラメータと、冷
却水温,回転数,負荷などを考慮して例えば数1式に示
すような数式モデルを作りLeを求める。
FIG. 2 shows the concept of a fuel behavior model for estimating the amount of unburned fuel discharged into the exhaust gas. FIG. 2A shows
It is a fuel behavior model during an intake stroke. The amount of fuel injected from the injection valve 4 that adheres to the intake pipe wall is Lm, and the amount of fuel in flight is Sm. Lm flows into the combustion chamber 20 with a stroke delay. Moreover, a part of Sm is the intake valve 21.
To form a liquid film. The amount of fuel that has adhered to the intake valve 21 and has flowed into the combustion chamber 20 is Lc 1 , and the amount of fuel that has collided with the intake valve 21 to form a liquid film is Lc 2 . After the combustion process,
When the exhaust stroke is as shown in FIG. 2B, the liquid film amounts remaining in the combustion chamber are Lc 1 ′ and Lc 2 ′, respectively. In the exhaust stroke, part of this is discharged into the exhaust pipe. Let this amount be Le. Taking these parameters, the cooling water temperature, the number of revolutions, the load, etc. into consideration, Le is obtained by making a mathematical model as shown in, for example, Equation 1.

【0032】[0032]

【数1】Le=K・TW・Lc ここでKはエンジン運転状態によって決定される係数、
Twは冷却水温、Lcはエンジン燃焼室内に流入する液
状燃料である。
## EQU1 ## Le = K.TW.Lc where K is a coefficient determined by the engine operating state,
Tw is the cooling water temperature, and Lc is the liquid fuel flowing into the engine combustion chamber.

【0033】図3はそのフローチャートを示す(図中、
S1〜S7はステップである)。図3の(a)に示すよ
うに、冷却水温,回転数,負荷等から燃焼室内の液状燃
料量Lcを計算し(S1)、この液状燃料の燃焼後の残
量Lc´を計算する(S2)。次に排気管内の液状燃料
量Leを計算して(S3)、2次空気量を決定する(S
4)。この2次空気量は、触媒前の2次空燃比が触媒燃
焼が発生する最適な値となるように決定する。この2次
空気量を供給制御する場合には、エンジンから触媒部ま
での排気管5での燃料の流動遅れを配慮する必要があ
る。図3(b)は、この流動遅れTdを配慮した2次空
気供給制御のフローチャートである。
FIG. 3 shows the flowchart (in the figure,
S1 to S7 are steps). As shown in (a) of FIG. 3, the liquid fuel amount Lc in the combustion chamber is calculated from the cooling water temperature, the rotation speed, the load, etc. (S1), and the residual amount Lc 'of the liquid fuel after combustion is calculated (S2). ). Next, the liquid fuel amount Le in the exhaust pipe is calculated (S3), and the secondary air amount is determined (S3).
4). This amount of secondary air is determined so that the secondary air-fuel ratio before the catalyst becomes an optimum value at which catalytic combustion occurs. In controlling the supply of this secondary air amount, it is necessary to consider the fuel flow delay in the exhaust pipe 5 from the engine to the catalyst section. FIG. 3B is a flowchart of the secondary air supply control in consideration of the flow delay Td.

【0034】すなわち、S5で排気管への未燃燃料の排
出量Leを計算した後に、排気管内の流動遅れTdをエ
ンジンの運転状態から計算し(S6)、Td時間後に2
次空気量を変化させる。このようにすれば、2次空燃比
を正確に制御でき触媒の効率向上を実現できる。
That is, after calculating the discharge amount Le of the unburned fuel to the exhaust pipe in S5, the flow delay Td in the exhaust pipe is calculated from the operating state of the engine (S6), and after the time Td, 2
Change the amount of secondary air. By doing so, the secondary air-fuel ratio can be accurately controlled and the efficiency of the catalyst can be improved.

【0035】なお、図2,図3に示した方式では、燃焼
室内,排気管内の液状燃料量を推定するのに燃料挙動モ
デルから計算によって求めているが、制御装置(マイク
ロコンピュータ)のメモリに運転状態に対応させて記憶
させておいてもよい。そのマップの例を図4に示す。図
4では、燃料噴射パルスTpとエンジン回転数の関数と
して燃焼室内の液状燃料量Lcが記憶されている。同様
に排気管に放出される液状燃料量Leもメモリ内に記憶
しておく。このLc,Leは予め実験により求めてお
く。
In the system shown in FIGS. 2 and 3, the amount of liquid fuel in the combustion chamber and the exhaust pipe is calculated from the fuel behavior model, but it is stored in the memory of the control device (microcomputer). It may be stored in association with the operating state. An example of the map is shown in FIG. In FIG. 4, the liquid fuel amount Lc in the combustion chamber is stored as a function of the fuel injection pulse Tp and the engine speed. Similarly, the liquid fuel amount Le discharged to the exhaust pipe is also stored in the memory. The Lc and Le are obtained in advance by experiments.

【0036】本実施例によれば、空燃比が一様でない低
温運転時においても、副触媒コンバータの触媒燃焼に最
適な2次空気量(2次空燃比)を運転状況に合わせて供
給することで、早急に低温運転においても排気浄化効率
を向上させると共に副触媒コンバータひいてはこれに連
鎖して主触媒コンバータの触媒温度を上昇させることが
できる。
According to this embodiment, the optimum secondary air amount (secondary air-fuel ratio) for the catalytic combustion of the auxiliary catalytic converter is supplied in accordance with the operating condition even in the low temperature operation where the air-fuel ratio is not uniform. Thus, it is possible to immediately improve the exhaust gas purification efficiency even in the low temperature operation and to raise the catalyst temperature of the auxiliary catalytic converter and thus the main catalytic converter in a chained manner.

【0037】また、排気側の2次空気量制御により最適
2次空燃比を保つので、応答性が早く且つエンジン吸気
側の本来の空燃比に変動を与えることがなく排気浄化を
実行できる。なお、エンジンが充分に暖まり副触媒コン
バータ6及び主触媒コンバータ9が活性化に必要な温度
に達すると、マイクロコンピュータ13からの指令信号
によって副触媒コンバータ6の電気ヒータの通電を停止
し、また制御弁12が閉じて2次空気量の供給が停止さ
れる。そして、以後は空燃比センサ11を用いて三元触
媒のウィンドウを保ち得る通常の空燃比制御が実行され
る。
Further, since the optimum secondary air-fuel ratio is maintained by controlling the secondary air amount on the exhaust side, the responsiveness is fast and the exhaust gas can be purified without changing the original air-fuel ratio on the engine intake side. When the engine has warmed sufficiently and the auxiliary catalytic converter 6 and the main catalytic converter 9 have reached the temperatures required for activation, the electric signal of the electric heater of the auxiliary catalytic converter 6 is stopped and controlled by a command signal from the microcomputer 13. The valve 12 is closed and the supply of the secondary air amount is stopped. Then, thereafter, using the air-fuel ratio sensor 11, normal air-fuel ratio control capable of maintaining the window of the three-way catalyst is executed.

【0038】図5は本発明の第2実施例を示す説明図
で、その(a)に排気ガス浄化装置の2次空気量制御系
のブロック図を、(b)にこれに用いる空燃比センサ
を、(c)に空燃比センサの動作特性を示す。なお、本
実施例では図示省略しているが、図1に示すようなエン
ジン系、及び副触媒コンバータ6,主触媒コンバータ
9,制御弁12付き2次空気導入管10,ヒータ回路1
4等を備え、また、以下に述べる2次空気量(2次空燃
比)制御を行うマイクロコンピュータ13Aを有する。
FIG. 5 is an explanatory view showing a second embodiment of the present invention, in which (a) is a block diagram of the secondary air amount control system of the exhaust gas purifying device and (b) is an air-fuel ratio sensor used therefor. And (c) shows the operating characteristics of the air-fuel ratio sensor. Although not shown in the present embodiment, the engine system as shown in FIG. 1, the auxiliary catalytic converter 6, the main catalytic converter 9, the secondary air introducing pipe 10 with the control valve 12, the heater circuit 1 are shown.
4 and the like, and has a microcomputer 13A that controls the secondary air amount (secondary air-fuel ratio) described below.

【0039】マイクロコンピュータ13Aに、噴射弁か
らの燃料量Qf、エンジン回転数N、冷却水温Tw等が
入力される。これらのエンジンに関するデータから低温
運転時における目標の2次空燃比(目標2次空燃比は触
媒燃焼を図るための最適値に設定してある)となるよう
な2次空気量Qa2を計算し制御弁12に出力される。
排気管中の2次空燃比は空燃比センサ11で検出され
る。この検出された2次空燃比(A/F)と目標2次空
燃比を比較して、その偏差に適当なゲインKfをかけ
て、目標空燃比になるように2次空気量Qa2を補正す
る。
The fuel amount Qf from the injection valve, the engine speed N, the cooling water temperature Tw, etc. are input to the microcomputer 13A. From the data on these engines, the secondary air amount Qa 2 that achieves the target secondary air-fuel ratio (the target secondary air-fuel ratio is set to the optimum value for achieving catalytic combustion) during low temperature operation is calculated. It is output to the control valve 12.
The secondary air-fuel ratio in the exhaust pipe is detected by the air-fuel ratio sensor 11. The detected secondary air-fuel ratio (A / F) is compared with the target secondary air-fuel ratio, and the deviation is multiplied by an appropriate gain Kf to correct the secondary air amount Qa 2 so as to obtain the target air-fuel ratio. To do.

【0040】ここで、本実施例に用いる空燃比センサ1
1の一例を図5(b)(c)により説明する。図5
(b)に示すように、酸化ジルコニア素子31の両側に
電極32a,32bが取付けてあり、排気側電極32a
の外側には多孔質の保護膜33が設けてある。一方、素
子31の大気側には、加熱用のヒータ34が配設され
る。
Here, the air-fuel ratio sensor 1 used in this embodiment
An example of No. 1 will be described with reference to FIGS. Figure 5
As shown in (b), electrodes 32a and 32b are attached to both sides of the oxide zirconia element 31, and the exhaust side electrode 32a is attached.
A porous protective film 33 is provided on the outer side of the. On the other hand, a heater 34 for heating is arranged on the atmosphere side of the element 31.

【0041】始動時には、このヒータで素子31を加熱
して空燃比を測定できるようにする。センサ11は空燃
比に対して線形な出力を出すものでも良いし、空燃比に
対してステップ的な出力を出すものでも良い。図5
(c)は空燃比センサ11の出力例で、図中(イ)は空
燃比に対して線形な出力を出すセンサ信号であり、
(ロ)は空燃比に対してステップ的な出力を出すセンサ
の信号である。(ロ)に示すような信号でも、リーン、
リッチ領域で空燃比に対して変化する信号が得られてい
るので、その出力電圧を読み取ることで2次空燃比を検
出できる。
At the time of starting, the element 31 is heated by this heater so that the air-fuel ratio can be measured. The sensor 11 may output a linear output with respect to the air-fuel ratio, or may output a stepwise output with respect to the air-fuel ratio. Figure 5
(C) is an output example of the air-fuel ratio sensor 11, (a) is a sensor signal that produces a linear output with respect to the air-fuel ratio,
(B) is a signal of a sensor that outputs a stepwise output with respect to the air-fuel ratio. Even if the signal shown in (b) is lean,
Since the signal that changes with respect to the air-fuel ratio is obtained in the rich region, the secondary air-fuel ratio can be detected by reading the output voltage.

【0042】本実施例においても、目標の2次空燃比に
従って2次空気量を排気管の触媒コンバータ上流に導く
ので、機関の低温運転時における副触媒コンバータの触
媒燃焼を促進させ浄化効率の向上と副触媒及び主触媒温
度の上昇時間の時間短縮を図り得る。
Also in this embodiment, since the secondary air amount is guided to the upstream side of the catalytic converter in the exhaust pipe in accordance with the target secondary air-fuel ratio, the catalytic combustion of the auxiliary catalytic converter is promoted during the low temperature operation of the engine to improve the purification efficiency. In addition, it is possible to shorten the time required for the temperature rise of the auxiliary catalyst and the main catalyst.

【0043】図6は本発明の第3実施例を示す説明図、
図7はその制御フローチャートを示す。なお、図中、前
記各実施例と同一符号は同一或いは共通の要素を示す。
FIG. 6 is an explanatory view showing a third embodiment of the present invention,
FIG. 7 shows the control flowchart. In the drawings, the same reference numerals as those in the above-mentioned respective embodiments indicate the same or common elements.

【0044】本実施例も排気管5に設ける触媒コンバー
タの構成や制御弁12付き2次空気導入管10について
は前述の各実施例同様にしてある。
Also in this embodiment, the structure of the catalytic converter provided in the exhaust pipe 5 and the secondary air introducing pipe 10 with the control valve 12 are the same as those in the above-mentioned respective embodiments.

【0045】本実施例における2次空気量制御系は、エ
ンジンの低温運転時にマイクロコンピュータ13Bが2
次空気量Qa2を量子化された微小単位で加減制御し、
且つ温度センサ40による触媒温度検出データを取り込
んで、触媒コンバータ或いはその近傍の温度が最高にな
るように2次空燃比制御する機能を備える。図6(a)
に示すように、温度センサ40は、副触媒コンバータ6
に取付けてられ、電気加熱触媒7と触媒8との間に配置
される。
In the secondary air amount control system according to this embodiment, the microcomputer 13B operates in the low temperature mode when the engine is operating at a low temperature.
The next air amount Qa 2 is controlled by the quantized minute unit,
Further, it has a function of taking in the catalyst temperature detection data from the temperature sensor 40 and controlling the secondary air-fuel ratio so that the temperature of the catalytic converter or the vicinity thereof becomes maximum. Figure 6 (a)
As shown in FIG.
And is arranged between the electrically heated catalyst 7 and the catalyst 8.

【0046】低温運転時の副触媒コンバータ6入口付近
の2次空燃比(A/F)inを変化させると、電気加熱
触媒7の温度が触媒燃焼が活発なところで最高となる。
従って、この最高となる温度を2次空気量Qa2を微小
単位で加減制御して試行探索しつつ温度センサ40で検
出すれば、副触媒コンバータ6及び主触媒コンバータ9
はその燃焼熱で温度上昇して早く活性化される。図6の
(b)に触媒入口2次空燃比(A/F)inと触媒温度
Tcatとの関係を示し、同図の(イ)の2次空燃比で
Tcatが最高になる。この2次空燃比となるように制
御する。
When the secondary air-fuel ratio (A / F) in in the vicinity of the inlet of the auxiliary catalytic converter 6 during low temperature operation is changed, the temperature of the electrically heated catalyst 7 becomes the highest when the catalytic combustion is active.
Therefore, if the temperature is detected by the temperature sensor 40 while performing the trial search by controlling the secondary air amount Qa 2 by a minute unit, the maximum temperature can be detected by the auxiliary catalytic converter 6 and the main catalytic converter 9
The heat of combustion raises the temperature and is activated quickly. FIG. 6B shows the relationship between the catalyst inlet secondary air-fuel ratio (A / F) in and the catalyst temperature Tcat, and Tcat becomes the highest at the secondary air-fuel ratio in FIG. 6B. Control is performed so as to achieve this secondary air-fuel ratio.

【0047】この制御のフローチャートを図7に示す。
図7の例では、初めに触媒温度Tcatを測定する(S
1)。次に2次空気量Qa2を微小単位△Qa2で増加し
てみる(S2)。ここで、Tcatが増加した場合、さ
らにQa2を増加して空燃比を薄く(大きく)する(S
3)。これによりTcatが減少したら、Qa2を△Q
2分だけ減少させる(S4)。次に再び、ステップS
5にてTcatの増減を判断する。Tcatが増加した
ら再びQa2を減少させる。ここで、Tcatが減少し
たらこのルーチンを終わる。以上のようにして、量子化
された微小単位を2次空気量を加減制御する、いわゆる
山登り法で触媒温度が最高になる2次空燃比を見つけだ
す。
A flow chart of this control is shown in FIG.
In the example of FIG. 7, the catalyst temperature Tcat is first measured (S
1). Next, the secondary air amount Qa 2 is increased by a minute unit ΔQa 2 (S2). Here, when Tcat increases, Qa 2 is further increased to make the air-fuel ratio thin (large) (S
3). As a result, when Tcat decreases, change Qa 2 to ΔQ
It is decreased by a 2 minutes (S4). Then again, step S
At 5, it is determined whether Tcat is increased or decreased. When Tcat increases, Qa 2 is decreased again. Here, when Tcat decreases, this routine ends. As described above, the secondary air-fuel ratio that maximizes the catalyst temperature is found by the so-called hill-climbing method, in which the quantized minute unit is controlled by adjusting the secondary air amount.

【0048】図8は本発明の第4実施例に係る説明図で
ある。本実施例も排気管5に設ける触媒コンバータの構
成や制御弁12付き2次空気導入管10については前述
の各実施例同様にしてある。
FIG. 8 is an explanatory diagram according to the fourth embodiment of the present invention. Also in this embodiment, the structure of the catalytic converter provided in the exhaust pipe 5 and the secondary air introducing pipe 10 with the control valve 12 are the same as those in the above-mentioned respective embodiments.

【0049】また、2次空気量制御系の中枢をなすマイ
クロコンピュータ13Cは、低温運転時に副触媒コンバ
ータ6の上流に供給される2次空気量を電気加熱触媒7
の触媒燃焼を図る上で最適となるよう制御するが(この
2次空気量制御は例えば既述の第1〜第3実施例のよう
なものを採用すればよい)、加えて、次のような制御を
採用する。
The microcomputer 13C, which is the center of the secondary air amount control system, changes the amount of secondary air supplied upstream of the auxiliary catalytic converter 6 during low temperature operation to the electrically heated catalyst 7.
In order to achieve the optimum catalytic combustion, the control is performed optimally (this secondary air amount control may adopt, for example, those described in the first to third embodiments), in addition to the following. Adopt control.

【0050】すなわち、図8の(a)に示すように、ク
ランク角センサ41の信号がマイクロコンピュータ13
Cに入力される。マイクロコンピュータ13Cは、この
クランク角センサ41からエンジンの各気筒における排
気弁の開閉を検出し、この排気弁の動作による排気流量
の変化に応動して制御弁12を動作させ、2次空気量Q
2を加減(変化)制御する機能を有している。
That is, as shown in FIG. 8A, the signal of the crank angle sensor 41 is the microcomputer 13 signal.
Input to C. The microcomputer 13C detects the opening / closing of the exhaust valve in each cylinder of the engine from the crank angle sensor 41, operates the control valve 12 in response to the change in the exhaust flow rate due to the operation of the exhaust valve, and operates the secondary air amount Q.
It has a function of controlling (changing) a 2 .

【0051】図8(b)及び図9にその概念を示す。The concept is shown in FIGS. 8B and 9.

【0052】図8(b)において、その(イ)は排気量
の変化を示している。この変化する排気量に対して、2
次空気量Qa2を図8(b)の(ロ)に示すように一定
のままに供給しては、触媒部6の前の空燃比は(ハ)の
ように変化してしまい2次空燃比を精度よく制御するこ
とはできない。そこで、本実施例では、上記のマイクロ
コンピュータ13Cにより、図9に示すように排気量の
変化に対応して2次空気量Qa2を加減制御して2次空
燃比を正確に制御するようにした。図9の(イ)は排気
量の変化を示し、(ロ)は上記の排気量に変化に同期さ
せて2次空気量Qa2を変化させたもので、実線及び点
線のようにそれぞれ変化させると、触媒前の2次空燃比
は(ハ)の点線及び実線のように常に所望の一定の2次
空燃比を確保することができる。2次空燃比そのものを
制御したいときは、2次空気量のレベルを上記点線,実
線のようにそれぞれ増減変化させればよい。
In FIG. 8 (b), (a) shows the change in the exhaust amount. 2 for this changing displacement
If the secondary air amount Qa 2 is supplied at a constant value as shown in (b) of FIG. 8 (b), the air-fuel ratio in front of the catalyst section 6 changes as shown in (c) and the secondary air amount The fuel ratio cannot be controlled accurately. Therefore, in the present embodiment, the secondary air amount Qa 2 is controlled by the microcomputer 13C in accordance with the change in the exhaust amount as shown in FIG. 9 to accurately control the secondary air-fuel ratio. did. 9A shows a change in the exhaust amount, and FIG. 9B shows a change in the secondary air amount Qa 2 in synchronism with the change in the above exhaust amount, which are changed as shown by solid lines and dotted lines, respectively. With respect to the secondary air-fuel ratio before the catalyst, a desired constant secondary air-fuel ratio can be always secured as shown by the dotted and solid lines in (c). When it is desired to control the secondary air-fuel ratio itself, the level of the secondary air amount may be increased or decreased as indicated by the dotted line and solid line.

【0053】図10に本実施例に用いる2次空気量Qa
2を変化させるためのアクチュエータを示した。ソレノ
イド60により弁61が上下動し2次空気量Qa2が変
化する電磁弁により構成してある。ソレノイド60に
は、マイクロコンピュータ13Cから排気弁の動作に対
応し駆動信号が与えられる。
FIG. 10 shows the secondary air amount Qa used in this embodiment.
An actuator for changing 2 is shown. The solenoid 61 is a solenoid valve whose valve 61 moves up and down to change the secondary air amount Qa 2 . A drive signal corresponding to the operation of the exhaust valve is given to the solenoid 60 from the microcomputer 13C.

【0054】図11に2次空気量Qa2を変化させる別
の方法を示した。エンジン3のクランク軸62の回転に
対応してダイアフラムポンプ63を動作させる方式を採
用する。クランク軸62の回転はダイアフラムポンプ6
3のカム64に伝えられる。この回転動作に対応して、
ダイアフラム65が動き、2次空気量Qa2が変化す
る。これにより、排気流量の変化に応じて2次吸気量Q
2を加減制御できる。
FIG. 11 shows another method for changing the secondary air amount Qa 2 . A method of operating the diaphragm pump 63 in response to the rotation of the crank shaft 62 of the engine 3 is adopted. The rotation of the crankshaft 62 is controlled by the diaphragm pump 6
3 is transmitted to the cam 64. Corresponding to this rotation operation,
The diaphragm 65 moves, and the secondary air amount Qa 2 changes. As a result, the secondary intake air amount Q
a 2 can be the acceleration control.

【0055】次に上記各実施例に用いられる副触媒コン
バータ6の他の具体例について説明する。
Next, another specific example of the auxiliary catalytic converter 6 used in each of the above embodiments will be described.

【0056】図12の(a)は電気ヒータ付き触媒(電
気加熱触媒)7と通常の触媒8とを、それぞれ複数個7
a,7b,7cと8a,8b,8cとに細分化し、これ
らを一つのコンバータケース内に交互に配置して副触媒
コンバータ6を構成する。このようにすると、図12
(b)のように1個の電気加熱触媒7だけで通常の触媒
8を加熱するより効率的に触媒全体を加熱できる。その
効果を、図12(c)に示す。すなわち、図12(a)
の配置では、副触媒コンバータ全体の温度分布が図12
(c)の(イ)ようになり、図12(b)の配置では、
図12(c)の(ロ)のような温度分布になり、電気加
熱触媒を交互に配置したほうが触媒全体が高温になる。
これは電気加熱触媒の下流に配置した通常の触媒の容積
が小さいので、電気加熱触媒の触媒燃焼熱により上昇し
やすいためである。
FIG. 12A shows a plurality of catalysts 7 each having an electric heater (electrically heated catalyst) 7 and a normal catalyst 7.
The sub-catalyst converter 6 is configured by subdividing into a, 7b, 7c and 8a, 8b, 8c and alternately arranging them in one converter case. In this way, FIG.
As in (b), it is possible to heat the entire catalyst more efficiently than heating the normal catalyst 8 with only one electrically heated catalyst 7. The effect is shown in FIG. That is, FIG. 12 (a)
In this arrangement, the temperature distribution of the entire auxiliary catalytic converter is shown in FIG.
It becomes like (a) of (c), and in the arrangement of FIG. 12 (b),
The temperature distribution shown in (b) of FIG. 12C is obtained, and the temperature of the entire catalyst becomes higher when the electrically heated catalysts are alternately arranged.
This is because the volume of the normal catalyst arranged downstream of the electrically heated catalyst is small, so that it easily rises due to the catalyst combustion heat of the electrically heated catalyst.

【0057】図13に副触媒コンバータ6の別の態様を
示す。図13の(a)の触媒コンバータは通常のコンバ
ータ8の前段に設けた電気加熱触媒7を、排気管5の径
と通常の触媒8の径に合わせてその入口側から出口側に
向けて次第に拡がる截頭円錐形状としている。これは、
通常、触媒コンバータ6は排気管5より太くなっている
ため、電気加熱触媒7全体を触媒8よりも細径にしてし
まうと、電気加熱触媒7を通る排気が触媒8のすみずみ
まで行き届かないので、これに対処したものである。こ
のように電気加熱触媒7に広がりをもたせることで電気
加熱触媒7を通過する排気流がその下流の触媒8にまん
べんなく導かれ触媒の温度上昇を助長させる。
FIG. 13 shows another mode of the auxiliary catalytic converter 6. In the catalytic converter shown in FIG. 13 (a), the electrically heated catalyst 7 provided in the preceding stage of the ordinary converter 8 is gradually adjusted from the inlet side to the outlet side according to the diameter of the exhaust pipe 5 and the diameter of the ordinary catalyst 8. It has a frustoconical shape that expands. this is,
Since the catalytic converter 6 is normally thicker than the exhaust pipe 5, if the entire electrically heated catalyst 7 is made smaller in diameter than the catalyst 8, the exhaust gas passing through the electrically heated catalyst 7 cannot reach every corner of the catalyst 8. So that's what we deal with. By allowing the electrically heated catalyst 7 to spread in this manner, the exhaust gas flow passing through the electrically heated catalyst 7 is evenly guided to the catalyst 8 located downstream of the electrically heated catalyst 7 to promote the temperature rise of the catalyst.

【0058】図13(b)は電気加熱触媒7と通常の触
媒8とを同径とし、コンバータ6の電気加熱触媒7の上
流に截頭円錐状に広がる排気流ガイド50を配置したも
ので、このようにしても触媒のすみずみに排気を導け
る。
In FIG. 13B, the electric heating catalyst 7 and the ordinary catalyst 8 have the same diameter, and the exhaust flow guide 50 spreading in a truncated cone shape is arranged upstream of the electric heating catalyst 7 of the converter 6. Even in this way, the exhaust gas can be guided to all corners of the catalyst.

【0059】図14に触媒コンバータ6の別の態様を示
す。この例では、触媒コンバータ6のケースの周囲に排
気迂回路51を形成するカバー52を配設し、この排気
迂回路51を経由して排気が触媒コンバータ6に導入さ
れるようにした。このようにすれば、触媒は電気加熱や
触媒燃焼のほかに排気熱で加熱されるので温度上昇を早
める効果がある。
FIG. 14 shows another mode of the catalytic converter 6. In this example, a cover 52 that forms an exhaust bypass 51 is arranged around the case of the catalytic converter 6, and the exhaust gas is introduced into the catalytic converter 6 via the exhaust bypass 51. In this case, the catalyst is heated by exhaust heat in addition to electric heating and catalytic combustion, so that it has an effect of accelerating the temperature rise.

【0060】[0060]

【発明の効果】以上のように本発明によれば、エンジン
の低温運転時にも電気加熱触媒の加熱容量を小さくしつ
つ、その運転状況にあった2次空気量の最適制御を図る
ことで触媒燃焼効率ひいては排気浄化効率をより一層高
め、且つ触媒の温度上昇の時間短縮を図って触媒加熱源
(電気ヒータ)の省エネルギーを図り得る。
As described above, according to the present invention, even when the engine is operated at a low temperature, the heating capacity of the electrically heated catalyst is reduced, and the secondary air amount suitable for the operating condition is optimally controlled. It is possible to further improve the combustion efficiency and thus the exhaust gas purification efficiency, and shorten the time required for the temperature rise of the catalyst to save the energy of the catalyst heating source (electric heater).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るシステムの構成図。FIG. 1 is a configuration diagram of a system according to a first embodiment of the present invention.

【図2】燃料挙動のモデル図。FIG. 2 is a model diagram of fuel behavior.

【図3】第1実施例の2次空気量制御系の動作を示すフ
ローチャート。
FIG. 3 is a flowchart showing the operation of the secondary air amount control system of the first embodiment.

【図4】噴射弁から噴射される燃料がエンジン各部に液
膜付着したときの量を推定したマップ。
FIG. 4 is a map that estimates the amount of fuel injected from the injection valve when a liquid film adheres to various parts of the engine.

【図5】本発明の第2実施例に係る説明図。FIG. 5 is an explanatory diagram according to the second embodiment of the present invention.

【図6】本発明の第3実施例に係る説明図。FIG. 6 is an explanatory diagram according to a third embodiment of the present invention.

【図7】第3実施例の2次空気量制御系の動作を示すフ
ローチャート。
FIG. 7 is a flowchart showing the operation of the secondary air amount control system of the third embodiment.

【図8】本発明の第4実施例に係る説明図。FIG. 8 is an explanatory diagram according to a fourth embodiment of the present invention.

【図9】第4実施例の2次空気流量制御系の動作を示す
説明図。
FIG. 9 is an explanatory view showing the operation of the secondary air flow rate control system of the fourth embodiment.

【図10】本発明の実施例に使用される2次空気量制御
弁の一例を示す断面図。
FIG. 10 is a sectional view showing an example of a secondary air amount control valve used in the embodiment of the present invention.

【図11】本発明の実施例に使用される2次空気量制御
弁の一例を示す断面図。
FIG. 11 is a sectional view showing an example of a secondary air amount control valve used in the embodiment of the present invention.

【図12】上記各実施例に使用される触媒コンバータの
一例を示す説明図。
FIG. 12 is an explanatory diagram showing an example of a catalytic converter used in each of the above embodiments.

【図13】上記各実施例に使用される触媒コンバータの
一例を示す説明図。
FIG. 13 is an explanatory diagram showing an example of a catalytic converter used in each of the above embodiments.

【図14】上記各実施例に使用される触媒コンバータの
一例を示す説明図。
FIG. 14 is an explanatory diagram showing an example of a catalytic converter used in each of the above embodiments.

【符号の説明】[Explanation of symbols]

3…エンジン、5…排気管、6…副触媒コンバータ(触
媒部)、7…ヒータ付き触媒、8…触媒、9…主触媒コ
ンバータ、10…2次空気導入管、11…空燃比セン
サ、12…2次空気量制御弁、13,13A,13B,
13C…マイクロコンピュータ、14…ヒータ回路、4
0…温度センサ。
3 ... Engine, 5 ... Exhaust pipe, 6 ... Sub catalytic converter (catalyst part), 7 ... Catalyst with heater, 8 ... Catalyst, 9 ... Main catalytic converter, 10 ... Secondary air introduction pipe, 11 ... Air-fuel ratio sensor, 12 ... Secondary air amount control valve, 13, 13A, 13B,
13C ... Microcomputer, 14 ... Heater circuit, 4
0 ... Temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 C 9150−3G L 9150−3G N 9150−3G 3/32 G 9150−3G 301 B 9150−3G (72)発明者 野木 利治 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F01N 3/24 C 9150-3G L 9150-3G N 9150-3G 3/32 G 9150-3G 301 B 9150-3G (72) Inventor Toshiharu Nogi 4026 Kujimachi, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気管に排気ガスを浄化する
触媒部を設けてなる排気浄化装置において、 前記触媒部を、通常の触媒とその上流に配置されエンジ
ンの低温運転時に電気加熱されるヒータ付き触媒とで構
成し、 且つ排気管における前記触媒部の上流に空気(以下、エ
ンジン吸気系の空気と区別するため2次空気とする)を
導入する2次空気導入手段と、2次空気量制御系とを備
え、この2次空気量制御系は、排気管内に排出される低
温運転時の未燃燃料量を燃料挙動モデルと低温運転時に
関する検出データより推定して触媒燃焼に適した2次空
気量を演算又は予め記憶したデータマップより検索する
手段を有し、この演算又は検索結果を基に2次空気量を
制御するよう設定したことを特徴とするエンジンの排気
浄化装置。
1. An exhaust gas purification device comprising a catalyst portion for purifying exhaust gas in an exhaust pipe of an engine, wherein the catalyst portion is provided with an ordinary catalyst and an upstream thereof and is electrically heated during low temperature operation of the engine. And a secondary air introducing means for introducing air (hereinafter, referred to as secondary air in order to distinguish it from the air of the engine intake system) upstream of the catalyst portion in the exhaust pipe. This secondary air amount control system is suitable for catalytic combustion by estimating the amount of unburned fuel discharged into the exhaust pipe during low temperature operation from the fuel behavior model and detection data regarding low temperature operation. An exhaust emission control device for an engine, comprising means for calculating or retrieving a secondary air amount from a previously stored data map, and setting the secondary air amount based on the result of the computation or search.
【請求項2】 請求項1において、前記低温運転時に関
する検出データは、エンジンの冷却水温,回転数,負荷
に関する検出値であることを特徴とするエンジンの排気
浄化装置。
2. The exhaust gas purifying apparatus for an engine according to claim 1, wherein the detection data regarding the low temperature operation is a detection value regarding a cooling water temperature, a rotation speed, and a load of the engine.
【請求項3】 エンジンの排気管に排気ガスを浄化する
触媒部を設けてなる排気浄化装置において、 前記触媒部を、通常の触媒とその上流に配置されエンジ
ンの低温運転時に電気加熱されるヒータ付き触媒とで構
成し、 且つ排気管における前記触媒部の上流に2次空気を導入
する2次空気導入手段と、2次空気量制御系とを備え、
この2次空気量制御系は、エンジンの低温運転時におけ
る排気管内の2次空燃比〔ここで、2次空燃比とは触媒
上流の全空気量(吸入空気量と2次空気量との和)と供
給燃料量との比を指す〕を空燃比センサにより検出し
て、実2次空燃比と目標2次空燃比との偏差により触媒
燃焼に適した2次空気量を演算する手段を有し、この演
算結果を基に2次空気量を制御するよう設定したことを
特徴とするエンジンの排気浄化装置。
3. An exhaust gas purification device comprising a catalyst portion for purifying exhaust gas in an exhaust pipe of an engine, wherein the catalyst portion is a normal catalyst and a heater arranged upstream thereof and electrically heated during low temperature operation of the engine. And a secondary air amount control system for introducing secondary air upstream of the catalyst section in the exhaust pipe.
This secondary air amount control system is a secondary air-fuel ratio in the exhaust pipe during low temperature operation of the engine [where the secondary air-fuel ratio is the total air amount upstream of the catalyst (the sum of the intake air amount and the secondary air amount. ) And the supplied fuel amount] is detected by the air-fuel ratio sensor, and a secondary air amount suitable for catalytic combustion is calculated from the deviation between the actual secondary air-fuel ratio and the target secondary air-fuel ratio. The engine exhaust gas purification device is characterized in that the secondary air amount is set based on the calculation result.
【請求項4】 エンジンの排気管に排気ガスを浄化する
触媒部を設けてなる排気浄化装置において、 前記触媒部を、通常の触媒とその上流に配置されエンジ
ンの低温運転時に電気加熱されるヒータ付き触媒とで構
成し、 且つ排気管における前記触媒部の上流に2次空気を導入
する2次空気導入手段と、2次空気量制御系とを備え、
この2次空気量制御系は、低温運転時の前記触媒部又は
その近傍の温度を温度センサにより検出して、その温度
検出値が最大となるよう2次空気量を量子化された微小
単位で加減制御する手段を有して成ることを特徴とする
エンジンの排気浄化装置。
4. An exhaust gas purification device comprising a catalyst portion for purifying exhaust gas in an exhaust pipe of an engine, wherein the catalyst portion is provided with an ordinary catalyst and an upstream thereof, and is electrically heated during low temperature operation of the engine. And a secondary air amount control system for introducing secondary air upstream of the catalyst portion in the exhaust pipe.
This secondary air amount control system detects the temperature of the catalyst portion or its vicinity during low temperature operation by a temperature sensor, and the secondary air amount is quantized in minute units so that the detected temperature value becomes maximum. An exhaust emission control device for an engine, comprising an adjusting control unit.
【請求項5】 エンジンの排気管に排気ガスを浄化する
触媒部を設けてなる排気浄化装置において、 前記触媒部を、通常の触媒とその上流に配置されエンジ
ンの低温運転時に電気加熱されるヒータ付き触媒とで構
成し、 且つ排気管における前記触媒部の上流に2次空気を導入
する2次空気導入手段と、2次空気量制御系とを備え、
この2次空気量制御系は、低温運転時に供給すべき2次
空気量をエンジン運転状況に応じて触媒燃焼に適した量
に制御する時に、排気弁の開閉を検知するセンサを用い
てその2次空気量を排気弁の開閉動作により変化する排
気流量に対応させて加減制御する手段を有して成ること
を特徴とするエンジンの排気浄化装置。
5. An exhaust gas purification device comprising a catalyst portion for purifying exhaust gas in an exhaust pipe of an engine, wherein the catalyst portion is a normal catalyst and a heater arranged upstream thereof and electrically heated during low temperature operation of the engine. And a secondary air amount control system for introducing secondary air upstream of the catalyst portion in the exhaust pipe.
This secondary air amount control system uses a sensor that detects the opening / closing of an exhaust valve when controlling the amount of secondary air to be supplied during low temperature operation to an amount suitable for catalytic combustion according to engine operating conditions. An exhaust emission control device for an engine, comprising means for controlling the amount of secondary air in accordance with the flow rate of exhaust gas that changes depending on the opening / closing operation of an exhaust valve.
【請求項6】 請求項1ないし請求項5のいずれか1項
において、前記触媒部は前記ヒータ付き触媒と通常の触
媒を一つのコンバータケースに組み込んで成ることを特
徴とするエンジンの排気浄化装置。
6. The exhaust gas purifying apparatus for an engine as claimed in claim 1, wherein the catalyst portion includes the catalyst with the heater and an ordinary catalyst incorporated in one converter case. ..
【請求項7】 エンジンの排気管に配設される排気ガス
浄化用の触媒コンバータにおいて、ヒータ付き触媒と通
常の触媒(ヒータ無しの触媒)とをそれぞれ複数個用
い、これらのヒータ付き触媒と通常の触媒とを一つのコ
ンバータケース内に交互に配置してなることを特徴とす
る触媒コンバータ。
7. A catalytic converter for purifying exhaust gas arranged in an exhaust pipe of an engine, wherein a plurality of catalysts with a heater and a plurality of normal catalysts (catalysts without a heater) are used respectively, The catalyst converter is characterized in that the catalyst and the catalyst are alternately arranged in one converter case.
【請求項8】 エンジンの排気管に配設される排気ガス
浄化用の触媒コンバータにおいて、ヒータ付きの触媒と
その下流に配置される通常の触媒とを一つのコンバータ
ケースに組み込み、且つ前記ヒータ付きの触媒はその入
口側が排気管の径に、一方、その出口側が前記排気管よ
り大径にした前記通常の触媒コンバータの径に合わせた
末広がりの形状に形成して成ることを特徴とする触媒コ
ンバータ。
8. In a catalytic converter for purifying exhaust gas arranged in an exhaust pipe of an engine, a catalyst with a heater and a normal catalyst arranged downstream thereof are incorporated in one converter case, and the heater is equipped with the heater. The catalyst converter is characterized in that its inlet side is formed in a diameter of the exhaust pipe, while its outlet side is formed in a divergent shape that matches the diameter of the ordinary catalytic converter whose diameter is larger than that of the exhaust pipe. ..
【請求項9】 エンジンの排気管に配設される排気ガス
浄化用の触媒コンバータにおいて、ヒータ付きの触媒と
その下流に配置される通常の触媒とを一つのコンバータ
ケースに組み込み、且つ前記ヒータ付きの触媒の前段に
排気ガスを前記ヒータ付き触媒のすみずみにまで導く案
内部材を配置して成ることを特徴とする触媒コンバー
タ。
9. A catalytic converter for purifying exhaust gas arranged in an exhaust pipe of an engine, wherein a catalyst with a heater and an ordinary catalyst arranged downstream thereof are incorporated in one converter case, and the heater is equipped with the heater. 2. A catalytic converter characterized in that a guide member for guiding the exhaust gas to the end of the catalyst with a heater is arranged in front of the catalyst.
【請求項10】 エンジンの排気管に配設される排気ガ
ス浄化用の触媒コンバータにおいて、ヒータ付きの触媒
とその下流に配置される通常の触媒とを一つのコンバー
タケースに組み込み、且つ前記コンバータケースの周囲
に前記排気ガスの迂回路を配設したことを特徴とする触
媒コンバータ。
10. A catalytic converter for purifying exhaust gas arranged in an exhaust pipe of an engine, wherein a catalyst with a heater and an ordinary catalyst arranged downstream thereof are incorporated into one converter case, and the converter case is provided. A catalytic converter characterized in that a bypass for the exhaust gas is provided around the exhaust gas.
【請求項11】 請求項1ないし請求項5のいずれか1
項において、前記触媒部として請求項7ないし請求項1
0のいずれか1項に記載された触媒コンバータを用いた
ことを特徴とするエンジンの排気浄化装置。
11. The method according to any one of claims 1 to 5.
In claim 1, the catalyst portion is defined by any one of claims 7 to 1.
An exhaust gas purifying apparatus for an engine, characterized by using the catalytic converter described in any one of 0.
JP33070291A 1991-12-13 1991-12-13 Exhaust emission control device for diesel engine and catalyst converter Pending JPH05163935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33070291A JPH05163935A (en) 1991-12-13 1991-12-13 Exhaust emission control device for diesel engine and catalyst converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33070291A JPH05163935A (en) 1991-12-13 1991-12-13 Exhaust emission control device for diesel engine and catalyst converter

Publications (1)

Publication Number Publication Date
JPH05163935A true JPH05163935A (en) 1993-06-29

Family

ID=18235610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33070291A Pending JPH05163935A (en) 1991-12-13 1991-12-13 Exhaust emission control device for diesel engine and catalyst converter

Country Status (1)

Country Link
JP (1) JPH05163935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005531A1 (en) * 1993-08-17 1995-02-23 Exxon Research & Engineering Company Control of secondary air to an electrically heated catalyst using feedback control
WO2020145050A1 (en) * 2019-01-09 2020-07-16 マレリ株式会社 Exhaust gas treatment device
JP2020143662A (en) * 2019-01-09 2020-09-10 マレリ株式会社 Catalyst converter and electrode cover for electro-thermal catalyst
JP2021050740A (en) * 2020-12-18 2021-04-01 マレリ株式会社 Exhaust gas treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005531A1 (en) * 1993-08-17 1995-02-23 Exxon Research & Engineering Company Control of secondary air to an electrically heated catalyst using feedback control
WO2020145050A1 (en) * 2019-01-09 2020-07-16 マレリ株式会社 Exhaust gas treatment device
JP2020143662A (en) * 2019-01-09 2020-09-10 マレリ株式会社 Catalyst converter and electrode cover for electro-thermal catalyst
US11473466B2 (en) 2019-01-09 2022-10-18 Marelli Corporation Exhaust gas processing device
US11708776B2 (en) 2019-01-09 2023-07-25 Marelli Corporation Exhaust gas processing device
JP2021050740A (en) * 2020-12-18 2021-04-01 マレリ株式会社 Exhaust gas treatment device

Similar Documents

Publication Publication Date Title
RU2435043C2 (en) Renovation control method for cleaning system, and device for its implementation
JPH1047048A (en) Emission control device for internal combustion engine
JPH0518234A (en) Secondary air control device for internal combustion engine
JP3602612B2 (en) Idle speed control device for internal combustion engine
US7219491B2 (en) Exhaust emission control apparatus of internal combustion engine and method thereof
JP2002303166A (en) Exhaust gas recirculation control device for internal combustion engine
JP3331758B2 (en) Temperature control device for exhaust gas purifier
JPH05163935A (en) Exhaust emission control device for diesel engine and catalyst converter
KR0147747B1 (en) Air/fuel ratio control system of internal combustion engine
KR0142895B1 (en) Fuel injection control system for internal combustion engine
JP3309669B2 (en) Secondary air supply device for internal combustion engine
JPH0988564A (en) Controller for internal combustion engine
JPH1182111A (en) Air-fuel ratio control device for internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JPH11311139A (en) Air-fuel ratio control system for multi-cylinder internal combustion engine
JPH0893522A (en) Air-fuel ratio controller for internal combustion engine
JP3601101B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001098981A (en) Device for determining catalyst deterioration for internal combustion engine
JP4069367B2 (en) Exhaust gas purification device for internal combustion engine
JPH11343913A (en) Air-fuel ratio controller for internal combustion engine
JP3161249B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2518243B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08240140A (en) Air-fuel ratio control device for internal-combustion engine
JPH0518235A (en) Secondary air control device for internal combustion engine
JPH07208153A (en) Exhaust emission control device of internal combustion engine